CN112028078B - Method for improving stability of lithium battery silicon negative electrode material - Google Patents
Method for improving stability of lithium battery silicon negative electrode material Download PDFInfo
- Publication number
- CN112028078B CN112028078B CN202010837410.7A CN202010837410A CN112028078B CN 112028078 B CN112028078 B CN 112028078B CN 202010837410 A CN202010837410 A CN 202010837410A CN 112028078 B CN112028078 B CN 112028078B
- Authority
- CN
- China
- Prior art keywords
- lithium
- silicon
- negative electrode
- powder
- placing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 38
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 20
- 239000010703 silicon Substances 0.000 title claims abstract description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 7
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims abstract description 26
- 239000000843 powder Substances 0.000 claims abstract description 25
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 14
- 239000011737 fluorine Substances 0.000 claims abstract description 14
- 239000003792 electrolyte Substances 0.000 claims abstract description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims abstract description 8
- 231100000252 nontoxic Toxicity 0.000 claims abstract description 5
- 230000003000 nontoxic effect Effects 0.000 claims abstract description 5
- 239000002994 raw material Substances 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 9
- -1 polytetrafluoroethylene Polymers 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 7
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000002033 PVDF binder Substances 0.000 claims description 3
- PRPAGESBURMWTI-UHFFFAOYSA-N [C].[F] Chemical compound [C].[F] PRPAGESBURMWTI-UHFFFAOYSA-N 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000011863 silicon-based powder Substances 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000005416 organic matter Substances 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 150000004812 organic fluorine compounds Chemical class 0.000 claims 1
- 230000007797 corrosion Effects 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 2
- 231100000956 nontoxicity Toxicity 0.000 abstract 1
- 238000004381 surface treatment Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 9
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 6
- 239000011887 silicon containing negative electrode material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000001351 cycling effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005303 weighing Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000003682 fluorination reaction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
- C01B32/22—Intercalation
- C01B32/225—Expansion; Exfoliation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/04—Halides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The invention discloses a method for improving the stability of a lithium battery silicon negative electrode material, which takes nontoxic fluoride as a raw material, decomposes at low temperature to form a fluorine gas phase to react with Li, and uniformly forms a lithium fluoride film on the surface of a silicon negative electrode, wherein the lithium fluoride layer can increase the safety of prelithiation and simultaneously plays a role in chemical stability and reducing the corrosion of electrolyte to a silicon substrate. The invention is suitable for surface treatment with high purity and no toxicity. The powder prepared by the invention can be used in the field of high-performance lithium batteries.
Description
Technical Field
The invention belongs to the field of inorganic nonmetallic materials, and particularly relates to a method for improving the stability of a lithium battery silicon-negative electrode material.
Background
Energy storage and conversion technology of fluorine-containing energy materials has become a development trend of research in the field of new energy at present. The unique fluorine effect is utilized to design the fluorine-containing energy material, a new generation of fluorination technology with mild condition, high selectivity and controllable structure is developed, and the fluorination technology is used for efficiently preparing the fluorine-containing energy material. By introducing fluorine element, the efficiency of energy storage and conversion, the safety and the weather resistance of the material are greatly improved, the related internal rules between the structure and the performance of the fluorine-containing energy material are deeply known by combining a new device assembly mode, a series of technical problems of testing, evaluation, application and the like of the fluorine-containing energy material are solved, and a new energy technical system based on the fluorine-containing energy material is developed. Corresponding achievements in scientific research will draw high international attention and lead the development of the next generation of clean energy technology.
The sub-silicon anode is currently the most promising high capacity anode material, but suffers from severe corrosion during electrochemical performance and cycling, and therefore a reliable passivation layer is required on the surface. The method utilizes an in-situ decomposition reaction method to form a compact LiF layer on the surface of the silicon-containing cathode, the LiF coating has excellent chemical stability in a high-reducing environment, extremely low solubility in electrolyte and very strong mechanical property, and can reduce the corrosion reaction between lithium metal and carbonate electrolyte to the maximum extent.
Disclosure of Invention
In order to overcome the defects of the prior art, the invention aims to provide a method for improving the stability of a silicon-containing negative electrode material of a lithium battery.
The purpose of the invention is realized by the following scheme: the method for improving the stability of the negative electrode material of the silicon-containing lithium battery comprises the steps of forming a lithium fluoride coating on the surface of the silicon-containing lithium battery by a one-step method, decomposing at low temperature by using non-toxic fluoride as a raw material to form a lithium fluoride film with uniform reaction between a gas phase of fluorine and Li on the surface of the silicon-containing negative electrode, and comprising the following steps of:
(1) Mixing the silicon powder and the lithium powder under the protection of argon, wherein the mass percentage of the lithium powder is 0.1-0.9%, and sealing for later use after mixing;
(2) Placing an organic fluoride at the bottom of the crucible, placing a mixture of the inferior silicon and the lithium powder on an upper layer, placing the mixture in the air for not more than 5 minutes, and then placing the mixture in an atmosphere furnace;
(3) Heating to 240-400 ℃, and preserving heat for 1 hour to ensure that the fluorine carbon free radical fully reacts with the lithium metal;
(4) And filtering, cleaning and drying the obtained powder to prepare a half cell for performance evaluation.
The organic fluoride comprises one of polyvinylidene fluoride, polytetrafluoroethylene and perfluoro resin.
And (5) in the step (4), the manufacturing method of the half cell is that the material is used as a positive electrode, a metal lithium sheet is used as a negative electrode, a silicon-carbon special electrolyte is used, a 2325 diaphragm is adopted for assembly, and the assembled cell can be tested after standing for 12 hours.
The invention uses non-toxic organic fluoride as raw material, decomposes at low temperature to form fluorine gas phase to react with Li, and forms a uniform lithium fluoride film layer on the surface of the negative electrode of the silicon, and the lithium fluoride layer can increase the safety of prelithiation, and simultaneously has the functions of chemical stability and reducing the corrosion of electrolyte to a silicon substrate.
The powder prepared by the invention can be used in the field of high-performance lithium batteries.
The present invention proposes to exfoliate graphite by using hydroxyl and oxygen generated by electrode reaction as driving forces. The method has the advantages of simple preparation, short time and strong controllability, and can be used for producing high-quality lithium fluoride-coated silicon material.
Drawings
FIG. 1 is an SEM spectrum of a powder sample obtained in example 1 of the present invention;
fig. 2 is a battery cycle life curve obtained in example 1 of the present invention.
Detailed Description
Example 1
A lithium battery silicon-containing negative electrode material with improved stability comprises a lithium fluoride coating formed on a silicon-containing surface by a one-step method, a non-toxic fluoride is used as a raw material, a gas phase of fluorine formed by decomposing at low temperature is reacted with Li to form a uniform lithium fluoride film on the surface of a silicon-containing negative electrode, and the lithium battery silicon-containing negative electrode material is prepared by the following steps:
(1) Weighing 10g of silicon monoxide powder, mixing with 0.1% of lithium powder under the protection of argon gas, and sealing for later use after mixing;
(2) Placing organic fluoride polyvinylidene fluoride at the bottom of a crucible, placing a mixture of silicon-containing powder and lithium powder on an upper layer, placing the mixture in air for no more than 5 minutes, and then placing the mixture in an atmosphere furnace;
(3) Heating to 240 ℃, and preserving the temperature for 1 hour to ensure that the free fluorocarbon radicals decomposed by the organic matters fully react with the lithium metal;
(4) The obtained powder is filtered, cleaned and dried to be used as a positive electrode, the appearance and EDS are shown in figure 1, a metal lithium sheet is used as a negative electrode, a silicon-carbon special electrolyte is used, a 2325 diaphragm is adopted for assembly, and the assembled battery can be tested after standing for 12 hours. The cycling performance was improved from 80 times to 100 times compared to the uncoated, sub-silicon anode, as shown in fig. 2.
Example 2
A lithium battery silicon-containing negative electrode material with improved stability is prepared by the following steps similar to the example 1:
(1) Weighing 10g of silicon powder, mixing with 0.9% of lithium powder under the protection of argon gas, and sealing for later use after mixing;
(2) Placing polytetrafluoroethylene at the bottom of the crucible, placing a mixture of silicon monoxide and lithium powder on an upper layer, placing the mixture in the air for no more than 5 minutes, and then placing the mixture in an atmosphere furnace;
(3) Heating to 400 ℃, and preserving the temperature for 1 hour to ensure that the free fluorocarbon radicals decomposed by the organic matters fully react with the lithium metal;
(4) The obtained powder is filtered, cleaned and dried to be used as a positive electrode, a metal lithium sheet is used as a negative electrode, a special silicon-carbon electrolyte is used, a 2325 diaphragm is adopted for assembly, and the assembled battery can be tested after standing for 12 hours. The cycling performance was improved from 80 times to 200 times compared to the uncoated, sub-silicon anode.
Example 3
A lithium battery silicon-containing negative electrode material with improved stability is prepared by the following steps similar to the preparation of the embodiment 1:
(1) Weighing 10-silica powder, mixing with 0.5% lithium powder under the protection of argon gas, and sealing for later use;
(2) Placing perfluoro resin at the bottom of the crucible, placing a mixture of the silicon monoxide and the lithium powder on the upper layer, placing the mixture in the air for no more than 5 minutes, and then placing the mixture in an atmosphere furnace;
(3) Heating to 300 ℃, and preserving heat for 1 hour to ensure that the fluorine carbon free radicals decomposed by the organic matter fully react with the lithium metal;
(4) The obtained powder is filtered, cleaned and dried to be used as a positive electrode, a metal lithium sheet is used as a negative electrode, a special silicon-carbon electrolyte is used, a 2325 diaphragm is adopted for assembly, and the assembled battery can be tested after standing for 12 hours. The cycling performance increased from 80 times to 140 times compared to the uncoated, sub-silicon anode.
Claims (2)
1. A method for improving the stability of a lithium battery silicon-negative electrode material comprises a one-step method for forming a lithium fluoride coating on a silicon-negative surface, and is characterized in that non-toxic fluoride is used as a raw material, and is decomposed at low temperature to form a lithium fluoride film with uniform fluorine gas phase reacting with Li on the silicon-negative electrode surface, and the method comprises the following steps:
(1) Mixing the silicon powder and the lithium powder under the protection of argon, wherein the mass percentage of the lithium powder is 0.1-0.9%, and sealing for later use after mixing;
(2) Placing the organofluoride at the bottom of the crucible, placing the mixture of the inferior silicon and the lithium powder on the upper layer, placing the mixture in the air for no more than 5 minutes, and then placing the mixture in an atmosphere furnace;
(3) Heating to 240-400 ℃, and preserving heat for 1 hour to ensure that the fluorine carbon free radical fully reacts with the lithium metal;
(4) Filtering, cleaning and drying the obtained powder, and making the powder into a half cell for performance evaluation; wherein,
the fluorine organic matter comprises one of polyvinylidene fluoride, polytetrafluoroethylene and perfluoro resin.
2. The method of claim 1 for improving the stability of a negative electrode material of a lithium battery comprising: the manufacturing method of the half cell comprises the following steps: and (4) taking the dried powder as a positive electrode, taking a metal lithium sheet as a negative electrode, assembling by using a special silicon-carbon electrolyte and adopting a 2325 diaphragm, and standing the assembled battery for 12 hours for testing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010837410.7A CN112028078B (en) | 2020-08-19 | 2020-08-19 | Method for improving stability of lithium battery silicon negative electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010837410.7A CN112028078B (en) | 2020-08-19 | 2020-08-19 | Method for improving stability of lithium battery silicon negative electrode material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112028078A CN112028078A (en) | 2020-12-04 |
CN112028078B true CN112028078B (en) | 2023-02-14 |
Family
ID=73577845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010837410.7A Active CN112028078B (en) | 2020-08-19 | 2020-08-19 | Method for improving stability of lithium battery silicon negative electrode material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112028078B (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1913200B (en) * | 2006-08-22 | 2010-05-26 | 深圳市贝特瑞电子材料有限公司 | Silicon carbone compound negative polar material of lithium ion battery and its preparation method |
CN108448058B (en) * | 2018-01-31 | 2021-12-17 | 华南理工大学 | Surface modification method for lithium metal battery lithium cathode and lithium metal battery |
CN109802109B (en) * | 2018-12-29 | 2023-06-23 | 利信(江苏)能源科技有限责任公司 | Method for pre-lithiating silicon-based negative electrode of battery and simultaneously forming SEI film |
-
2020
- 2020-08-19 CN CN202010837410.7A patent/CN112028078B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112028078A (en) | 2020-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109904443B (en) | Preparation method of ternary cathode material of lithium ion battery | |
CN113104828A (en) | Preparation method of porous carbon modified sodium iron pyrophosphate phosphate/sodium carbonate ion battery positive electrode material | |
CN110148748B (en) | Preparation method of soybean protein isolate-based high-rate lithium-sulfur battery cathode carbon material | |
CN110357100A (en) | A kind of method and application preparing carbon material using waste tire | |
CN111584866A (en) | Preparation method of high-rate artificial graphite negative electrode material | |
CN112499631A (en) | Fe3C/C composite material and application thereof | |
CN112028078B (en) | Method for improving stability of lithium battery silicon negative electrode material | |
CN113241431A (en) | Preparation method and application of ZnS nanoflower @ NC lithium ion battery anode material | |
CN117246997A (en) | Preparation method and application of biomass hard carbon sodium ion battery anode material | |
CN112490430A (en) | Preparation method of high-performance negative electrode material for lithium/sodium ion battery | |
CN112374484A (en) | S/CeO for preparing lithium-sulfur battery positive electrode material2Method for preparing porous biomass carbon | |
CN116477623A (en) | Preparation method of nut shell derived porous carbon material and application of nut shell derived porous carbon material in lithium ion battery | |
CN115832294A (en) | Method for preparing biomass-based hard carbon composite negative electrode through magnetron sputtering | |
WO2023199348A1 (en) | FeSe2 AND N, S DOPED POROUS CARBON SPHERE MICRO FLOWER COMPOSITE AS A HIGH-PERFORMANCE ANODE MATERIAL FOR LITHIUM-ION BATTERY | |
CN112234194B (en) | Iodine modified MXene material and preparation method and application thereof | |
CN110518194B (en) | Method for preparing core-shell silicon/carbon composite material by in-situ carbon coating and application thereof | |
CN114082375A (en) | Hollow structure material and preparation method and application thereof | |
CN117069094B (en) | Preparation method and application of coralline phosphorus-rich porous carbon electrode material | |
CN110649248A (en) | Surface modification method of anode material and anode material prepared by adopting same | |
CN113193197B (en) | Preparation method of lithium iron phosphate additive for cathode material of commercial lithium battery | |
CN113321242B (en) | Method for synthesizing sodium ion battery anode material by utilizing electrolytic manganese anode mud | |
CN110713186B (en) | Method for preparing amorphous silicon/carbon composite material | |
CN115010113B (en) | Fluorocarbon material and application thereof, and lithium battery | |
CN112563449B (en) | Preparation method of double-layer electrode material of lithium-sulfur battery | |
CN115881895A (en) | Amorphous carbon negative electrode material and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |