CN112036297A - 基于网联车辆驾驶数据的典型与极限场景划分与提取方法 - Google Patents
基于网联车辆驾驶数据的典型与极限场景划分与提取方法 Download PDFInfo
- Publication number
- CN112036297A CN112036297A CN202010888458.0A CN202010888458A CN112036297A CN 112036297 A CN112036297 A CN 112036297A CN 202010888458 A CN202010888458 A CN 202010888458A CN 112036297 A CN112036297 A CN 112036297A
- Authority
- CN
- China
- Prior art keywords
- data
- driving
- typical
- extreme
- extracting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000605 extraction Methods 0.000 title claims abstract description 20
- 238000005070 sampling Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 14
- 230000002159 abnormal effect Effects 0.000 claims abstract description 8
- 238000007619 statistical method Methods 0.000 claims abstract description 8
- 238000013075 data extraction Methods 0.000 claims abstract description 5
- 239000000284 extract Substances 0.000 claims abstract description 5
- 238000003064 k means clustering Methods 0.000 claims abstract description 4
- 238000004364 calculation method Methods 0.000 claims description 13
- 238000007906 compression Methods 0.000 claims description 11
- 230000006835 compression Effects 0.000 claims description 11
- 230000001133 acceleration Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 238000010586 diagram Methods 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000012800 visualization Methods 0.000 claims description 5
- 238000000638 solvent extraction Methods 0.000 claims description 4
- 238000003672 processing method Methods 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 abstract description 13
- 238000013461 design Methods 0.000 abstract description 3
- 238000007781 pre-processing Methods 0.000 abstract description 2
- 230000006399 behavior Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 230000011218 segmentation Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/35—Categorising the entire scene, e.g. birthday party or wedding scene
- G06V20/38—Outdoor scenes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Probability & Statistics with Applications (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010888458.0A CN112036297B (zh) | 2020-08-28 | 2020-08-28 | 基于网联车辆驾驶数据的典型与极限场景划分与提取方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010888458.0A CN112036297B (zh) | 2020-08-28 | 2020-08-28 | 基于网联车辆驾驶数据的典型与极限场景划分与提取方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112036297A true CN112036297A (zh) | 2020-12-04 |
CN112036297B CN112036297B (zh) | 2024-08-23 |
Family
ID=73586827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010888458.0A Active CN112036297B (zh) | 2020-08-28 | 2020-08-28 | 基于网联车辆驾驶数据的典型与极限场景划分与提取方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112036297B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113635906A (zh) * | 2021-08-30 | 2021-11-12 | 武汉理工大学 | 基于局部时间序列提取算法的驾驶风格识别方法及装置 |
CN113743456A (zh) * | 2021-07-27 | 2021-12-03 | 武汉光庭信息技术股份有限公司 | 一种基于无监督学习的场景定位方法及系统 |
CN113822390A (zh) * | 2021-11-24 | 2021-12-21 | 杭州贝嘟科技有限公司 | 用户画像构建方法、装置、电子设备和存储介质 |
CN114120645A (zh) * | 2021-11-25 | 2022-03-01 | 北京航空航天大学 | 一种自然行驶环境下交通场景的提取方法 |
CN115640947A (zh) * | 2022-12-26 | 2023-01-24 | 中国汽车技术研究中心有限公司 | 车机功能评价方法、电子设备及存储介质 |
CN116110222A (zh) * | 2022-11-29 | 2023-05-12 | 东风商用车有限公司 | 基于大数据的车辆应用场景分析方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110493803A (zh) * | 2019-09-17 | 2019-11-22 | 南京邮电大学 | 一种基于机器学习的小区场景划分方法 |
CN110969142A (zh) * | 2019-12-18 | 2020-04-07 | 长安大学 | 一种基于网联车辆自然驾驶数据的异常驾驶场景提取方法 |
WO2020079066A1 (en) * | 2018-10-16 | 2020-04-23 | Five AI Limited | Autonomous vehicle planning and prediction |
US20200133269A1 (en) * | 2018-10-30 | 2020-04-30 | The Regents Of The University Of Michigan | Unsurpervised classification of encountering scenarios using connected vehicle datasets |
-
2020
- 2020-08-28 CN CN202010888458.0A patent/CN112036297B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020079066A1 (en) * | 2018-10-16 | 2020-04-23 | Five AI Limited | Autonomous vehicle planning and prediction |
US20200133269A1 (en) * | 2018-10-30 | 2020-04-30 | The Regents Of The University Of Michigan | Unsurpervised classification of encountering scenarios using connected vehicle datasets |
CN110493803A (zh) * | 2019-09-17 | 2019-11-22 | 南京邮电大学 | 一种基于机器学习的小区场景划分方法 |
CN110969142A (zh) * | 2019-12-18 | 2020-04-07 | 长安大学 | 一种基于网联车辆自然驾驶数据的异常驾驶场景提取方法 |
Non-Patent Citations (3)
Title |
---|
张潇龙;齐林海;: "融合稀疏降噪自编码与聚类算法的配电网台区分类研究", 电力信息与通信技术, no. 12 * |
李森林;彭小宁;黄隆华;: "一种单层自动编码器的聚类算法研究", 怀化学院学报, no. 11 * |
郭景华;李克强;王进;陈涛;李文昌;王班;: "基于危险场景聚类分析的前车随机运动状态预测研究", 汽车工程, no. 07 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113743456A (zh) * | 2021-07-27 | 2021-12-03 | 武汉光庭信息技术股份有限公司 | 一种基于无监督学习的场景定位方法及系统 |
CN113743456B (zh) * | 2021-07-27 | 2024-05-10 | 武汉光庭信息技术股份有限公司 | 一种基于无监督学习的场景定位方法及系统 |
CN113635906A (zh) * | 2021-08-30 | 2021-11-12 | 武汉理工大学 | 基于局部时间序列提取算法的驾驶风格识别方法及装置 |
CN113635906B (zh) * | 2021-08-30 | 2023-07-25 | 武汉理工大学 | 基于局部时间序列提取算法的驾驶风格识别方法及装置 |
CN113822390A (zh) * | 2021-11-24 | 2021-12-21 | 杭州贝嘟科技有限公司 | 用户画像构建方法、装置、电子设备和存储介质 |
CN114120645A (zh) * | 2021-11-25 | 2022-03-01 | 北京航空航天大学 | 一种自然行驶环境下交通场景的提取方法 |
CN114120645B (zh) * | 2021-11-25 | 2023-01-10 | 北京航空航天大学 | 一种自然行驶环境下交通场景的提取方法 |
CN116110222A (zh) * | 2022-11-29 | 2023-05-12 | 东风商用车有限公司 | 基于大数据的车辆应用场景分析方法 |
CN116110222B (zh) * | 2022-11-29 | 2024-08-20 | 东风商用车有限公司 | 基于大数据的车辆应用场景分析方法 |
CN115640947A (zh) * | 2022-12-26 | 2023-01-24 | 中国汽车技术研究中心有限公司 | 车机功能评价方法、电子设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112036297B (zh) | 2024-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112036297A (zh) | 基于网联车辆驾驶数据的典型与极限场景划分与提取方法 | |
CN111666169B (zh) | 一种基于改进的孤立森林算法和高斯分布的联合数据异常检测方法 | |
CN109873779B (zh) | 一种基于lstm的分级式无线信号调制类型识别方法 | |
CN111556016B (zh) | 一种基于自动编码器的网络流量异常行为识别方法 | |
CN106203478A (zh) | 一种用于智能电表大数据的负荷曲线聚类方法 | |
CN112529638B (zh) | 基于用户分类和深度学习的服务需求动态预测方法及系统 | |
CN112488226B (zh) | 一种基于机器学习算法的终端异常行为识别方法 | |
CN105760888A (zh) | 一种基于属性聚类的邻域粗糙集集成学习方法 | |
CN108491859A (zh) | 基于自动编码机的驾驶行为异质性特征的识别方法 | |
CN112215487A (zh) | 一种基于神经网络模型的车辆行驶风险预测方法 | |
CN113657752B (zh) | 基于驾驶行为指标的不同长度隧道行车风险量化评价方法 | |
CN103034691A (zh) | 一种基于支持向量机的专家系统知识获取方法 | |
CN113581188A (zh) | 一种基于车联网数据的商用车驾驶员驾驶风格识别方法 | |
CN111563555A (zh) | 一种司机驾驶行为分析方法及系统 | |
CN111460881A (zh) | 基于近邻判别的交通标志对抗样本检测方法和分类装置 | |
CN115092165A (zh) | 一种基于聚类模型的不同循环工况下驾驶员风格辨识方法 | |
CN112417893A (zh) | 一种基于语义层次聚类的软件功能需求分类方法及系统 | |
CN116842467A (zh) | 基于双向门控卷积神经网络的网络流量异常检测分类方法 | |
CN111907523A (zh) | 一种基于模糊推理的车辆跟驰寻优控制方法 | |
CN114611604A (zh) | 一种基于电驱总成载荷特征融合与聚类的用户筛选方法 | |
CN113609480B (zh) | 基于大规模网络流的多路学习入侵检测方法 | |
CN116935373B (zh) | 多类型车牌识别模型的训练方法、装置、设备及存储介质 | |
CN113808392A (zh) | 一种多源数据结构下优化交通事故数据的方法 | |
CN109344171A (zh) | 一种基于数据流处理的非线性系统特征变量显著性挖掘法 | |
CN106570514A (zh) | 一种基于词袋模型和支持向量机的汽车轮毂分类方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240517 Address after: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Applicant after: Shenzhen Wanzhida Technology Co.,Ltd. Country or region after: China Address before: 710064 middle section, south two ring road, Shaanxi, Xi'an Applicant before: CHANG'AN University Country or region before: China |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240719 Address after: Room 1801, Shenzhen Bay Venture Capital Building, No. 25 Haitian 2nd Road, Binhai Community, Yuehai Street, Nanshan District, Shenzhen City, Guangdong Province 518000 Applicant after: Moudi Smart Technology Co.,Ltd. Country or region after: China Address before: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Applicant before: Shenzhen Wanzhida Technology Co.,Ltd. Country or region before: China |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |