CN112037163A - An automatic blood flow measurement method and device based on ultrasound images - Google Patents
An automatic blood flow measurement method and device based on ultrasound images Download PDFInfo
- Publication number
- CN112037163A CN112037163A CN201910416611.7A CN201910416611A CN112037163A CN 112037163 A CN112037163 A CN 112037163A CN 201910416611 A CN201910416611 A CN 201910416611A CN 112037163 A CN112037163 A CN 112037163A
- Authority
- CN
- China
- Prior art keywords
- blood flow
- blood vessel
- image
- preset time
- ultrasonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000017531 blood circulation Effects 0.000 title claims abstract description 140
- 238000002604 ultrasonography Methods 0.000 title claims abstract description 90
- 238000000691 measurement method Methods 0.000 title claims abstract description 14
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 162
- 230000002792 vascular Effects 0.000 claims abstract description 41
- 238000001514 detection method Methods 0.000 claims abstract description 35
- 238000005259 measurement Methods 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000004364 calculation method Methods 0.000 claims abstract description 13
- 238000005070 sampling Methods 0.000 claims description 16
- 238000012216 screening Methods 0.000 claims description 7
- 230000009467 reduction Effects 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 4
- 239000000523 sample Substances 0.000 claims description 4
- 238000003384 imaging method Methods 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 5
- 238000007689 inspection Methods 0.000 abstract description 3
- 238000003709 image segmentation Methods 0.000 description 12
- 238000004422 calculation algorithm Methods 0.000 description 11
- 238000001914 filtration Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 2
- 238000003759 clinical diagnosis Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000003707 image sharpening Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
- 230000004218 vascular function Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10132—Ultrasound image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
- G06T2207/30104—Vascular flow; Blood flow; Perfusion
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
本发明公开了一种基于超声图像的血流量自动测量方法和装置,所述方法包括:获取目标对象在第一检测模式下预设时间内的血管超声图像,并获取目标对象在第二检测模式下预设时间内的超声多普勒图像;根据血管超声图像识别目标对象中血管组织的血管壁位置;根据超声多普勒图像获取血管组织在预设时间内的血流速度;根据血管壁位置和预设时间内的血流速度计算出血管组织的血流量信息。这种血流量的测量方式,操作流程更加简单,无需医护人员手动标注和来回切换图像模式,提高了检查效率;同时利用预定时间内的血管直径数据和血流速度数据进行血流量的计算,血流量计算结果更具有鲁棒性,减少了瞬时测量带来的随机干扰,使测量结果更准确。
The invention discloses a method and device for automatic blood flow measurement based on ultrasonic images. The method comprises: acquiring an ultrasonic image of blood vessels of a target object in a preset time in a first detection mode, and acquiring the target object in a second detection mode Ultrasound Doppler images within a preset time; identify the blood vessel wall position of the vascular tissue in the target object according to the vascular ultrasound image; obtain the blood flow velocity of the vascular tissue within the preset time according to the ultrasound Doppler image; and the blood flow velocity within a preset time to calculate the blood flow information of the vascular tissue. This blood flow measurement method has a simpler operation process and does not require medical staff to manually mark and switch image modes back and forth, which improves the inspection efficiency; The flow calculation result is more robust, reduces random interference caused by instantaneous measurement, and makes the measurement result more accurate.
Description
技术领域technical field
本发明涉及血流量测量技术领域,具体涉及一种基于超声图像的血流量自动测量方法和装置。The invention relates to the technical field of blood flow measurement, in particular to an automatic blood flow measurement method and device based on an ultrasonic image.
背景技术Background technique
超声成像是医学诊断的重要手段,医生可以通过不同模式的超声图像获取不同类型的诊断信息。血流量是评估血管功能的重要指标,可以间接评估人体的循环系统功能。因此,在临床上,血流量的测量用于评估血管性能。Ultrasound imaging is an important means of medical diagnosis. Doctors can obtain different types of diagnostic information through ultrasound images of different modes. Blood flow is an important indicator for evaluating vascular function, which can indirectly evaluate the function of the human circulatory system. Therefore, clinically, the measurement of blood flow is used to assess vascular performance.
B模式下超声装置可以获取血管的形状、直径和位置等信息;PW模式下超声装置可以获取血流的速度信息。针对人体血管,两者相结合可以获得血管相应位置的血流量信息。目前临床诊断上的血流量测量主要是通过超声医师操作轨迹球的方式,对血管相应位置的直径进行手动标注,然后再使用PW模式下测得的速度信息,计算出相应的血流量。In the B mode, the ultrasonic device can obtain information such as the shape, diameter and position of the blood vessel; in the PW mode, the ultrasonic device can obtain the velocity information of the blood flow. For human blood vessels, the combination of the two can obtain the blood flow information of the corresponding positions of the blood vessels. At present, the blood flow measurement in clinical diagnosis is mainly through the sonographer operating the trackball to manually mark the diameter of the corresponding position of the blood vessel, and then use the velocity information measured in the PW mode to calculate the corresponding blood flow.
目前临床诊断上的血流量测量主要是通过超声医生操作轨迹球的方式,先手动测得血管图像的直径,再测多普勒图像的血流速度,计算出相应的血流量,在不同模式下的多次操作,会增加不必要的时间成本,极大影响检测效率。因此,在超声图像的血流量测量中,实现血流量的自动测量有重要意义。At present, the blood flow measurement in clinical diagnosis is mainly through the operation of the trackball by the ultrasound doctor. First, the diameter of the blood vessel image is manually measured, and then the blood flow velocity of the Doppler image is measured, and the corresponding blood flow is calculated. The multiple operations will increase unnecessary time cost and greatly affect the detection efficiency. Therefore, in the blood flow measurement of ultrasound images, it is of great significance to realize the automatic measurement of blood flow.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明实施例提供一种基于超声图像的血流量自动测量方法和装置,以解决现有在超声图像的血流量测量中手动测量的操作繁琐、耗费时间长、检测效率低的问题。In view of this, the embodiments of the present invention provide a method and device for automatic blood flow measurement based on ultrasonic images, so as to solve the problems of cumbersome operation, long time consumption and low detection efficiency in the existing manual measurement of blood flow in ultrasonic images. .
根据第一方面,本发明提供了一种基于超声图像的血流量自动测量方法,包括:According to a first aspect, the present invention provides an automatic blood flow measurement method based on an ultrasound image, comprising:
获取目标对象在第一检测模式下预设时间内的血管超声图像,并获取目标对象在第二检测模式下预设时间内的超声多普勒图像;Acquiring a blood vessel ultrasound image of the target object within a preset time in the first detection mode, and acquiring an ultrasound Doppler image of the target object within a preset time in the second detection mode;
根据所述血管超声图像识别目标对象中血管组织的血管壁位置;Identify the blood vessel wall position of the blood vessel tissue in the target object according to the blood vessel ultrasound image;
根据所述超声多普勒图像获取血管组织在预设时间内的血流速度;Acquiring the blood flow velocity of the vascular tissue within a preset time according to the ultrasound Doppler image;
根据血管壁位置和预设时间内的血流速度计算出血管组织的血流量信息;Calculate the blood flow information of the vascular tissue according to the position of the blood vessel wall and the blood flow velocity within a preset time;
在所述血管超声图像上标注所述血流量信息。The blood flow information is marked on the blood vessel ultrasound image.
结合第一方面,在第一方面的一种实施方式中,所述根据血管壁位置和预设时间内的血流速度计算出血管组织的血流量信息之前,还包括:With reference to the first aspect, in an embodiment of the first aspect, before calculating the blood flow information of the vascular tissue according to the blood vessel wall position and the blood flow velocity within a preset time, the method further includes:
对血管壁位置和预设时间内的所述血流速度进行筛选。The blood vessel wall location and the blood flow velocity within a preset time are screened.
结合第一方面,在第一方面的一种实施方式中,所述对血管壁位置和预设时间内的所述血流速度进行筛选,包括:With reference to the first aspect, in an embodiment of the first aspect, the screening of the blood vessel wall position and the blood flow velocity within a preset time includes:
在预设时间内的血流速度图像中筛选出一个时间段的血流周期信号;Screen out the blood flow cycle signal of a time period from the blood flow velocity image within a preset time;
根据所述血流周期信号的时间段,从多帧血管壁位置的图像中计算得到血管直径信息。According to the time period of the blood flow cycle signal, the blood vessel diameter information is calculated from the images of the position of the blood vessel wall in multiple frames.
结合第一方面,在第一方面的一种实施方式中,所述获取目标对象在第一检测模式下预设时间内的血管超声图像,并获取目标对象在第二检测模式下预设时间内的超声多普勒图像,包括:With reference to the first aspect, in an implementation manner of the first aspect, the acquiring an ultrasound image of the blood vessel of the target object within a preset time in the first detection mode, and acquiring the target object within a preset time in the second detection mode ultrasound Doppler images, including:
向目标对象中包含血管组织的区域发射同一方向上的第二超声波,接受第二回波信号,获取目标对象在预设时间内的超声多普勒图像;Sending a second ultrasonic wave in the same direction to the area of the target object including the blood vessel tissue, receiving the second echo signal, and acquiring the ultrasonic Doppler image of the target object within a preset time;
向目标对象中包含血管组织的区域发射第一超声波,接受第一回波信号,获取目标对象在预设时间内的第一血管超声图像;和/或Transmitting the first ultrasonic wave to the region including the blood vessel tissue in the target object, receiving the first echo signal, and acquiring the first blood vessel ultrasonic image of the target object within a preset time; and/or
向目标对象中包含血管组织的区域发射第三超声波,接受第三回波信号,获取目标对象在预设时间内的第二血管超声图像。The third ultrasonic wave is transmitted to the region including the blood vessel tissue in the target object, the third echo signal is received, and the second blood vessel ultrasonic image of the target object is acquired within a preset time.
结合第一方面,在第一方面的一种实施方式中,所述根据所述血管超声图像识别目标对象中血管组织的血管壁位置,包括:With reference to the first aspect, in an implementation manner of the first aspect, the identifying the position of the blood vessel wall of the blood vessel tissue in the target object according to the blood vessel ultrasound image includes:
对所述血管超声图像的边界特性进行预处理;preprocessing the boundary characteristics of the blood vessel ultrasound image;
对经过预处理后的血管超声图像进行分割处理得到包含血管壁的二值图像;Segmenting the preprocessed vascular ultrasound image to obtain a binary image containing the vascular wall;
向当前所对应的血管超声图像的血流区域设定取样门,根据取样门的位置信息在所述二值图像中识别出血管壁位置。A sampling gate is set in the blood flow region of the currently corresponding blood vessel ultrasound image, and the position of the blood vessel wall is identified in the binary image according to the position information of the sampling gate.
结合第一方面,在第一方面的一种实施方式中,所述对血管超声图像的边界特性进行预处理,包括:With reference to the first aspect, in an embodiment of the first aspect, the preprocessing of the boundary characteristics of the blood vessel ultrasound image includes:
对获取的血管超声图像进行降噪处理;Perform noise reduction processing on the acquired ultrasound images of blood vessels;
对降噪处理后的血管超声图像进行各向异性处理。Anisotropic processing is performed on the denoised ultrasound images of blood vessels.
结合第一方面,在第一方面的一种实施方式中,所述对经过预处理后的血管超声图像进行分割处理得到包含血管壁的二值图像,包括:With reference to the first aspect, in an implementation manner of the first aspect, the preprocessed blood vessel ultrasound image is segmented to obtain a binary image including the blood vessel wall, including:
获取血管超声图像的边缘轮廓;Obtain the edge contour of the blood vessel ultrasound image;
根据所述边缘轮廓对所述血管超声图像进行二值转换,得到分割后包含血管壁的二值图像。Binary transformation is performed on the blood vessel ultrasound image according to the edge contour to obtain a binary image including the blood vessel wall after segmentation.
根据第二方面,本发明实施例还提供了一种超声图像的血流量自动测量装置,包括:According to a second aspect, an embodiment of the present invention also provides an automatic blood flow measurement device for an ultrasound image, including:
数据采集单元,通过超声探头在第一检测模式下对目标对象进行扫描获取预设时间内的血管超声图像,并在第二检测模式下对目标对象进行扫描获取预设时间内的超声多普勒图像;The data acquisition unit scans the target object with the ultrasonic probe in the first detection mode to obtain the ultrasound image of the blood vessel within the preset time, and scans the target object in the second detection mode to obtain the ultrasound Doppler within the preset time. image;
血管直径测量单元,根据所述血管超声图像识别目标对象中血管组织的血管壁位置并计算血管壁直径;a blood vessel diameter measuring unit, for identifying the blood vessel wall position of the blood vessel tissue in the target object according to the blood vessel ultrasound image and calculating the blood vessel wall diameter;
血流速度检测单元,根据预设时间内所述超声多普勒图像获取血管组织在预设时间内的血流速度;a blood flow velocity detection unit, which obtains the blood flow velocity of the blood vessel tissue within the preset time according to the ultrasonic Doppler image within the preset time;
血流量计算单元,根据血管壁位置和预设时间内的血流速度计算出血管组织的血流量信息;The blood flow calculation unit calculates the blood flow information of the vascular tissue according to the position of the blood vessel wall and the blood flow velocity within the preset time;
计算结果显示单元,在所述血管超声图像上标注所述血流量信息。A calculation result display unit, marking the blood flow information on the blood vessel ultrasound image.
根据第三方面,本发明实施例提供了一种终端设备,包括存储器、处理器以及储存在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的基于超声图像的血流量自动测量方法。According to a third aspect, an embodiment of the present invention provides a terminal device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, where the processor executes the computer program When the above-mentioned automatic blood flow measurement method based on ultrasonic images is realized.
根据第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行上述的超声图像的血流量自动测量方法。According to a fourth aspect, an embodiment of the present invention provides a computer-readable storage medium, where the computer-readable storage medium stores computer instructions, and the computer instructions are used to cause the computer to perform the above-mentioned automatic blood flow measurement of an ultrasound image Measurement methods.
在本发明实施例中,通过获取目标对象在第一检测模式下预设时间内的血管超声图像,可以确定血管壁位置;再获取目标对象在第二检测模式下预设时间内的超声多普勒图像,可以获取血管组织在预设时间内的血流速度,再对血管壁位置和预设时间内的血流速度进行筛选,可以获取最佳的血流速度周期和血管直径,再通过最佳的血流速度周期和血管直径计算出血管组织的血流量信息;这种血流量的测量方式,与现有技术相比,操作流程更加简单,无需医护人员手动标注和来回切换图像模式,提高了检查效率;同时利用预定时间内的血管直径数据和血流速度数据进行血流量的计算,血流量计算结果更具有鲁棒性,减少了瞬时测量带来的随机干扰,使测量结果更准确。In the embodiment of the present invention, the position of the blood vessel wall can be determined by acquiring the ultrasound image of the blood vessel of the target object within the preset time in the first detection mode; LE image, the blood flow velocity of the vascular tissue in the preset time can be obtained, and then the position of the blood vessel wall and the blood flow velocity in the preset time can be screened to obtain the best blood flow velocity period and blood vessel diameter, and then through the most The optimal blood flow velocity cycle and blood vessel diameter can calculate the blood flow information of the vascular tissue; this blood flow measurement method, compared with the existing technology, has a simpler operation process, and does not require medical staff to manually mark and switch image modes back and forth, improving the performance. The inspection efficiency is improved; at the same time, the blood vessel diameter data and blood flow velocity data are used to calculate the blood flow, and the blood flow calculation result is more robust, reduces the random interference caused by the instantaneous measurement, and makes the measurement result more accurate.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the specific embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the specific embodiments or the prior art. Obviously, the accompanying drawings in the following description The drawings are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without creative efforts.
图1是根据本发明实施例的超声图像血流量自动测量方法的流程图;1 is a flowchart of an ultrasonic image blood flow automatic measurement method according to an embodiment of the present invention;
图2是本现有技术中血流量测量的效果图一;Fig. 2 is the effect drawing one of blood flow measurement in the prior art;
图3是本现有技术中血流量测量的效果图二;Fig. 3 is the effect diagram 2 of blood flow measurement in the prior art;
图4是本发明实施例中血流量测量的效果图;4 is an effect diagram of blood flow measurement in an embodiment of the present invention;
图5是本发明实施例中超声图像血流量自动测量装置的结构示意图;5 is a schematic structural diagram of an ultrasonic image blood flow automatic measurement device in an embodiment of the present invention;
图6是本发明实施例中血流量自动测量的信号流程图。FIG. 6 is a signal flow chart of automatic blood flow measurement in an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts shall fall within the protection scope of the present invention.
根据本发明实施例,提供了一种基于超声图像的血流量自动测量方法实施例,需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。According to an embodiment of the present invention, an embodiment of an automatic blood flow measurement method based on an ultrasound image is provided. It should be noted that although a logical sequence is shown in the flowchart, in some cases, the method may be different from this The steps shown or described are performed in the order shown.
参照图1-4所示,在其中一个实施例中,提供了一种超声图像中血流量获得方法,其包括以下步骤:1-4, in one embodiment, a method for obtaining blood flow in an ultrasound image is provided, which includes the following steps:
S1,获取目标对象在第一检测模式下预设时间内的血管超声图像,并获取目标对象在第二检测模式下预设时间内的超声多普勒图像。S1: Acquire a blood vessel ultrasound image of the target object within a preset time in the first detection mode, and acquire an ultrasound Doppler image of the target object within a preset time in the second detection mode.
具体的,目标对象可以为人体或动物体内的器官、组织、血管等具有流动物质的管状组织结构,获取的预设时间内的血管超声图像应具有可分辨的血管壁结构特征。Specifically, the target object may be an organ, tissue, blood vessel, or other tubular tissue structure with flowing substances in the human body or animal, and the acquired ultrasound image of the blood vessel within a preset time should have distinguishable structural features of the blood vessel wall.
在本实施例中,第一检测模式可以是超声B模式、超声B模式加超声C模式,超声C模式是可以选择性选取的;而第二检测模式可以采用超声PW模式。超声B模式具体是向目标对象中包含血管组织的区域发射第一超声波,接受第一回波信号,获取目标对象在预设时间内的第一血管超声图像;超声PW模式具体是向目标对象中包含血管组织的区域发射同一方向上的第二超声波,接受第二回波信号,获取目标对象在预设时间内的超声多普勒图像;超声C模式具体是向目标对象中包含血管组织的区域发射第三超声波,接受第三回波信号,获取目标对象在预设时间内的第二超声血流图像。In this embodiment, the first detection mode may be an ultrasonic B mode, an ultrasonic B mode plus an ultrasonic C mode, and the ultrasonic C mode may be selectively selected; and the second detection mode may use an ultrasonic PW mode. The ultrasonic B mode specifically transmits the first ultrasonic wave to the area containing the blood vessel tissue in the target object, receives the first echo signal, and obtains the first blood vessel ultrasonic image of the target object within a preset time; the ultrasonic PW mode specifically transmits the first ultrasonic wave to the target object. The region containing the vascular tissue transmits the second ultrasonic wave in the same direction, receives the second echo signal, and obtains the ultrasonic Doppler image of the target object within a preset time; the ultrasonic C mode is specifically directed to the region containing the vascular tissue in the target object A third ultrasonic wave is emitted, a third echo signal is received, and a second ultrasonic blood flow image of the target object is acquired within a preset time.
S2,根据血管超声图像识别目标对象中血管组织的血管壁位置。S2, identify the position of the blood vessel wall of the blood vessel tissue in the target object according to the blood vessel ultrasound image.
具体的,向当前所对应的血管超声图像的血流区域设定取样门,取样门所在位置在空间立体显示装置上展示为血管超声图像中具有可分辨的血管壁结构特征的位置,在确定血管壁位置的过程中以取样门的位置信息作为参考。Specifically, a sampling gate is set in the blood flow area of the current corresponding blood vessel ultrasound image, and the position of the sampling gate is displayed on the spatial stereoscopic display device as a position with distinguishable blood vessel wall structural features in the blood vessel ultrasound image. In the process of wall position, the position information of the sampling door is used as a reference.
在本实施例的第一种实施方式中,第一检测模式采用超声B模式,由于血管壁属于高回声介质,在超声B模式下获取的血管超声图像中表现为高亮度区域;而血液属于低回声介质,在超声B模式下获取的血管超声图像中表现为低亮度区域;故可以根据该特性在血管超声图像中分辨出血管壁。具体操作中,根据取样门的位置信息以及图像分割算法确定血管壁。图像分割算法包括但不限于阀值图像分割算法、边缘检测算法、以及基于深度学习技术的图像分割算法等。In the first implementation of this embodiment, the first detection mode adopts the ultrasonic B mode. Since the blood vessel wall is a high echo medium, the ultrasonic image of the blood vessel obtained in the ultrasonic B mode appears as a high-brightness area; while the blood belongs to the low-echo medium. The echo medium appears as a low-brightness area in the vascular ultrasound image acquired in the ultrasound B mode; therefore, the vascular wall can be distinguished in the vascular ultrasound image according to this characteristic. In the specific operation, the blood vessel wall is determined according to the position information of the sampling gate and the image segmentation algorithm. Image segmentation algorithms include, but are not limited to, threshold image segmentation algorithms, edge detection algorithms, and image segmentation algorithms based on deep learning technology.
在采用图像分割算法对血管超声图像进行分割得到包含血管壁结构的二值图像前,需要采用优化算法对血管超声图像进行预处理,以增强血管超声图像中血管结构与周围组织的灰度差异,提高血管壁结构的对比度,增加后续分割的准确性。Before using the image segmentation algorithm to segment the vascular ultrasound image to obtain a binary image containing the vascular wall structure, it is necessary to use an optimization algorithm to preprocess the vascular ultrasound image to enhance the grayscale difference between the vascular structure and the surrounding tissue in the vascular ultrasound image. Improve the contrast of vessel wall structures and increase the accuracy of subsequent segmentation.
对血管超声图像进行预处理的步骤包括对血管超声图像进行降噪处理和各向异性处理。The step of preprocessing the blood vessel ultrasound image includes noise reduction processing and anisotropy processing on the blood vessel ultrasound image.
由于血管内的噪声会导致血管超声图像对比度的下降,减少血管的连续性,故需要对血管内的噪声进行抑制,提高血管超声图像的成像质量。其中,噪声主要表现为斑点噪声,在本实施方式中采用伽马变换对血管超声图像进行降噪处理,以增强亮度较高的血管结构,减少噪声的影响。在其他实施方式中,还可以采用但不限于高斯滤波、直方图均衡化和规定化的方法进行降噪处理。Since the noise in the blood vessel will lead to a decrease in the contrast of the blood vessel ultrasound image and reduce the continuity of the blood vessel, it is necessary to suppress the noise in the blood vessel to improve the imaging quality of the blood vessel ultrasound image. Among them, the noise mainly manifests as speckle noise. In this embodiment, gamma transform is used to perform noise reduction processing on the ultrasound image of blood vessels, so as to enhance the structure of blood vessels with higher brightness and reduce the influence of noise. In other embodiments, the noise reduction processing may also be performed by, but not limited to, Gaussian filtering, histogram equalization, and prescriptive methods.
由于各向异性处理可以提升血管超声图像中血管壁结构的连续性和边缘锐度,从而提高血管超声图像中血管壁结构的可辨度,有利于后续的图像分割,方便得到有效的血管壁位置。在本实施例中采用一维拉普拉斯滤波对血管超声图像的灰度进行图像锐化处理,采用中值或者均值滤波对血管超声图像的灰度进行平滑处理。在其他实施方式中,图像锐化处理和平滑处理的方式还可以采用其他的滤波方式。Because anisotropic processing can improve the continuity and edge sharpness of the blood vessel wall structure in the blood vessel ultrasound image, thereby improving the distinguishability of the blood vessel wall structure in the blood vessel ultrasound image, which is beneficial to the subsequent image segmentation, and it is convenient to obtain an effective blood vessel wall position. . In this embodiment, one-dimensional Laplacian filtering is used to sharpen the grayscale of the blood vessel ultrasound image, and median or mean filtering is used to smooth the grayscale of the blood vessel ultrasound image. In other implementation manners, other filtering manners may also be used for image sharpening processing and smoothing processing.
在本实施例的第二种实施方式中,第一检测模式采用超声B模式加超声C模式,基于超声B模式下获取的第一血管超声图像和基于超声C模式下获取的第二血管超声图像,结合血管超声图像的血流信息和取样门的位置信息,基于能量的图像分割算法对取样门位置区域的血管超声图像进行分割确定血管壁。基于能量的图像分割算法可以是Snake算法或水平集算法。In the second implementation of this embodiment, the first detection mode adopts the ultrasonic B mode plus the ultrasonic C mode, based on the first blood vessel ultrasonic image acquired in the ultrasonic B mode and the second blood vessel ultrasonic image acquired in the ultrasonic C mode , combined with the blood flow information of the vascular ultrasound image and the position information of the sampling gate, an energy-based image segmentation algorithm is used to segment the vascular ultrasound image of the sampling gate location area to determine the vessel wall. The energy-based image segmentation algorithm can be Snake algorithm or level set algorithm.
在本实施例的第三种实施方式中,第一检测模式采用超声B模式加超声C模式,基于超声C模式下获取的第二血管超声图像,利用取样门的位置信息和第二血管超声图像中血流的速度和方向确定血管壁。In the third implementation of this embodiment, the first detection mode adopts the ultrasonic B mode and the ultrasonic C mode, and based on the second blood vessel ultrasonic image acquired in the ultrasonic C mode, the position information of the sampling gate and the second blood vessel ultrasonic image are used. The velocity and direction of blood flow in the blood vessel wall.
在本实施例的其他实施方式中,还可以基于超声诊断设备的不同类型和探头的物理特性及参数设置上的差异,图像的分割方法还可以采用活动轮廓模型的图像分割方法、基于聚类的图像分割方法。In other implementations of this embodiment, based on different types of ultrasonic diagnostic equipment and differences in the physical characteristics and parameter settings of probes, the image segmentation method may also adopt an active contour model image segmentation method, a cluster-based image segmentation method Image segmentation method.
S3,根据超声多普勒图像获取血管组织在预设时间内的血流速度。S3, acquire the blood flow velocity of the vascular tissue within a preset time according to the ultrasound Doppler image.
具体的,在超声PW模式下,获取目标对象的取样门所在位置的频谱信号,并根据频谱信号确定取样门所在位置处预设时间内的血流速度。Specifically, in the ultrasonic PW mode, the spectrum signal of the position of the sampling gate of the target object is acquired, and the blood flow velocity at the position of the sampling gate within a preset time is determined according to the spectrum signal.
S4,对血管壁位置和预设时间内的血流速度进行筛选。S4, screen the blood vessel wall position and the blood flow velocity within a preset time.
具体的,从血流速度在预设时间内的图像中筛选出一个成像质量最好的血流周期信号,可以获取图中t1到t2时间段内的血流周期信号;同时,也对预设时间内多帧的血管壁位置信息进行筛选,选取最佳的血管壁位置并计算血管直径,例如最佳的血管直径可以是t1到t2时间段内对应一个心动周期内的血管平均直径。此处需要说明的是,步骤S4是可以选择性选取的。Specifically, a blood flow cycle signal with the best imaging quality is selected from the images of the blood flow velocity within the preset time, and the blood flow cycle signal in the time period from t1 to t2 in the figure can be obtained; Multiple frames of vessel wall position information in time are screened, the best vessel wall position is selected and the vessel diameter is calculated. For example, the optimum vessel diameter may be the average vessel diameter corresponding to one cardiac cycle in the time period from t1 to t2. It should be noted here that step S4 can be selected selectively.
S5,根据血管壁位置和预设时间内的血流速度计算出血管组织的血流量信息。S5: Calculate the blood flow information of the blood vessel tissue according to the position of the blood vessel wall and the blood flow velocity within a preset time.
由于目标对象中血管结构的截面通常为圆形,可以根据圆面积的计算公式,由步骤S3或S4中得到的血管壁直径计算出血管直径位置处的截面面积。Since the cross-section of the blood vessel structure in the target object is usually circular, the cross-sectional area at the position of the blood vessel diameter can be calculated from the blood vessel wall diameter obtained in step S3 or S4 according to the calculation formula of the circle area.
VF Area=π*(VF Diam/2)2,其中,VF Diam优选为步骤S4中t1到t2时间段内对应的一个心动周期内的血管平均直径。VF Area=π*(VF Diam/2) 2 , where VF Diam is preferably the average diameter of the blood vessel in one cardiac cycle corresponding to the time period from t1 to t2 in step S4 .
取样门所在位置的血流速度根据超声PW模式下获取的频谱信号,可自动计算出最大和平均流速。The blood flow velocity at the location of the sampling gate can automatically calculate the maximum and average flow velocity according to the spectral signal acquired in the ultrasonic PW mode.
根据流量的计算公式,血流量的数值由在超声PW模式下获取的血流速度乘以截面面积所得。其中,由于超声PW模式下测得的血流速度包括一个周期内的最大值和平均值,因此步骤S5中求得的血流量为一个周期内的平均流量和最大流量。According to the calculation formula of flow, the value of blood flow is obtained by multiplying the blood flow velocity obtained in the ultrasound PW mode by the cross-sectional area. Wherein, since the blood flow velocity measured in the ultrasonic PW mode includes the maximum value and the average value within a cycle, the blood flow obtained in step S5 is the average flow rate and the maximum flow rate within a cycle.
对于上述步骤得到的结果,需要在步骤S6中将计算所得的直径合理的标注于血管超声图像中,并在血管超声图像中标注步骤S2中计算得到的直径在超声B模式下血管超声图像中的位置,并符合医生的直观印象。由于血管的两条管壁实际位置不一定平行,直径的方向不一定垂直于两条直线。For the results obtained in the above steps, it is necessary to reasonably mark the calculated diameter in the blood vessel ultrasound image in step S6, and mark the diameter calculated in step S2 in the blood vessel ultrasound image in the blood vessel ultrasound image in the ultrasound B mode. location, and in line with the doctor's intuitive impression. Since the actual positions of the two walls of the blood vessel are not necessarily parallel, the direction of the diameter is not necessarily perpendicular to the two straight lines.
S6,在血管超声图像上标注血流量信息。S6, marking blood flow information on the blood vessel ultrasound image.
进一步的,血管超声图像上在同一位置上还可以同时标注和显示与血流量信息对应位置处的血管壁直径。Further, the blood vessel wall diameter at the position corresponding to the blood flow information can also be marked and displayed at the same position on the blood vessel ultrasound image.
通过获取目标对象在第一检测模式下预设时间内的血管超声图像,可以确定血管壁位置;再获取目标对象在第二检测模式下预设时间内的超声多普勒图像,可以获取血管组织在预设时间内的血流速度;这种血流量的测量方式,与现有技术相比,操作流程更加简单,无需医护人员手动标注和来回切换图像模式,提高了检查效率;同时利用预定时间内的血管直径数据和血流速度数据进行血流量的计算。此外,对血管壁位置和预设时间内的血流速度进行筛选,可以获取最佳的血流速度周期和血管直径,再通过最佳的血流速度周期和血管直径计算出血管组织的血流量信息,可以使血流量计算结果更具有鲁棒性,减少了瞬时测量带来的随机干扰,使测量结果更准确。The position of the blood vessel wall can be determined by acquiring the ultrasound image of the blood vessel of the target object within the preset time in the first detection mode; and then acquiring the ultrasound Doppler image of the target object within the preset time in the second detection mode, the blood vessel tissue can be acquired The blood flow velocity within the preset time; this blood flow measurement method, compared with the existing technology, has a simpler operation process, and does not require medical staff to manually mark and switch image modes back and forth, which improves the inspection efficiency; at the same time, the predetermined time is used. The blood vessel diameter data and the blood flow velocity data are used to calculate the blood flow. In addition, by screening the blood vessel wall position and the blood flow velocity within a preset time, the optimal blood flow velocity period and blood vessel diameter can be obtained, and then the blood flow of the vascular tissue can be calculated through the optimal blood flow velocity period and the blood vessel diameter. The information can make the blood flow calculation result more robust, reduce the random interference caused by the instantaneous measurement, and make the measurement result more accurate.
实施例二,如图5所示,本发明实施例还提供了一种基于超声图像的血流量自动检测装置,包括数据采集单元1、血管直径测量单元2、血流速度检测单元3、血流量计算单元5和计算结果显示单元6。
其中,数据采集单元1通过超声探头在第一检测模式下对目标对象进行扫描获取预设时间内的血管超声图像,并在第二检测模式下对目标对象进行扫描获取预设时间内的超声多普勒图像;血管直径测量单元2根据血管超声图像识别目标对象中血管组织的血管壁位置并计算血管壁直径;血流速度检测单元3根据预设时间内超声多普勒图像获取血管组织在预设时间内的血流速度;血流量计算单元5根据筛选后的血管壁位置和预设时间内的血流速度计算出血管组织的血流量信息;计算结果显示单元6在血管超声图像上标注血流量信息。Wherein, the
在本实施例的一种优选实施方式中,血流量自动检测装置还包括血管壁直径和血流速度筛选单元4,血管壁直径和血流速度筛选单元4在进行血流速度计算前对血管壁位置和预设时间内的血流速度进行筛选。In a preferred implementation of this embodiment, the blood flow automatic detection device further includes a blood vessel wall diameter and blood flow velocity screening unit 4, and the blood vessel wall diameter and blood flow velocity screening unit 4 checks the blood vessel wall before calculating the blood flow velocity. The location and blood flow velocity within a preset time are screened.
如图6所示,本发明实施例提供了超声图像的血流量自动检测装置的操作流程,具体包括以下步骤;As shown in FIG. 6 , an embodiment of the present invention provides an operation flow of an ultrasonic image blood flow automatic detection device, which specifically includes the following steps;
A1、通过超声扫描获取目标对象在第一检测模式下的血管超声图像;A1. Obtain a blood vessel ultrasound image of the target object in the first detection mode through ultrasound scanning;
A2、切换到多普勒模式;A2. Switch to Doppler mode;
A3、选择测量项:A3. Select the measurement item:
A4、对血管超声图像进行处理,识别血管壁;A4. Process ultrasound images of blood vessels to identify blood vessel walls;
A5、向当前所对应的血管超声图像的血流区域设定取样门;A5. Set a sampling gate to the blood flow area of the currently corresponding vascular ultrasound image;
A6、对血管壁直径进行有效性判断;A6. Judging the effectiveness of the diameter of the blood vessel wall;
A7、若步骤A6判定结果有效,取取样门所在位置上下管壁中心之间的间距作为血管直径输出位置;A7. If the determination result of step A6 is valid, take the distance between the center of the upper and lower tube walls where the sampling door is located as the output position of the blood vessel diameter;
A8、在血管超声图像中标注血管直径信息;A8. Mark the blood vessel diameter information in the blood vessel ultrasound image;
A9、由输出的血管直径信息计算血管面积;A9. Calculate the blood vessel area from the output blood vessel diameter information;
A10、根据自动识别的多普勒信号、得出最大、平均血流速度;A10. Obtain the maximum and average blood flow velocity according to the automatically identified Doppler signal;
A11、计算出平均、最大血流量;A11. Calculate the average and maximum blood flow;
A12、若步骤A6判断结果无效,自动切换手动测量,直接转到步骤A9。A12. If the judgment result in step A6 is invalid, the manual measurement is automatically switched, and the procedure is directly transferred to step A9.
上述各个实施例中部分实施例中以单点血流量测量为例,但是本发明并不限于在单个位置处的血流量测量,还可以支持多个位置处的血流量测量。当然,在一些实施例中,还可以通过计算单点附件一些点的血流量测量的平均值来计算该单点血流量,或者,通过计算血管一段区域所包含的多个单点的血流量的平均值来代表血管该段区域的血流量。In some of the above embodiments, single-point blood flow measurement is taken as an example, but the present invention is not limited to blood flow measurement at a single location, and can also support blood flow measurement at multiple locations. Of course, in some embodiments, the single-point blood flow can also be calculated by calculating the average value of blood flow measurements at some points near the single-point, or by calculating the blood flow of multiple single points included in a section of the blood vessel. The average value represents the blood flow in this segment of the vessel.
本领域技术人员可以理解,上述实施方式中各种方法的全部或部分步骤可以通过程序来指令相关硬件完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存取存储器、磁盘或光盘等。因此,本申请还公开了一种存储介质,其存储有用于执行上述实施方式中各种方法的全部或部分步骤的程序,例如执行任一实施例公开的超声图像中血流量获得方法的程序。Those skilled in the art can understand that all or part of the steps of the various methods in the above-mentioned embodiments can be completed by instructing relevant hardware through a program, and the program can be stored in a computer-readable storage medium, and the storage medium can include: read-only memory, Random access memory, magnetic disk or optical disk, etc. Therefore, the present application also discloses a storage medium storing a program for executing all or part of the steps of the various methods in the above embodiments, for example, a program for executing the method for obtaining blood flow in an ultrasound image disclosed in any embodiment.
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请发明构思的前提下,还可以做出若干简单推演或替换。The above content is a further detailed description of the present application in conjunction with specific embodiments, and it cannot be considered that the specific implementation of the present application is limited to these descriptions. For those of ordinary skill in the technical field to which the present application pertains, without departing from the inventive concept of the present application, some simple deductions or substitutions can also be made.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910416611.7A CN112037163B (en) | 2019-05-17 | 2019-05-17 | A method and device for automatically measuring blood flow based on ultrasonic images |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910416611.7A CN112037163B (en) | 2019-05-17 | 2019-05-17 | A method and device for automatically measuring blood flow based on ultrasonic images |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112037163A true CN112037163A (en) | 2020-12-04 |
CN112037163B CN112037163B (en) | 2025-01-21 |
Family
ID=73576591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910416611.7A Active CN112037163B (en) | 2019-05-17 | 2019-05-17 | A method and device for automatically measuring blood flow based on ultrasonic images |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112037163B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112603372A (en) * | 2020-12-22 | 2021-04-06 | 安徽医科大学第一附属医院 | Method for obtaining blood flow in ultrasonic image |
CN113749690A (en) * | 2021-09-24 | 2021-12-07 | 无锡祥生医疗科技股份有限公司 | Blood flow measuring method and device for blood vessel and storage medium |
CN113838028A (en) * | 2021-09-24 | 2021-12-24 | 无锡祥生医疗科技股份有限公司 | Carotid artery ultrasonic automatic Doppler method, ultrasonic equipment and storage medium |
CN113850777A (en) * | 2021-09-18 | 2021-12-28 | 清华大学 | Data processing device, method, electronic device, and storage medium |
CN113940701A (en) * | 2021-10-11 | 2022-01-18 | 什维新智医疗科技(上海)有限公司 | Trachea and blood vessel detection device based on thyroid gland |
CN114869335A (en) * | 2022-04-07 | 2022-08-09 | 皖南医学院第一附属医院(皖南医学院弋矶山医院) | A kind of measuring method and equipment of local blood flow index |
CN114881974A (en) * | 2022-05-11 | 2022-08-09 | 上海联影医疗科技股份有限公司 | Medical image analysis method and system |
CN116419716A (en) * | 2020-12-29 | 2023-07-11 | 深圳迈瑞生物医疗电子股份有限公司 | Analysis method of periodicity parameters and ultrasonic imaging system |
CN116531089A (en) * | 2023-07-06 | 2023-08-04 | 中国人民解放军中部战区总医院 | Ultrasound-guided data processing method for block anesthesia based on image enhancement |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0842638A2 (en) * | 1996-11-08 | 1998-05-20 | ATL Ultrasound, Inc. | Ultrasonic diagnostic imaging system with real time volume flow calculation |
US20020042574A1 (en) * | 1998-11-18 | 2002-04-11 | Biosonix Ltd. | Dual ultrasonic transducer probe for blood flow measurment, and blood vessel diameter determination method |
CN107157515A (en) * | 2017-05-12 | 2017-09-15 | 无锡祥生医学影像有限责任公司 | Ultrasound detection vascular system and method |
JP2017189192A (en) * | 2016-04-11 | 2017-10-19 | 株式会社日立製作所 | Ultrasonic diagnostic apparatus |
US20190049567A1 (en) * | 2016-02-29 | 2019-02-14 | B-K Medical Aps | 2D Ultrasound Imaging with Pulsed Wave Doppler or Color Flow Imaging |
CN109350122A (en) * | 2018-09-29 | 2019-02-19 | 北京智影技术有限公司 | A kind of flow automatic estimating method |
-
2019
- 2019-05-17 CN CN201910416611.7A patent/CN112037163B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0842638A2 (en) * | 1996-11-08 | 1998-05-20 | ATL Ultrasound, Inc. | Ultrasonic diagnostic imaging system with real time volume flow calculation |
US20020042574A1 (en) * | 1998-11-18 | 2002-04-11 | Biosonix Ltd. | Dual ultrasonic transducer probe for blood flow measurment, and blood vessel diameter determination method |
US20190049567A1 (en) * | 2016-02-29 | 2019-02-14 | B-K Medical Aps | 2D Ultrasound Imaging with Pulsed Wave Doppler or Color Flow Imaging |
JP2017189192A (en) * | 2016-04-11 | 2017-10-19 | 株式会社日立製作所 | Ultrasonic diagnostic apparatus |
CN107157515A (en) * | 2017-05-12 | 2017-09-15 | 无锡祥生医学影像有限责任公司 | Ultrasound detection vascular system and method |
CN109350122A (en) * | 2018-09-29 | 2019-02-19 | 北京智影技术有限公司 | A kind of flow automatic estimating method |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112603372A (en) * | 2020-12-22 | 2021-04-06 | 安徽医科大学第一附属医院 | Method for obtaining blood flow in ultrasonic image |
CN116419716A (en) * | 2020-12-29 | 2023-07-11 | 深圳迈瑞生物医疗电子股份有限公司 | Analysis method of periodicity parameters and ultrasonic imaging system |
CN113850777A (en) * | 2021-09-18 | 2021-12-28 | 清华大学 | Data processing device, method, electronic device, and storage medium |
CN113850777B (en) * | 2021-09-18 | 2024-04-19 | 清华大学 | Data processing device, method, electronic device and storage medium |
CN113749690B (en) * | 2021-09-24 | 2024-01-30 | 无锡祥生医疗科技股份有限公司 | Blood vessel blood flow measuring method, device and storage medium |
CN113749690A (en) * | 2021-09-24 | 2021-12-07 | 无锡祥生医疗科技股份有限公司 | Blood flow measuring method and device for blood vessel and storage medium |
CN113838028A (en) * | 2021-09-24 | 2021-12-24 | 无锡祥生医疗科技股份有限公司 | Carotid artery ultrasonic automatic Doppler method, ultrasonic equipment and storage medium |
CN113940701A (en) * | 2021-10-11 | 2022-01-18 | 什维新智医疗科技(上海)有限公司 | Trachea and blood vessel detection device based on thyroid gland |
CN113940701B (en) * | 2021-10-11 | 2024-10-18 | 什维新智医疗科技(上海)有限公司 | Thyroid-based tracheal and vascular detection device |
CN114869335A (en) * | 2022-04-07 | 2022-08-09 | 皖南医学院第一附属医院(皖南医学院弋矶山医院) | A kind of measuring method and equipment of local blood flow index |
CN114869335B (en) * | 2022-04-07 | 2023-12-08 | 皖南医学院第一附属医院(皖南医学院弋矶山医院) | A method and equipment for measuring local blood flow index |
CN114881974A (en) * | 2022-05-11 | 2022-08-09 | 上海联影医疗科技股份有限公司 | Medical image analysis method and system |
CN116531089B (en) * | 2023-07-06 | 2023-10-20 | 中国人民解放军中部战区总医院 | Image-enhancement-based blocking anesthesia ultrasonic guidance data processing method |
CN116531089A (en) * | 2023-07-06 | 2023-08-04 | 中国人民解放军中部战区总医院 | Ultrasound-guided data processing method for block anesthesia based on image enhancement |
Also Published As
Publication number | Publication date |
---|---|
CN112037163B (en) | 2025-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112037163B (en) | A method and device for automatically measuring blood flow based on ultrasonic images | |
US8050478B2 (en) | Method and apparatus for tissue border detection using ultrasonic diagnostic images | |
US5360006A (en) | Automated method for digital image quantitation | |
JP5538997B2 (en) | Three-dimensional ultrasonic-based instrument for non-invasive measurement of structures filled with liquid and structures not filled with liquid | |
CN110325119B (en) | Ovarian follicle count and size determination | |
US7248725B2 (en) | Methods and apparatus for analyzing ultrasound images | |
JP4531894B2 (en) | Method and apparatus for automatic Doppler angle estimation in ultrasound imaging | |
US20110208061A1 (en) | Ultrasonic lesion identification using temporal parametric contrast images | |
CN110415248B (en) | Blood vessel monitoring method, device, equipment and storage medium based on ultrasound | |
US5879302A (en) | Imaging method and apparatus using MIP projection of doppler power values | |
US20110196236A1 (en) | System and method of automated gestational age assessment of fetus | |
US20100322495A1 (en) | Medical imaging system | |
JP2014525328A (en) | How to detect and track a needle | |
US11278259B2 (en) | Thrombus detection during scanning | |
EP0533782A4 (en) | ||
JP2005193017A (en) | Method and system for classifying diseased part of mamma | |
US12148158B2 (en) | System and method for detecting and quantifying a plaque/stenosis in a vascular ultrasound scan data | |
CN111281425A (en) | Ultrasound imaging system and method for displaying target object quality level | |
CN107169978B (en) | Ultrasound image edge detection method and system | |
RU2082319C1 (en) | Method for quantitatively assessing ultrasonographic image of body organs and tissues | |
JP5579535B2 (en) | Ultrasound system and method for measuring fetal rib count | |
CN109350122A (en) | A kind of flow automatic estimating method | |
CN117017347B (en) | Image processing method and system of ultrasonic equipment and ultrasonic equipment | |
CN106815840A (en) | A kind of processing method and processing device of liver's scanning image | |
Rossi et al. | Nonlinear processing in B-mode ultrasound affects carotid diameter assessment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |