CN112054081A - Heat-preservation, sound-insulation and waterproof power generation glass and preparation method thereof - Google Patents

Heat-preservation, sound-insulation and waterproof power generation glass and preparation method thereof Download PDF

Info

Publication number
CN112054081A
CN112054081A CN202010917075.1A CN202010917075A CN112054081A CN 112054081 A CN112054081 A CN 112054081A CN 202010917075 A CN202010917075 A CN 202010917075A CN 112054081 A CN112054081 A CN 112054081A
Authority
CN
China
Prior art keywords
layer
power generation
glass
hollow
polyvinyl chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010917075.1A
Other languages
Chinese (zh)
Inventor
傅干华
王金萍
潘锦功
孙庆华
李�浩
杨超
彭寿
马立云
蒋猛
余柯良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cnbm Chengdu Optoelectronic Materials Co ltd
Original Assignee
Cnbm Chengdu Optoelectronic Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cnbm Chengdu Optoelectronic Materials Co ltd filed Critical Cnbm Chengdu Optoelectronic Materials Co ltd
Priority to CN202010917075.1A priority Critical patent/CN112054081A/en
Publication of CN112054081A publication Critical patent/CN112054081A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/26Building materials integrated with PV modules, e.g. façade elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The invention discloses a heat-insulating, sound-insulating and waterproof power generation glass and a preparation method thereof, wherein the heat-insulating, sound-insulating and waterproof power generation glass sequentially comprises the following components from bottom to top: the device comprises a power generation layer, a component glue film, component back plate glass, a hollow layer, a heat reflection film and outer layer glass; the hollow layer comprises a hollow structure and a hollow polyvinyl chloride partition frame which are sequentially arranged from inside to outside, wherein a drying agent is filled in the hollow cavity in the hollow polyvinyl chloride partition frame, at least one capillary tube is arranged in the hollow polyvinyl chloride partition frame, one end of the capillary tube extends into the hollow structure, and the other end of the capillary tube extends into the hollow cavity in the hollow polyvinyl chloride partition frame; the four side surfaces of the component are provided with edge sealing glue layers; a junction box is arranged in the hollow structure; the power generation glass has good heat preservation, heat insulation, sound insulation and waterproof effects and more attractive appearance.

Description

Heat-preservation, sound-insulation and waterproof power generation glass and preparation method thereof
Technical Field
The invention relates to the technical field of photoelectricity, in particular to heat-preservation, sound-insulation and waterproof power generation glass and a preparation method thereof.
Background
Building integrated photovoltaics (BIPV for short) means that a photovoltaic module is mounted on the surface of a building peripheral structure to provide power, and meanwhile, the building integrated photovoltaics is used as a functional part of a building structure to replace part of traditional building structures such as roof slabs, tiles, windows, building facades, rain shelters and the like, and can also be made into a photovoltaic multifunctional building module to realize more functions.
Traditional photovoltaic building integration field adopts two glass solar module: a composite layer composed of a PVB (or EVA) film and a solar cell sheet is arranged between the front glass and the back glass of the transparent conductive glass (TCO). The double-glass solar cell module is a laminated solar cell module, and has poor sound insulation, high heat conductivity, poor heat insulation and poor water resistance.
Disclosure of Invention
In view of the above, the application provides a heat-insulating, sound-insulating and waterproof power generation glass and a preparation method thereof, and the power generation glass has good heat-insulating, sound-insulating and waterproof effects and a more attractive appearance.
For solving above technical problem, the technical scheme that this application provided is a waterproof electricity generation glass of heat preservation sound insulation, by supreme including in proper order down: the device comprises a power generation layer, a component glue film, component back plate glass, a hollow layer, a heat reflection film and outer layer glass; the hollow layer comprises a hollow structure and a hollow polyvinyl chloride partition frame which are sequentially arranged from inside to outside, wherein a drying agent is filled in the hollow cavity in the hollow polyvinyl chloride partition frame, at least one capillary tube is arranged in the hollow polyvinyl chloride partition frame, one end of each capillary tube extends into the hollow structure, and the other end of each capillary tube extends into the hollow cavity in the hollow polyvinyl chloride partition frame; the four side surfaces of the component are provided with edge sealing glue layers; and a junction box is arranged in the hollow structure.
Preferably, the hollow polyvinyl chloride partition frame is provided with a through hole, and the inlet wire and the outlet wire of the junction box penetrate through the through hole.
Preferably, the through hole is internally fixed with the wire inlet and the wire outlet of the junction box by structural adhesive and is filled with butyl rubber.
Preferably, the material of the edge sealing glue layer is butyl glue.
Preferably, the upper side and the lower side of the hollow polyvinyl chloride partition frame are coated with butyl rubber and polysulfide rubber from inside to outside, so that the hollow polyvinyl chloride partition frame is glued between the assembly back plate glass and the heat reflection film.
Preferably, the outer glass is toughened glass, the heat reflection film is a metal silver film, the assembly backboard glass is semi-toughened glass, and the assembly adhesive film is a PVB adhesive film.
Preferably, the thickness of the assembly film layer is 0.5mm, the thickness of the assembly back plate glass is 6mm, the thickness of the hollow layer is 12mm, the thickness of the heat reflection film is 30nm, and the thickness of the outer layer glass is 10 mm; the thickness of the edge sealant layer is 0.34 mm.
Preferably, the power generation glass is cadmium telluride power generation glass.
Preferably, the power generation layer sequentially comprises from bottom to top: the anti-reflection film comprises an anti-reflection film coating, a first glass substrate layer, a first power generation layer adhesive film, a second glass substrate layer, a transparent conductive film, an absorption layer, a back contact layer, a back electrode layer, a second power generation layer adhesive film and power generation layer back plate glass.
Preferably, the power generation layer sequentially comprises from bottom to top: the anti-reflection film comprises an anti-reflection film coating, a first glass substrate layer, a first power generation layer adhesive film, a second glass substrate layer, a transparent conductive film, a window layer, an absorption layer, a back contact layer, a back electrode layer, a second power generation layer adhesive film and power generation layer back plate glass.
Preferably, the material of the absorption layer is cadmium telluride or selenium-doped cadmium telluride, and the antireflection film coating is SiO2The anti-reflection film is characterized in that the first glass substrate layer and the second glass substrate layer are made of ultra-white float glass, the power generation layer back plate glass is made of toughened glass, the central area of the second adhesive film of the power generation layer is a PVB layer, and a circle of butyl adhesive layer is arranged around the edge of the second adhesive film of the power generation layer; the first adhesive film of the power generation layer is a PVB adhesive film; the transparent conductive film is selected from any one of FTO transparent conductive film, ITO transparent conductive film and AZO transparent conductive film; the window layer is made of cadmium sulfide, the back contact layer is made of zinc telluride doped copper, and the back electrode layer is made of molybdenum or nickel.
Preferably, the material of the absorption layer is cadmium telluride.
Preferably, the width of the butyl rubber layer is 10 mm-12 mm, and the thickness of the butyl rubber layer is 0.5 mm; the thickness of a PVB layer in the central area of the second adhesive film of the power generation layer is 0.5 mm.
Preferably, the thickness of the first adhesive film of the power generation layer is 0.76 mm.
Preferably, the thickness of the absorption layer is 4-5 μm.
Preferably, the thickness of the antireflection film coating is 120 nm-140 nm, the thickness of the first glass substrate layer is 3.2mm, the thickness of the second glass substrate layer is 3.2mm, the thickness of the transparent conductive film is 800nm, the thickness of the window layer is 1700nm, the thickness of the back contact layer is 2000nm, the thickness of the back electrode layer is 3500nm, and the thickness of the power generation layer backboard glass is 10 mm.
The invention also provides a preparation method of the heat-preservation, sound-insulation and waterproof power generation glass, which comprises the following steps: sequentially laminating the power generation layer, the assembly adhesive film and the assembly back plate glass from bottom to top to obtain a laminated material I, and laminating the laminated material I;
the hollow polyvinyl chloride partition frame is provided with a through hole, the junction box is arranged in the hollow polyvinyl chloride partition frame, the inlet wire and the outlet wire of the junction box penetrate through the through hole, and the inlet wire terminal and the outlet wire terminal of the junction box are arranged outside the hollow polyvinyl chloride partition frame; the wire inlet and the wire outlet of the junction box are fixed in the through holes by structural adhesive and are filled by butyl rubber;
the assembly back plate glass, the hollow polyvinyl chloride partition frame and the heat reflection film form a sealed hollow structure, and the junction box is arranged in the hollow structure; a hollow cavity in the hollow polyvinyl chloride partition frame is filled with a drying agent, at least one capillary tube is arranged in the hollow polyvinyl chloride partition frame, one end of each capillary tube extends into the hollow structure, and the other end of each capillary tube extends into the hollow cavity in the hollow polyvinyl chloride partition frame; four sides of the assembly are sealed by adopting edge sealing glue layers.
Preferably, the preparation process of the outer glass with the heat reflecting film at the bottom specifically comprises the following steps: the preparation is carried out by adopting a magnetron sputtering device, the power is 15Kw, the vacuum degree is 3 multiplied by 10-8pa。
Preferably, the step of laminating the laminated material I specifically includes: and (3) placing the stacked material I in a vacuum laminating machine, heating at 160 ℃ for 20min, vacuumizing the vacuum laminating machine for 10min, and laminating for 10min at the laminating pressure of 50 KPa.
Preferably, the preparation method further comprises: preparing a power generation layer, wherein the power generation layer preparation process comprises the following steps: sequentially laminating a first glass substrate, a first glue film of a power generation layer, a second glass substrate layer, a transparent conductive film, an absorption layer, a back contact layer, a back electrode layer, a second glue film of the power generation layer and back plate glass of the power generation layer, wherein the bottom of the first glass substrate, the first glue film of the power generation layer, the second glass substrate layer, the transparent conductive film, the absorption layer, the back contact layer, the back electrode layer, the second glue film of the power generation; the laminated material II is subjected to lamination II.
Preferably, the preparation method further comprises: preparing a power generation layer, wherein the power generation layer preparation process comprises the following steps: sequentially laminating a first glass substrate, a first glue film of a power generation layer, a second glass substrate layer, a transparent conductive film, a window layer, an absorption layer, a back contact layer, a back electrode layer, a second glue film of the power generation layer and power generation layer back plate glass, wherein the bottom of the first glass substrate, the first glue film of the power generation layer, the second glass substrate layer, the transparent conductive film, the window layer, the absorption layer, the back contact layer, the back electrode layer, the second glue film of; the laminated material II is subjected to lamination II.
Preferably, the process of preparing the power generation layer further comprises: and spraying antireflection film gel on the bottom of the first glass substrate, primarily heating and curing for 1h at 150 ℃, heating and curing for 30min at a high temperature of 500 ℃, and radiating to obtain the first glass substrate with the antireflection film coating sprayed on the bottom.
Preferably, the antireflection film gel is SiO2Gelling; in volume percent, SiO2The content is 3%.
Preferably, the SiO2The gel is made of SiO2Mixing with an auxiliary agent to obtain; the auxiliary agent consists of ethanol, n-propanol, 1-methoxy-2-propanol and methanol, wherein the volume ratio of the ethanol to the n-propanol to the 1-methoxy-2-propanol to the methanol is (45-60): (25-40): (20-30): (1-2).
Preferably, the step of laminating the laminated material II specifically includes: and (3) placing the stacked material II in a vacuum laminating machine, heating at 160 ℃ for 20min, vacuumizing the vacuum laminating machine for 10min, and laminating for 10min at the laminating pressure of 50 KPa.
Preferably, the process of preparing the power generation layer further comprises: and after laminating II, fixedly connecting a junction box on the power generation layer back plate glass, conveying the junction box into an autoclave, heating and pressurizing under the condition of light treatment, electrifying, taking out the junction box from the autoclave, and taking down the junction box.
Preferably, the illumination intensity of the illumination treatment is 1000 w/square meter.
Preferably, in the illumination treatment process, an LED lamp with the intensity of 1000 w/square meter is adopted for illumination treatment.
Preferably, the temperature and pressure raising process is controlled at 135 ℃, the pressure maintaining time is 76min, and the pressure is 1.3 Mpa.
Preferably, the power-on process specifically includes: and the direct current source is connected with the cable point of the junction box and inputs the forward current of 1A.
Preferably, the power-on process specifically includes: and the direct current source is connected with a cable point of the junction box, and is electrified for 30min by inputting the forward current of 1A.
Preferably, the illumination treatment is performed by using an LED lamp.
Compared with the prior art, the detailed description of the application is as follows:
the heat-preservation sound-insulation waterproof power generation glass provided by the invention is provided with the hollow layer, has good heat-preservation, heat-insulation and sound-insulation effects, and does not frost or dew.
The heat-insulation, sound-insulation and waterproof power generation glass is provided with the heat reflection film layer, so that heat energy absorption can be reduced, and the heat insulation effect is improved.
The four side surfaces of the power generation glass are provided with edge sealing glue layers; the improved structure of the solar photovoltaic power generation module is characterized in that a junction box is arranged in the hollow structure, through holes are formed in the hollow polyvinyl chloride partition frame, the inlet wire and the outlet wire of the junction box penetrate through the through holes, the inlet wire and the outlet wire of the junction box are fixed in the through holes through structural adhesive and are filled with butyl rubber, and the edge sealing adhesive layer is made of butyl rubber. The selected butyl rubber has waterproofness, and the waterproofness is effectively improved. Meanwhile, the junction box is hidden, the appearance is more attractive, and the length of the cable is saved.
The anti-reflection film can increase the light transmission, increase the absorption and utilization rate of the power generation glass to sunlight and avoid the problem of poor visual effect.
The invention adopts the first glass substrate layer, the second glass substrate layer and the power generation layer back plate glass, and the structure of the multi-layer glass increases the heat insulation capability, thereby improving the power generation efficiency, improving the power stability and simultaneously increasing the sound insulation property. The bottom of the first glass substrate is coated with an anti-reflection film coating, so that the heat insulation capacity is improved.
The power generation layer adopted by the invention adopts the cadmium telluride absorption layer, and has higher photoelectric conversion efficiency. The power generation glass can also generate power in rainy days and under common indoor illumination conditions.
The package of the second adhesive film of the power generation layer is realized by the PVB adhesive film and the PVB in the central area, and the periphery of the edge of the second adhesive film of the power generation layer is provided with a circle of butyl adhesive layer, so that the load capacity of the glass is increased, and the requirement standard of a building is met; the butyl glue layer plays the waterproof effect in edge to adopt the PVB glued membrane, can select the PVB that highly passes through or different colours to make colored subassembly.
The material of the absorption layer is cadmium telluride or selenium-doped cadmium telluride, when the material of the absorption layer is cadmium telluride, the power generation glass is cadmium telluride power generation glass, and the power generation layer sequentially comprises the following components from bottom to top: subtract anti-membrane coating, first glass substrate layer, the first glued membrane of electricity generation layer, second glass substrate layer, transparent conducting film, window layer, absorbed layer, back of the body contact layer, back of the body electrode layer, electricity generation layer second glued membrane and electricity generation layer backplate glass, the material of absorbed layer is cadmium telluride, electricity generation layer after the illumination process, can appear its maximum power (Pmax) and tend to stable phenomenon, and stable definition does: after a period of irradiation, the maximum power measured before and after the light exposure is compared, wherein the larger value is the maximum Pm, the smaller value is the minimum Pm, and when (the maximum Pm-the minimum Pm)/(the maximum Pm + the minimum Pm) < 1%, the maximum power is defined to be stable, and the change of the maximum power is possible to increase or decrease. And under the irradiation of standard light intensity, measuring the efficiency of the module until the maximum power is stable. The cadmium telluride thin film power generation layer can generate photocurrent under illumination, the photocurrent is formed by moving current carriers, the current carriers can fill up part of confined defects in the process of flowing through the absorption layer, the electrical property of the module is stabilized, the current main means is to increase the external current, the shortest sunshine time required by the maximum power stabilization can be shortened, wherein the size of the external current is 0.5-2 times of the short-circuit current of the solar module, the duration is 2-30 minutes, and the time is slightly too long for industrialization. The carrier concentration is increased, the carrier movement is greatly influenced by lattice scattering, the lattice vibration is weaker, the lattice scattering effect is small, and therefore the carrier mobility needs to be high at high temperature. Under the condition of light treatment, the temperature is raised and the external current is applied, so that the carrier concentration and the mobility are improved, partial occlusion defects can be filled more quickly when the carriers flow through the absorption layer, and the time for stabilizing the Pmax of the cadmium telluride thin film power generation glass is shortened. The maximum power stable manufacturing time is shortened by the temperature rise and pressure process of the high-pressure kettle, the illumination treatment and the electrification of external current.
The power generation glass material of the invention is made of fireproof material, so the fireproof grade can reach the highest standard of A grade and completely reach the building requirement.
The preparation method has the advantages of easy control of reaction and low cost of selecting preparation materials.
Drawings
FIG. 1 is a schematic view showing the installation of a thermal and acoustic insulating power generation glass junction box according to the present invention;
FIG. 2 is a schematic diagram of a power generation layer structure according to the present invention;
FIG. 3 is a graph showing the temperature and pressure rise process in the autoclave of the present invention.
Detailed Description
In order to make those skilled in the art better understand the technical solution of the present invention, the following detailed description of the present invention is provided with reference to specific embodiments.
Example 1
The utility model provides a waterproof electricity generation glass of heat preservation sound insulation, by supreme down including in proper order: the device comprises a power generation layer, a component glue film, component back plate glass, a hollow layer, a heat reflection film and outer layer glass; the hollow layer comprises a hollow structure and a hollow polyvinyl chloride partition frame which are sequentially arranged from inside to outside, wherein a drying agent is filled in the hollow cavity in the hollow polyvinyl chloride partition frame, at least one capillary tube is arranged in the hollow polyvinyl chloride partition frame, one end of each capillary tube extends into the hollow structure, and the other end of each capillary tube extends into the hollow cavity in the hollow polyvinyl chloride partition frame; the four side surfaces of the component are provided with edge sealing glue layers; a junction box is arranged in the hollow structure; the hollow polyvinyl chloride partition frame is provided with a through hole, and an incoming line and an outgoing line of the junction box penetrate through the through hole; the wire inlet and the wire outlet of the junction box are fixed in the through holes by structural adhesive and are filled by butyl rubber; the edge sealing glue layer is made of butyl glue. The installation mode of the junction box is shown in figure 1;
the upper side and the lower side of the hollow polyvinyl chloride partition frame are coated with butyl rubber and polysulfide rubber from inside to outside, so that the hollow polyvinyl chloride partition frame is glued between the assembly back plate glass and the heat reflection film;
the outer glass is toughened glass, the heat reflection film is a metal silver film, the assembly backboard glass is semi-toughened glass, and the assembly adhesive film is a PVB adhesive film.
The thickness of the assembly film layer is 0.5mm, the thickness of the assembly back plate glass is 6mm, the thickness of the hollow layer is 12mm, the thickness of the heat reflection film is 30nm, and the thickness of the outer layer glass is 10 mm; the thickness of the edge sealing glue layer is 0.34 mm;
the power generation glass is cadmium telluride power generation glass and is a solar cell module;
as shown in fig. 2, the power generation layer sequentially comprises from bottom to top: the anti-reflection film comprises an anti-reflection film coating 1, a first glass substrate layer 2, a power generation layer first adhesive film 3, a second glass substrate layer 4, a transparent conductive film 5, a window layer 6, an absorption layer 7, a back contact layer 8, a back electrode layer 9, a power generation layer second adhesive film 10 and power generation layer back plate glass 11; the material of the absorption layer 7 is cadmium telluride;
the anti-reflection film coating 1 is SiO2The anti-reflection film is characterized in that the first glass substrate layer 2 and the second glass substrate layer 4 are made of ultra-white float glass, the power generation layer back plate glass 11 is made of toughened glass, the central area of the power generation layer second adhesive film 10 is a PVB layer, and a circle of butyl adhesive layer is arranged on the periphery of the edge; the first adhesive film 3 of the power generation layer is a PVB adhesive film; the transparent conductive film 5 is an FTO transparent conductive film; the window layer 6 is made of cadmium sulfide, the back contact layer 8 is made of zinc telluride doped copper, and the back electrode layer 9 is made of molybdenum;
the width of the butyl rubber layer is 10 mm-12 mm, and the thickness of the butyl rubber layer is 0.5 mm; the thickness of the central area of the second adhesive film 10 is 0.5mm by virtue of PVB layer, the thickness of the first adhesive film 3 of the power generation layer is 0.76mm, the thickness of the absorption layer 7 is 4-5 mu m, the thickness of the anti-reflection film coating 1 is 120 nm-140 nm, the thickness of the first glass substrate layer 2 is 3.2mm, the thickness of the second glass substrate layer 4 is 3.2mm, the thickness of the transparent conductive film 5 is 800nm, the thickness of the window layer 6 is 1700nm, the thickness of the back contact layer 8 is 2000nm, the thickness of the back electrode layer 9 is 3200nm, and the thickness of the back plate glass 11 of the power generation layer is 10 mm.
The preparation method of the heat-preservation, sound-insulation and waterproof power generation glass comprises the following steps:
(1) preparing a power generation layer;
(2) sequentially laminating the power generation layer, the assembly adhesive film and the assembly back plate glass from bottom to top to obtain a laminated material I,
placing the stacked material I in a vacuum laminating machine, heating at 160 ℃ for 20min, vacuumizing the vacuum laminating machine for 10min, and laminating for 10min at the laminating pressure of 50 KPa;
(3) the hollow polyvinyl chloride partition frame is provided with a through hole, the junction box is arranged in the hollow polyvinyl chloride partition frame, the inlet wire and the outlet wire of the junction box penetrate through the through hole, and the inlet wire terminal and the outlet wire terminal of the junction box are arranged outside the hollow polyvinyl chloride partition frame; the wire inlet and the wire outlet of the junction box are fixed in the through holes by structural adhesive and are filled by butyl rubber;
(4) the upper side and the lower side of the hollow polyvinyl chloride partition frame are coated with butyl rubber and polysulfide rubber from inside to outside, the hollow polyvinyl chloride partition frame is glued between assembly backboard glass and outer layer glass with a heat reflection film at the bottom, a sealed hollow structure is formed among the assembly backboard glass, the hollow polyvinyl chloride partition frame and the heat reflection film, and the junction box is arranged in the hollow structure; a hollow cavity in the hollow polyvinyl chloride partition frame is filled with a drying agent, at least one capillary tube is arranged in the hollow polyvinyl chloride partition frame, one end of each capillary tube extends into the hollow structure, and the other end of each capillary tube extends into the hollow cavity in the hollow polyvinyl chloride partition frame; four side surfaces of the component are sealed by adopting edge sealing glue layers;
wherein the content of the first and second substances,
the preparation process of the outer glass with the heat reflection film at the bottom specifically comprises the following steps: the preparation is carried out by adopting a magnetron sputtering device, the power is 15Kw, the vacuum degree is 3 multiplied by 10-8pa; the process for preparing the power generation layer comprises the following steps:
(1a) spraying antireflection film gel on the bottom of a first glass substrate, primarily heating and curing for 1h at 150 ℃, heating and curing for 30min at a high temperature of 500 ℃, and radiating to obtain the first glass substrate with the antireflection film coating sprayed on the bottom;
the anti-reflection film gel is SiO2Gelling; in volume percent, SiO2The content is 3%.
The SiO2The gel is made of SiO2Mixing with an auxiliary agent to obtain; the auxiliary agent consists of ethanol, n-propanol, 1-methoxy-2-propanol and methanol, wherein the volume ratio of the ethanol to the n-propanol to the 1-methoxy-2-propanol to the methanol is (45-60): (25-40): (20-30): (1-2).
(1b) Sequentially laminating a first glass substrate layer 2, a first power generation layer adhesive film 3, a second glass substrate layer 4, a transparent conductive film 5, a window layer 6, an absorption layer 7, a back contact layer 8, a back electrode layer 9, a second power generation layer adhesive film 10 and power generation layer back plate glass 11, wherein the bottom of the first glass substrate layer 2 is sprayed with an antireflection film coating 1; the material of the absorption layer 7 is cadmium telluride to obtain a laminated material II;
placing the stacked material II in a vacuum laminating machine, heating at 160 ℃ for 20min, vacuumizing the vacuum laminating machine for 10min, and laminating for 10min, wherein the laminating pressure is 50 KPa;
(1c) after the lamination II, fixedly connecting a junction box on the power generation layer back plate glass 11, sending the junction box into an autoclave, heating and pressurizing under the condition of illumination treatment by adopting an LED lamp, electrifying, taking out the junction box from the autoclave, and taking down the junction box;
the illumination intensity of the illumination treatment is 1000 w/square meter;
the temperature and pressure raising process is controlled at 135 ℃, the pressure maintaining time is 76min, the pressure is 1.3Mpa, and the temperature and pressure raising process curve chart is shown in figure 2;
the electrifying process specifically comprises the following steps: and the direct current source is connected with a cable point of a junction box fixed on the power generation layer back plate glass 11, and 1A of forward current is input and electrified for 30 min.
The heat-insulating, sound-insulating and waterproof power generation glass has a heat transfer coefficient of 2.8W/(m) according to a test2K), the average effective noise isolation reaches 20 decibels, and the service life is 27 years.
Example 2
This example differs from example 1 only in that: the transparent conductive film is an ITO transparent conductive film; the material of the back electrode layer is nickel.
Example 3
This example differs from example 1 only in that: the transparent conductive film is an AZO transparent conductive film.
Example 4
This example differs from example 1 only in that: the material of the absorption layer is selenium-doped cadmium telluride.
Comparative example 1
The present comparative example differs from example 1 only in that: adopt the module glued membrane to replace the cavity layer, subassembly side-mounting terminal box:
the utility model provides a waterproof electricity generation glass of heat preservation sound insulation, by supreme down including in proper order: the module comprises a power generation layer, a module adhesive film, module back plate glass, a module adhesive film, a heat reflection film and outer layer glass.
The preparation method of the heat-preservation, sound-insulation and waterproof power generation glass comprises the following steps:
(2) preparing a power generation layer:
(2) sequentially stacking a power generation layer, a component adhesive film, component back plate glass, a component adhesive film and outer layer glass with a heat reflection film at the bottom to obtain a stacked material I,
placing the stacked material I in a vacuum laminating machine, heating at 160 ℃ for 20min, vacuumizing the vacuum laminating machine for 10min, and laminating for 10min at the laminating pressure of 50 KPa;
(3) and installing a junction box on the side surface of the assembly.
The heat-insulating, sound-insulating and waterproof power generation glass of the comparison example has a heat transfer coefficient of 3.2W/(m) through tests2K), the average effective noise isolation reaches 15 decibels, and the service life is 25 years.
Comparative example 2
The present comparative example differs from example 1 only in that: adopt the module glued membrane to replace the cavity layer, do not establish the heat reflection membrane, subassembly side-mounting terminal box:
the utility model provides a waterproof electricity generation glass of heat preservation sound insulation, by supreme down including in proper order: the module comprises a power generation layer, a module adhesive film, module back plate glass, a module adhesive film and outer layer glass.
The preparation method of the heat-preservation, sound-insulation and waterproof power generation glass comprises the following steps:
(1) preparing a power generation layer:
(2) sequentially laminating the power generation layer, the assembly adhesive film, the assembly back plate glass, the assembly adhesive film and the outer layer glass from bottom to top to obtain a laminated material I,
placing the stacked material I in a vacuum laminating machine, heating at 160 ℃ for 20min, vacuumizing the vacuum laminating machine for 10min, and laminating for 10min at the laminating pressure of 50 KPa;
and installing a junction box on the side surface of the assembly.
Book pairThe heat-insulating, sound-insulating and waterproof power generation glass has a heat transfer coefficient of 3.3W/(m)2K), the average effective noise isolation reaches 13 decibels, and the service life is 25 years. The above is only a preferred embodiment of the present invention, and it should be noted that the above preferred embodiment should not be considered as limiting the present invention, and the protection scope of the present invention should be subject to the scope defined by the claims. It will be apparent to those skilled in the art that various modifications and adaptations can be made without departing from the spirit and scope of the invention, and these modifications and adaptations should be considered within the scope of the invention.

Claims (10)

1. The utility model provides a waterproof electricity generation glass of heat preservation sound insulation which characterized in that includes by supreme down in proper order: the solar cell module comprises a power generation layer, a first module adhesive film, module back plate glass, a second module adhesive film, a hollow layer, a heat reflection film and outer layer glass; the hollow layer comprises a hollow structure and a hollow polyvinyl chloride partition frame which are sequentially arranged from inside to outside, wherein a drying agent is filled in the hollow cavity in the hollow polyvinyl chloride partition frame, at least one capillary tube is arranged in the hollow polyvinyl chloride partition frame, one end of each capillary tube extends into the hollow structure, and the other end of each capillary tube extends into the hollow cavity in the hollow polyvinyl chloride partition frame; the four side surfaces of the component are provided with edge sealing glue layers; and a junction box is arranged in the hollow structure.
2. The power generation glass according to claim 1, wherein the hollow polyvinyl chloride bulkhead is provided with through holes, and the inlet and outlet wires of the junction box pass through the through holes.
3. The power generation glass according to claim 2, wherein the through hole is internally fixed with an inlet wire and an outlet wire of the junction box by structural adhesive and is filled with butyl rubber.
4. The power generating glass according to claim 1, wherein the edge sealant material is butyl rubber.
5. The power generation glass according to claim 1, wherein the upper and lower sides of the hollow polyvinyl chloride spacer frame are coated with butyl rubber and polysulfide rubber from inside to outside, so that the hollow polyvinyl chloride spacer frame is glued between the assembly backplane glass and the heat reflective film.
6. The power generation glass according to claim 1, wherein the outer glass is tempered glass, the heat reflective film is a metallic silver film, the assembly backplane glass is semi-tempered glass, and the assembly adhesive film is a PVB adhesive film.
7. The power generating glass according to claim 1, wherein the module film layer thickness is 0.5mm, the module backplane glass thickness is 6mm, the hollow layer thickness is 12mm, the heat reflective film thickness is 30nm, and the outer layer glass thickness is 10 mm; the thickness of the edge sealant layer is 0.34 mm.
8. The power generation glass according to claim 1, wherein the power generation layer comprises, in order from bottom to top: the anti-reflection film comprises an anti-reflection film coating, a first glass substrate layer, a first power generation layer adhesive film, a second glass substrate layer, a transparent conductive film, an absorption layer, a back contact layer, a back electrode layer, a second power generation layer adhesive film and power generation layer back plate glass.
9. The preparation method of the heat-insulating, sound-insulating and waterproof power generation glass of any one of claims 1 to 8, which is characterized by comprising the following steps: sequentially laminating the power generation layer, the assembly adhesive film and the assembly back plate glass from bottom to top to obtain a laminated material I, and laminating the laminated material I;
the hollow polyvinyl chloride partition frame is provided with a through hole, the junction box is arranged in the hollow polyvinyl chloride partition frame, the inlet wire and the outlet wire of the junction box penetrate through the through hole, and the inlet wire terminal and the outlet wire terminal of the junction box are arranged outside the hollow polyvinyl chloride partition frame; the wire inlet and the wire outlet of the junction box are fixed in the through holes by structural adhesive and are filled by butyl rubber;
the assembly back plate glass, the hollow polyvinyl chloride partition frame and the heat reflection film form a sealed hollow structure, and the junction box is arranged in the hollow structure; a hollow cavity in the hollow polyvinyl chloride partition frame is filled with a drying agent, at least one capillary tube is arranged in the hollow polyvinyl chloride partition frame, one end of each capillary tube extends into the hollow structure, and the other end of each capillary tube extends into the hollow cavity in the hollow polyvinyl chloride partition frame; four sides of the assembly are sealed by adopting edge sealing glue layers.
10. The method of manufacturing according to claim 9, further comprising: preparing a power generation layer, wherein the power generation layer preparation process comprises the following steps: sequentially laminating a first glass substrate, a first glue film of a power generation layer, a second glass substrate layer, a transparent conductive film, an absorption layer, a back contact layer, a back electrode layer, a second glue film of the power generation layer and back plate glass of the power generation layer, wherein the bottom of the first glass substrate, the first glue film of the power generation layer, the second glass substrate layer, the transparent conductive film, the absorption layer, the back contact layer, the back electrode layer, the second glue film of the power generation; the laminated material II is subjected to lamination II.
CN202010917075.1A 2020-09-03 2020-09-03 Heat-preservation, sound-insulation and waterproof power generation glass and preparation method thereof Pending CN112054081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010917075.1A CN112054081A (en) 2020-09-03 2020-09-03 Heat-preservation, sound-insulation and waterproof power generation glass and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010917075.1A CN112054081A (en) 2020-09-03 2020-09-03 Heat-preservation, sound-insulation and waterproof power generation glass and preparation method thereof

Publications (1)

Publication Number Publication Date
CN112054081A true CN112054081A (en) 2020-12-08

Family

ID=73608325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010917075.1A Pending CN112054081A (en) 2020-09-03 2020-09-03 Heat-preservation, sound-insulation and waterproof power generation glass and preparation method thereof

Country Status (1)

Country Link
CN (1) CN112054081A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202487620U (en) * 2012-02-20 2012-10-10 宁夏银星能源光伏发电设备制造有限公司 Hollow microcirculation photovoltaic module in building integrated photovoltaics (BIPV)
CN202905756U (en) * 2012-11-15 2013-04-24 宁夏银星能源光伏发电设备制造有限公司 Breathing-type hollow BIPV (building integrated photovoltaics) assembly
CN208473588U (en) * 2018-05-08 2019-02-05 北京铂阳顶荣光伏科技有限公司 A kind of photovoltaic door and window
US10355156B2 (en) * 2013-01-21 2019-07-16 Holomedia, Llc Light-concentrating mechanism, photovoltaic power generation device, window structure, and window glass
CN110700456A (en) * 2019-10-12 2020-01-17 成都中建材光电材料有限公司 Hollow cadmium telluride power generation glass assembly
CN111540793A (en) * 2020-05-11 2020-08-14 成都中建材光电材料有限公司 Cadmium telluride solar cell module with insulating layer and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202487620U (en) * 2012-02-20 2012-10-10 宁夏银星能源光伏发电设备制造有限公司 Hollow microcirculation photovoltaic module in building integrated photovoltaics (BIPV)
CN202905756U (en) * 2012-11-15 2013-04-24 宁夏银星能源光伏发电设备制造有限公司 Breathing-type hollow BIPV (building integrated photovoltaics) assembly
US10355156B2 (en) * 2013-01-21 2019-07-16 Holomedia, Llc Light-concentrating mechanism, photovoltaic power generation device, window structure, and window glass
CN208473588U (en) * 2018-05-08 2019-02-05 北京铂阳顶荣光伏科技有限公司 A kind of photovoltaic door and window
CN110700456A (en) * 2019-10-12 2020-01-17 成都中建材光电材料有限公司 Hollow cadmium telluride power generation glass assembly
CN111540793A (en) * 2020-05-11 2020-08-14 成都中建材光电材料有限公司 Cadmium telluride solar cell module with insulating layer and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5450801B2 (en) Insulating glass composite material including photovoltaic cells arranged diagonally, method for producing the same, and method for using the same
CN102315331B (en) Lightweight film solar module and manufacturing method thereof
KR102255573B1 (en) Solar module
CN111540793A (en) Cadmium telluride solar cell module with insulating layer and preparation method thereof
CN212129598U (en) PV-LED building curtain wall
WO2023050772A1 (en) Crystalline silicon bipv building component and manufacturing method therefor
CN202205774U (en) Photovoltaic vacuum glass component
CN102903792A (en) Solar cell double-layer composite device
CN101924146A (en) Light ray-adjustable non-light tight membrane photovoltaic component and manufacturing method thereof
CN112054080A (en) Heat-insulating sound-insulating power generation glass and preparation method thereof
CN105140325A (en) Self-cleaned solar cell assembly with high conversion rate
US20190348558A1 (en) Power generation mechanism and method for manufacturing the same, power generation apparatus
CN112054081A (en) Heat-preservation, sound-insulation and waterproof power generation glass and preparation method thereof
CN201991392U (en) Film photovoltaic hollow and vacuum combined member with strong heat insulating performance
CN112054079A (en) Power generation glass for building integrated photovoltaic and preparation method thereof
CN112909115A (en) Double-sided power generation glass assembly and preparation method thereof
CN109972989A (en) Solar power generation window
CN210073875U (en) Solar curtain wall assembly and solar curtain wall
CN112165286A (en) Bullet-proof radiation-proof power generation glass capable of shielding electromagnetic signals and preparation method thereof
CN209244038U (en) A kind of photovoltaic module for photovoltaic curtain wall
CN202487590U (en) Transparent solar power generation hollow glass
CN102587545A (en) Photovoltaic building glass curtain wall component
CN203288627U (en) FRP-double-layer vacuum glass photovoltaic member
CN207368976U (en) A kind of photovoltaic module in double circuit circuit
CN204668324U (en) Heat-insulating type solar module

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201208

RJ01 Rejection of invention patent application after publication