CN112025242A - Mechanical arm hole searching method based on multilayer perceptron - Google Patents
Mechanical arm hole searching method based on multilayer perceptron Download PDFInfo
- Publication number
- CN112025242A CN112025242A CN202010876074.7A CN202010876074A CN112025242A CN 112025242 A CN112025242 A CN 112025242A CN 202010876074 A CN202010876074 A CN 202010876074A CN 112025242 A CN112025242 A CN 112025242A
- Authority
- CN
- China
- Prior art keywords
- force
- jack
- hole
- mechanical arm
- workpiece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000012549 training Methods 0.000 claims abstract description 17
- 230000009471 action Effects 0.000 claims abstract description 12
- 230000033001 locomotion Effects 0.000 claims description 12
- 210000003857 wrist joint Anatomy 0.000 claims description 10
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 3
- 230000004913 activation Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 17
- 238000013528 artificial neural network Methods 0.000 abstract description 10
- 238000005070 sampling Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 238000013480 data collection Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 210000000707 wrist Anatomy 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P19/00—Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1687—Assembly, peg and hole, palletising, straight line, weaving pattern movement
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种基于多层感知器的机械臂搜孔方法,该方法通过结合基于多层感知器的顶层搜孔轨迹规划器模型和底层力位混合控制器实现机械臂搜孔;所述顶层搜孔轨迹规划器模型的输入为工件接触插孔产生的力/力矩信息,输出为下一步动作方向。由于本发明方法基于多层感知器,且采集数据的过程中,相同位置变化情况下,力/力矩特征变化会更加明显,在经过神经网络训练后的搜孔实际应用阶段,具有更好的抗干扰能力和更高的更好的成功率;本发明在常见的工业机器人平台上具有一定的通用性,不需要人工进行干预,有效提升了装配效率,对于轴孔装配任务具有更好的适应能力。
The invention discloses a multi-layer perceptron-based manipulator hole search method. The method realizes the manipulator's hole search by combining a multi-layer perceptron-based top-level hole-searching trajectory planner model and a bottom-layer force-position hybrid controller. The input of the top-level hole search trajectory planner model is the force/torque information generated by the workpiece contacting the jack, and the output is the next action direction. Since the method of the present invention is based on a multi-layer perceptron, and in the process of collecting data, under the condition of the same position change, the change of force/torque feature will be more obvious, and in the practical application stage of hole search after neural network training, it has better resistance to Interference ability and higher and better success rate; the invention has certain versatility on common industrial robot platforms, does not require manual intervention, effectively improves assembly efficiency, and has better adaptability to shaft hole assembly tasks .
Description
技术领域technical field
本发明属于轴孔装配领域,尤其涉及一种基于多层感知器的机械臂搜孔方法。The invention belongs to the field of shaft hole assembly, and in particular relates to a multi-layer sensor-based hole searching method for a robotic arm.
背景技术Background technique
作为“制造业皇冠顶端的珍珠”,工业机器人已经被广泛应用在汽车、3C制造、船舶制造等现代工业自动化领域。其高精度、长时间工作的特点使工业机器人常用来协助人类完成一些精度高、工作强度大、重复性高的工作。在一些工作环境恶劣,人类自身安全受到威胁的领域,机器人也有广泛的应用。随着我国人口老龄化和劳动力愈发短缺问题的出现,工业机器人的作用也愈发重要。我国对工业机器人在制造业中所扮演的角色也十分重视,已经将其列入《中国制造2025》国家发展规划的重点发展对象。As the "pearl at the top of the manufacturing crown", industrial robots have been widely used in modern industrial automation fields such as automobiles, 3C manufacturing, and shipbuilding. Its characteristics of high precision and long-term work make industrial robots often used to assist humans to complete some tasks with high precision, high work intensity and high repeatability. In some fields where the working environment is harsh and the safety of human beings is threatened, robots are also widely used. With the aging of our country's population and the increasing shortage of labor, the role of industrial robots has become more and more important. my country also attaches great importance to the role of industrial robots in the manufacturing industry, and has included them in the key development targets of the "Made in China 2025" national development plan.
工业机器人在轴孔装配领域的应用一直是工业机器人研究领域的热点之一,在汽车轮胎装配、航空业大零件装配、电子元件3C生产线等领域都有广泛的应用。工业机器人在轴孔装配中搜孔阶段需要考虑的问题主要有轴孔对齐和接触力控制。其中,轴孔对齐主要指调整机械臂末端的位置和姿态,使机械臂末端夹取的工件轴与插孔位置对齐,从而消除轴孔之间相对偏差的过程;机械臂的接触力控制是指控制机械臂末端夹取的工件轴与孔所在表面之间的力。在搜孔过程中,机械臂会与外界环境接触,接触力过小会使机械臂末端夹取工件脱离孔所在表面,接触力过大会导致工件或机械臂的损坏,所以控制机械臂末端力十分重要。The application of industrial robots in the field of shaft hole assembly has always been one of the hot spots in the field of industrial robot research. The problems that industrial robots need to consider in the hole search stage in the shaft-hole assembly mainly include shaft-hole alignment and contact force control. Among them, the axis-hole alignment mainly refers to the process of adjusting the position and posture of the end of the manipulator, so that the workpiece axis clamped by the end of the manipulator is aligned with the position of the jack, so as to eliminate the relative deviation between the shafts and holes; the contact force control of the manipulator refers to Controls the force between the axis of the workpiece gripped by the end of the arm and the surface on which the hole is located. In the process of hole searching, the robotic arm will come into contact with the external environment. If the contact force is too small, the end of the robotic arm will grip the workpiece from the surface of the hole. If the contact force is too large, the workpiece or the robotic arm will be damaged. Therefore, the end force of controlling the robotic arm is very strong. important.
综合来看,轴孔装配中基于人工智能的搜孔方法主要有基于多层感知器的搜孔控制方法。该方法基于视觉传感器和多层感知器(MLP)的顶层搜孔控制器设计,首先通过视觉传感器获得插孔位置的粗定位,接近插孔位置。在精确定位调整过程中,运用多层感知器训练得到力传感器获得的信息和搜孔方向的映射关系,来获得机械臂下一个周期的运动控制策略。但是该方法在数据采集过程中,机械臂末端夹取工件与插孔位置表面相对平行的接触采集方法,在步进位置变化小的情况下,采集到的力/力矩信息变化小,特征不明显,加上真实环境中存在噪声和接触力抖动的干扰,其成功率和抗干扰能力受到限制。随着人工智能技术的快速发展和越来越多地被应用在工业机器人环境中,使用神经网络训练的方法,输入的数据对于整体模型的训练效果有很大的影响,更加有效地采集数据有利于提升整体模型的控制效果与成功率。On the whole, the artificial intelligence-based hole search methods in the shaft hole assembly mainly include the multi-layer perceptron-based hole search control method. The method is based on the visual sensor and the multi-layer perceptron (MLP) top-level hole search controller design. First, the coarse positioning of the jack position is obtained through the vision sensor, which is close to the jack position. In the process of precise positioning adjustment, the multi-layer perceptron training is used to obtain the mapping relationship between the information obtained by the force sensor and the direction of the search hole, so as to obtain the motion control strategy of the robotic arm in the next cycle. However, in the data acquisition process of this method, the contact acquisition method in which the end of the manipulator clamps the workpiece and the surface of the jack position is relatively parallel. In the case of small changes in the stepping position, the collected force/torque information changes little and the features are not obvious. , coupled with the interference of noise and contact force jitter in the real environment, its success rate and anti-interference ability are limited. With the rapid development of artificial intelligence technology and more and more applications in the industrial robot environment, using the neural network training method, the input data has a great impact on the training effect of the overall model. It is beneficial to improve the control effect and success rate of the overall model.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对现有技术的不足,提供一种基于多层感知器的机械臂搜孔方法。The purpose of the present invention is to provide a multi-layer perceptron-based method for searching holes for a robotic arm in view of the deficiencies of the prior art.
本发明的目的通过以下技术方案实现:一种基于多层感知器的机械臂搜孔方法,通过结合基于多层感知器的顶层搜孔轨迹规划器模型和底层力位混合控制器实现;所述顶层搜孔轨迹规划器模型的输入为工件接触插孔产生的力/力矩信息,输出为下一步动作方向;The object of the present invention is achieved through the following technical solutions: a multi-layer perceptron-based manipulator hole search method is realized by combining a multi-layer perceptron-based top-level hole-searching trajectory planner model and a bottom-layer force-position hybrid controller; the The input of the top-level hole search trajectory planner model is the force/torque information generated by the workpiece contacting the jack, and the output is the next action direction;
所述力/力矩信息由以下步骤得到:首先机械臂末端粗定位至插孔位置附近,调整机械臂旋转腕部关节,使装配工件下表面与插孔位置平面呈一定角度α;然后机械臂竖直向下移动,末端产生接触力F;每次接触后,机械臂转动工件,使腕部关节绕其x轴旋转相同的角度α,使工件有回到垂直于插孔位置平面的趋势,使工件不仅有平移运动的趋势,更有旋转运动产生的力矩,采集此时的力和力矩数据得到力/力矩信息;The force/torque information is obtained by the following steps: first, the end of the manipulator is roughly positioned near the position of the jack, and the wrist joint of the manipulator is adjusted to rotate the wrist so that the lower surface of the assembly workpiece is at a certain angle α with the plane of the jack; Moving straight down, the end generates a contact force F; after each contact, the mechanical arm rotates the workpiece, so that the wrist joint rotates the same angle α around its x-axis, so that the workpiece has a tendency to return to the plane perpendicular to the position of the jack, so that the The workpiece not only has the tendency of translational motion, but also has the torque generated by the rotational motion. Collect the force and torque data at this time to obtain the force/torque information;
所述下一步动作方向包括向上、向下、向左、向右。The next action direction includes up, down, left, and right.
进一步地,所述角度α为5~10度。Further, the angle α is 5-10 degrees.
进一步地,所述接触力F为10~15N。Further, the contact force F is 10-15N.
进一步地,所述顶层搜孔轨迹规划器模型由以下步骤训练得到:Further, the top-level hole search trajectory planner model is obtained by training the following steps:
(1)数据采集:首先控制机械臂末端移动到插孔位置的正中心,然后控制机械臂遍历孔中心周围一系列的离散点,获取各点的力/力矩信息[Fx,Fy,Mx,My];其中,Fx,Fy为x、y方向的接触力,Mx,My为腕部关节x、y轴上的力矩;(1) Data acquisition: first control the end of the manipulator to move to the center of the jack position, and then control the manipulator to traverse a series of discrete points around the center of the hole to obtain the force/torque information of each point [F x , F y , M x , M y ]; wherein, F x , F y are the contact forces in the x and y directions, and M x , M y are the moments on the x and y axes of the wrist joint;
(2)数据标记:为步骤(1)获取的各点标记为了到达插孔位置所需的下一步动作方向的类别标签,具体为:将各点的位置数据减去插孔中心的位置数据,得到各点的相对位置dx、dy、dz,按照如下规则给每个离散点采集到的数据打上标签:(2) Data marking: mark each point obtained in step (1) with the category label of the next action direction required to reach the jack position, specifically: subtracting the position data of the jack center from the position data of each point, Obtain the relative positions d x , dy , d z of each point, and label the data collected at each discrete point according to the following rules:
如果dy<dx且dy<-dx,标签类别为0,代表向上移动;If dy <d x and dy <-d x , the label category is 0, which means move up;
如果dy>dx且dy>-dx,标签类别为1,代表向下移动;If dy > d x and dy > -d x , the label category is 1, which means moving down;
如果dy>-dx且dy<dx,标签类别为2,代表向左移动;If d y >-d x and d y <d x , the label category is 2, which means move to the left;
如果dy>dx且dy<-dx,标签类别为3,代表向右移动。If dy > d x and dy <-d x , the label class is 3, which means move to the right.
(3)根据步骤(1)和(2)获得的数据训练多层感知器得到顶层搜孔轨迹规划器模型。(3) According to the data obtained in steps (1) and (2), the multi-layer perceptron is trained to obtain the top-level hole search trajectory planner model.
进一步地,所述底层力位混合控制器在垂直于插孔平面的方向采用阻抗控制,设置期望力为F。Further, the underlying force-position mixing controller adopts impedance control in the direction perpendicular to the plane of the jack, and sets the desired force as F.
进一步地,所述顶层搜孔轨迹规划器模型使用ReLU函数作为激活函数,使用反向传播算法来学习训练网络参数。Further, the top-level hole search trajectory planner model uses the ReLU function as the activation function, and uses the back-propagation algorithm to learn and train network parameters.
进一步地,所述反向传播算法为Adam算法。Further, the back-propagation algorithm is the Adam algorithm.
本发明的有益效果是:本发明使用改进的数据采集方法,首先使机械臂竖直向下移动,产生15N的接触力。同时,在进行每次接触之后,机械臂以接触点为中心,转动末端工件沿逆时针方向旋转,即绕着腕部x轴旋转微小角度,使工件有回到竖直状态的趋势,使工件有不仅有平移运动的趋势,也有旋转运动产生的力矩。采集得到的数据与论文中的方法对比,具有更加明显的力特征,在经过神经网络训练后,在搜孔实际应用阶段,具有更好的抗干扰能力,且成功率也有较大提升。整体的搜孔数据采集过程中,不需要人工进行干预,有效提升了装配效率,在整体应用过程中具有更好的应用性。The beneficial effects of the present invention are as follows: the present invention uses the improved data acquisition method to firstly move the mechanical arm vertically downward to generate a contact force of 15N. At the same time, after each contact, the robotic arm takes the contact point as the center, and the rotating end workpiece rotates in the counterclockwise direction, that is, rotates a small angle around the x-axis of the wrist, so that the workpiece has a tendency to return to the vertical state, making the workpiece There is not only a tendency for translational motion, but also a moment due to rotational motion. Compared with the method in the paper, the collected data has more obvious force characteristics. After the neural network is trained, it has better anti-interference ability in the practical application stage of hole search, and the success rate is also greatly improved. In the overall process of hole search data collection, manual intervention is not required, which effectively improves the assembly efficiency and has better applicability in the overall application process.
附图说明Description of drawings
图1是工业机器人和轴孔装配工件整体架构图;Figure 1 is the overall structure diagram of the industrial robot and the shaft hole assembly workpiece;
图2是搜孔流程示意图;Fig. 2 is a schematic diagram of a hole search process;
图3是搜孔数据采样离散点分布示意图;Fig. 3 is a schematic diagram of the distribution of discrete points of hole search data sampling;
图4是数据阶段末端位姿示意图;Figure 4 is a schematic diagram of the end pose of the data stage;
图5是多层感知器网络配置示意图;Figure 5 is a schematic diagram of a multilayer perceptron network configuration;
图6是力位混合控制器控制框图;Fig. 6 is the control block diagram of the force-position hybrid controller;
图1中,工业机器人执行器1、外部力传感器2、装配工件3、插孔位置4、工业摄像机5;In Figure 1, an
图2中,工业机器人初始位置6、接触状态7、搜孔阶段8、插入阶段9;In Figure 2, the industrial robot
图3中,插孔位置10、插孔中心11、离散采样点12;In Figure 3, the
图4中,原数据采集方法工件位姿13、接触点Q14、末端工件轴中心点15;In Fig. 4, the original data acquisition method shows the
图5中,输入层16、隐藏层17、输出层18;In Figure 5, the
图6中,顶层轨迹规划器19、机器人位置环20、阻抗控制器21、机器人速度环22、坐标变换23、重力补偿24、力传感器25。In FIG. 6 , the top-
具体实施方式Detailed ways
以下结合附图进一步说明本发明。The present invention is further described below in conjunction with the accompanying drawings.
工业机器人轴孔装配的结构如图1所示,主要由工业机器人执行器1、外部力传感器2、装配工件3、插孔位置4、工业摄像机5组成。其中工业机器人执行器1末端腕部装有外部力传感器2,用来测量末端夹取工件与环境接触所受的力/力矩信息。工业机器人执行器1末端夹取装配工件3,其任务是使装配工件3搜索到插孔位置4并将装配工件3插入到插孔位置4。通过工业摄像机5的引导,机械臂可以获得装配工件3和插孔位置4的粗定位信息,从而将装配工件3移动到插孔位置4附近。下文将对该搜孔方法作出详细说明。The structure of the industrial robot shaft hole assembly is shown in Figure 1, which is mainly composed of an
本发明提出的在轴孔装配中基于多层感知器(MLP)的顶层轨迹规划器控制方法将顶层轨迹规划器和底层力位混合控制器结合起来,通过底层力位混合控制器使工业机器人执行器1末端与环境保持安全稳定的接触,用于搜孔任务。通过多层感知器(MLP)训练得到力/力矩信息和下一步动作方向的映射关系模型,作为顶层轨迹规划器,预测下一步过程工件动作方向。这种方法在高精度轴孔装配任务应用中被证明有效可靠。The multi-layer perceptron (MLP)-based top-level trajectory planner control method in the shaft-hole assembly proposed by the present invention combines the top-level trajectory planner and the bottom-level force-position hybrid controller, and enables the industrial robot to execute through the bottom-level force-position hybrid controller The end of the
下文将基于MLP的顶层轨迹规划器训练方法和底层力位混合控制器控制方法在实施过程中的步骤作出详细说明,本发明整体搜孔流程图如图2所示,总共包含以下几个过程:到达初始位置6、驱动机械臂使装配工件与插孔位置为接触状态7、搜孔阶段8、插入阶段9。The steps in the implementation process of the MLP-based top-level trajectory planner training method and the bottom-level force-position hybrid controller control method will be described in detail below. The overall hole search flow chart of the present invention is shown in Figure 2, which includes the following processes: Reach the
通过多层感知器(MLP)训练得到力/力矩信息与下一步的动作方向的过程包括数据采集、数据标注、神经网络搭建与训练、模型保存几个方面。MLP多层感知器也属于人工神经网络中的一种,不过多层感知器(MLP)可以应用于非线性可分的场合。一组输入向量经过多层感知器处理后被映射为另一组输出向量,输入向量被传输到隐藏层再到输出层,逐步处理。MLP被用来训练一个四分类器,输入是机械臂末端传感器采集的力/力矩数据,输出为机械臂下一步采取的搜孔方向。The process of obtaining force/torque information and the next action direction through multi-layer perceptron (MLP) training includes data acquisition, data labeling, neural network construction and training, and model preservation. MLP multilayer perceptron is also a kind of artificial neural network, but multilayer perceptron (MLP) can be applied to nonlinear separable occasions. After a set of input vectors is processed by the multilayer perceptron, it is mapped to another set of output vectors, and the input vectors are transmitted to the hidden layer and then to the output layer, and processed step by step. MLP is used to train a four-class classifier, the input is the force/torque data collected by the sensor at the end of the manipulator, and the output is the search direction that the manipulator will take next.
数据采集阶段,如图3所示,采样对象包括插孔位置10、插孔中心11、离散采样点12。对插孔位置10采集数据过程如下:首先控制机械臂移动到插孔中心11(精确定位),即轴孔无相对位姿偏差,之后控制机械臂遍历孔周围一系列的离散采样点12,并记录下各离散采样点12的状态信息。根据实际应用经验,插孔位置10的粗定位误差一般在10mm之内,故该方法控制机械臂遍历以孔为中心,边长为20mm的正方形区域。其中遍历的步进增量为0.2mm,因此最终可以采集到101*101条数据用于基于MLP多层感知器的顶层轨迹规划器的训练任务。In the data collection stage, as shown in FIG. 3 , the sampling objects include the
特别地,如图4所示,在机械臂遍历离散采样点12的过程中,机械臂腕部关节进行旋转,与插孔位置10平面呈微小角度。首先使机械臂竖直向下移动,使装配工件与插孔位置在接触点Q14产生接触,产生15N的接触力。同时,在进行每次接触之后,机械臂以接触点Q14为中心,转动末端工件沿逆时针方向旋转,即绕着腕部关节x轴旋转微小角度,使工件有回到竖直状态的趋势,使工件不仅有平移运动的趋势,也有旋转运动产生的力矩,采集并记录此时的力/力矩数据。通过这种方法采集的力/力矩数据的特征变化更为明显,与原数据采集方法工件位姿13相比,更有利于多层感知器训练得到表现更为良好的顶层规划器模型。In particular, as shown in FIG. 4 , during the process of the manipulator traversing the discrete sampling points 12 , the wrist joint of the manipulator rotates and forms a slight angle with the plane of the
数据标注阶段,根据数据采集阶段采集到的数据,将每个离散采样点12获得的力/力矩信息[Fx,Fy,Mx,My]作为输入数据,并根据位置数据标记采样点的类别标签。本发明中将采样点分为四个类别:即向上移动、向下移动、向左移动、向右移动。四个类别代表了机械臂在搜孔过程中的四个移动方向。Fx,Fy为x、y方向的接触力,Mx,My为腕部关节x、y轴上的力矩。In the data labeling stage, according to the data collected in the data collection stage, the force/torque information [F x , F y , M x , M y ] obtained by each
打标签的具体方法如下,首先将采集到的位置数据减去初始位置数据,得到的xyz方向上的相对位置dx、dy、dz,接着按照如下规则给每个离散采样点12采集到的数据打上标签:The specific method of labeling is as follows. First, subtract the initial position data from the collected position data to obtain the relative positions d x , dy , and d z in the xyz direction, and then collect the data for each
如果dy<dx且dy<-dx,标签类别为0,代表向上移动;If dy <d x and dy <-d x , the label category is 0, which means move up;
如果dy>dx且dy>-dx,标签类别为1,代表向下移动;If dy > d x and dy > -d x , the label category is 1, which means moving down;
如果dy>-dx且dy<dx,标签类别为2,代表向左移动;If d y >-d x and d y <d x , the label category is 2, which means move to the left;
如果dy>dx且dy<-dx,标签类别为3,代表向右移动。If dy > d x and dy <-d x , the label class is 3, which means move to the right.
神经网络搭建与训练阶段,其多层感知器模型示意图如图5所示,包括输入层16、隐藏层17、输出层18。基于多层感知器(MLP),构建网络结构为4-100-50-4的神经网络,即四输入四输出的分类器模型。其中有两个隐藏层16,每层的神经元数目分别为100个和50个。其输入的数据为4维向量[Fx,Fy,Mx,My],输出为类别标签0,1,2,3,分别代表机械臂下一步的动作方向。同时,需要对输入数据做归一化处理,便于神经网络训练。多层感知器使用ReLU函数作为激活函数,使用反向传播算法中的Adam算法来学习训练人工神经网络参数。In the construction and training stage of the neural network, the schematic diagram of the multi-layer perceptron model is shown in Figure 5, including an
训练完毕后,人工神经网络会返回一个基于MLP的分类器模型,将这个模型保存到磁盘文件中即可为以后的搜孔过程提供指导。After training, the artificial neural network will return an MLP-based classifier model, which can be saved to a disk file to provide guidance for the subsequent hole search process.
在搜孔过程中,其力位混合控制器控制框图如图6所示,包括机器人位置环20、阻抗控制器21、机器人速度环22。顶层轨迹规划器19根据力传感器25输入,输出机械臂下一个时刻的动作方向给机器人位置环20,使机械臂末端夹取的工件产生x,y方向的平移运动。阻抗控制器21用于在机械臂末端Z轴方向施加15N的力,保证装配工件3与插孔位置4稳定接触。力传感器25在机械臂启动时,获得Z轴力数据,对装配工件3进行重力补偿24,消除装配工件自身重量对高精度轴孔装配的影响。In the process of searching holes, the control block diagram of the force-position hybrid controller is shown in FIG. 6 , including a
通过训练得到的基于多层感知器的顶层规划器模型和底层力位混合控制器模型相结合,即可适应高精度轴孔装配的搜孔工作。The combination of the multi-layer perceptron-based top-level planner model and the bottom-level force-position hybrid controller model obtained by training can adapt to the hole search work of high-precision shaft-hole assembly.
本发明在工业机器人搜孔调试过程中,主要关注多层感知器的学习率、力位混合控制器的参数、数据采集时机械臂末端工件的搜索步长等变量的调试,同时还需要获取工业机器人平台控制周期、可重复精度等参数。In the process of hole searching and debugging of the industrial robot, the present invention mainly focuses on the debugging of variables such as the learning rate of the multi-layer perceptron, the parameters of the force-position hybrid controller, and the search step length of the workpiece at the end of the mechanical arm during data acquisition. Robot platform control cycle, repeatability and other parameters.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010876074.7A CN112025242A (en) | 2020-08-27 | 2020-08-27 | Mechanical arm hole searching method based on multilayer perceptron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010876074.7A CN112025242A (en) | 2020-08-27 | 2020-08-27 | Mechanical arm hole searching method based on multilayer perceptron |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112025242A true CN112025242A (en) | 2020-12-04 |
Family
ID=73580211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010876074.7A Pending CN112025242A (en) | 2020-08-27 | 2020-08-27 | Mechanical arm hole searching method based on multilayer perceptron |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112025242A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112847235A (en) * | 2020-12-25 | 2021-05-28 | 山东大学 | Robot step force guiding assembly method and system based on deep reinforcement learning |
CN113747682A (en) * | 2021-09-07 | 2021-12-03 | 山东大学 | A robot precision assembly system and method |
CN114147724A (en) * | 2021-12-20 | 2022-03-08 | 上海景吾智能科技有限公司 | Robot force-controlled shaft hole assembling method and system |
CN114952830A (en) * | 2022-05-13 | 2022-08-30 | 哈尔滨工业大学 | Contact constraint-based positioning method for high-precision shaft-hole assembly shaft parts of robots |
CN115592671A (en) * | 2022-11-03 | 2023-01-13 | 哈尔滨工业大学(Cn) | Robot end contact localization method based on deep learning |
WO2024156228A1 (en) * | 2023-01-29 | 2024-08-02 | 深圳先进技术研究院 | Peg-in-hole assembly method and system, electronic device, and storage medium |
CN119260744A (en) * | 2024-12-09 | 2025-01-07 | 华东交通大学 | A robot compliant shaft-hole assembly method based on width learning model |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04348887A (en) * | 1991-05-23 | 1992-12-03 | B L Oototetsuku Kk | Device for inserting rod member into insertion hole and method thereof |
CN101041220A (en) * | 2006-03-22 | 2007-09-26 | 中国科学院自动化研究所 | Method for realizing the assembly of shaft hole having high-precision by using robot having low precision |
CN106272416A (en) * | 2016-08-29 | 2017-01-04 | 上海交通大学 | Feel based on power and the robot slender axles Fine Boring system and method for vision |
CN110293552A (en) * | 2018-03-21 | 2019-10-01 | 北京猎户星空科技有限公司 | Mechanical arm control method, device, control equipment and storage medium |
CN110449882A (en) * | 2019-08-02 | 2019-11-15 | 珞石(北京)科技有限公司 | The search assembly method of binding force control |
US20200114506A1 (en) * | 2017-12-05 | 2020-04-16 | Google Llc | Viewpoint invariant visual servoing of robot end effector using recurrent neural network |
-
2020
- 2020-08-27 CN CN202010876074.7A patent/CN112025242A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04348887A (en) * | 1991-05-23 | 1992-12-03 | B L Oototetsuku Kk | Device for inserting rod member into insertion hole and method thereof |
CN101041220A (en) * | 2006-03-22 | 2007-09-26 | 中国科学院自动化研究所 | Method for realizing the assembly of shaft hole having high-precision by using robot having low precision |
CN106272416A (en) * | 2016-08-29 | 2017-01-04 | 上海交通大学 | Feel based on power and the robot slender axles Fine Boring system and method for vision |
US20200114506A1 (en) * | 2017-12-05 | 2020-04-16 | Google Llc | Viewpoint invariant visual servoing of robot end effector using recurrent neural network |
CN110293552A (en) * | 2018-03-21 | 2019-10-01 | 北京猎户星空科技有限公司 | Mechanical arm control method, device, control equipment and storage medium |
CN110449882A (en) * | 2019-08-02 | 2019-11-15 | 珞石(北京)科技有限公司 | The search assembly method of binding force control |
Non-Patent Citations (1)
Title |
---|
郑养龙: "基于力传感器的双臂机器人轴孔柔顺装配策略与方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112847235A (en) * | 2020-12-25 | 2021-05-28 | 山东大学 | Robot step force guiding assembly method and system based on deep reinforcement learning |
CN113747682A (en) * | 2021-09-07 | 2021-12-03 | 山东大学 | A robot precision assembly system and method |
CN113747682B (en) * | 2021-09-07 | 2023-09-12 | 山东大学 | Robot precise assembly system and method |
CN114147724A (en) * | 2021-12-20 | 2022-03-08 | 上海景吾智能科技有限公司 | Robot force-controlled shaft hole assembling method and system |
CN114147724B (en) * | 2021-12-20 | 2024-04-16 | 上海景吾智能科技有限公司 | Robot power control shaft hole assembly method and system |
CN114952830A (en) * | 2022-05-13 | 2022-08-30 | 哈尔滨工业大学 | Contact constraint-based positioning method for high-precision shaft-hole assembly shaft parts of robots |
CN115592671A (en) * | 2022-11-03 | 2023-01-13 | 哈尔滨工业大学(Cn) | Robot end contact localization method based on deep learning |
CN115592671B (en) * | 2022-11-03 | 2024-08-06 | 哈尔滨工业大学 | Robot end contact positioning method based on deep learning |
WO2024156228A1 (en) * | 2023-01-29 | 2024-08-02 | 深圳先进技术研究院 | Peg-in-hole assembly method and system, electronic device, and storage medium |
CN119260744A (en) * | 2024-12-09 | 2025-01-07 | 华东交通大学 | A robot compliant shaft-hole assembly method based on width learning model |
CN119260744B (en) * | 2024-12-09 | 2025-05-23 | 华东交通大学 | A robot compliant shaft-hole assembly method based on width learning model |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112025242A (en) | Mechanical arm hole searching method based on multilayer perceptron | |
CN109382828B (en) | A robot shaft hole assembly system and method based on teaching and learning | |
CN106737673B (en) | A method of the control of mechanical arm end to end based on deep learning | |
CN109782601A (en) | A Design Method of Synchronous Robust Controller for Coordinated Manipulator Adaptive Neural Network | |
CN108818530A (en) | Stacking piston motion planing method at random is grabbed based on the mechanical arm for improving RRT algorithm | |
CN114770461B (en) | Mobile robot based on monocular vision and automatic grabbing method thereof | |
CN108555914A (en) | A kind of DNN Neural Network Adaptive Control methods driving Dextrous Hand based on tendon | |
CN116300436A (en) | Robot impedance control method and system based on multi-mode signal fusion | |
CN111300408A (en) | Humanoid double-arm robot motion planning control method combining shape similarity and expression similarity | |
CN114967459A (en) | A Control Method for Time Convergence of Manipulator and Its 7 DOF Manipulator | |
CN115918377B (en) | Control method and control device of automatic fruit picking machine and automatic fruit picking machine | |
CN119328765A (en) | A robot arm trajectory optimization method based on deep reinforcement learning | |
Ge | Programming by demonstration by optical tracking system for dual arm robot | |
CN116533247A (en) | Method for realizing multi-mode grabbing task of mechanical arm based on DMP and convolutional neural network | |
CN115401698A (en) | Grabbing gesture detection-based manipulator dexterous grabbing planning method and system | |
Cheah et al. | Adaptive Jacobian tracking control of robots based on visual task-space information | |
CN104097206B (en) | The humanoid robot's all-around exercises self-balancing control method controlled based on momentum | |
CN117428772A (en) | A six-degree-of-freedom robotic arm visual grabbing method for multi-station scenarios | |
Hendarto et al. | ANFIS application for calculating inverse kinematics of programmable universal machine for assembly (PUMA) robot | |
CN116749214A (en) | A five-finger manipulator grasping control method and system with teaching and learning capabilities | |
CN116214516A (en) | Real-time grabbing and track tracking method and system for mobile redundant mechanical arm | |
CN116079739A (en) | A Cooperative Control Method of Manipulator End Position and Force-varying Impedance Based on Tracking Differentiator | |
CN116330272A (en) | Adaptive robust control method for electric mechanical arm considering hydrodynamic influence | |
CN115488880A (en) | Simulation test system for mechanical arm visual servo grabbing in space environment | |
CN114789437A (en) | humanoid arm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |