CN112023604B - 一种双频段复合声波抑雾方法 - Google Patents

一种双频段复合声波抑雾方法 Download PDF

Info

Publication number
CN112023604B
CN112023604B CN202010769763.8A CN202010769763A CN112023604B CN 112023604 B CN112023604 B CN 112023604B CN 202010769763 A CN202010769763 A CN 202010769763A CN 112023604 B CN112023604 B CN 112023604B
Authority
CN
China
Prior art keywords
low
ultrasonic
frequency sound
sound wave
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010769763.8A
Other languages
English (en)
Other versions
CN112023604A (zh
Inventor
杨洋
张育铭
王怡
肖勇强
王天龙
樊佳宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN202010769763.8A priority Critical patent/CN112023604B/zh
Publication of CN112023604A publication Critical patent/CN112023604A/zh
Application granted granted Critical
Publication of CN112023604B publication Critical patent/CN112023604B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D51/00Auxiliary pretreatment of gases or vapours to be cleaned
    • B01D51/02Amassing the particles, e.g. by flocculation
    • B01D51/06Amassing the particles, e.g. by flocculation by varying the pressure of the gas or vapour
    • B01D51/08Amassing the particles, e.g. by flocculation by varying the pressure of the gas or vapour by sound or ultrasonics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

本发明属于有害液滴散发抑制或声波应用技术领域,具体涉及一种双频段复合声波抑雾方法,其特征是:至少包括,低频声波源和超声波源,低频声波源和超声波源分别受控于控制单元,向液滴槽发送低频声波和超声波,低频声波源形成低频声场实现对小粒径液滴的聚并。它利用低频声波聚并效应和超声波机械效应的联合作用,抑制工艺生产槽面有害液滴的散发。

Description

一种双频段复合声波抑雾方法
技术领域
本发明属于有害液滴散发抑制或声波应用技术领域,具体涉及一种双频段复合声波抑雾方法。
背景技术
在工业建筑的室内,许多生产工艺过程中会产生多种且大量的有害液滴,常见的液滴类型主要有酸雾、碱雾、油雾、水雾等。这些液滴如若散发到建筑室内环境中,会对工人、生产工艺、设备和建筑围护结构等产生严重危害。
目前对于生产工艺中产生的有害液滴的控制手段主要有物理控制方法(CN208758310U、CN210356413U、CN209371439U)和化学抑制方法(CN103628077B、CN104662099A、CN103628077A)。使用通风等物理手段进行控制液滴,虽然可以实现排除建筑室内有害液滴,降低室内环境中有害液滴浓度,但由于受到工艺条件的限制,排风设备的尺寸和布置位置往往受较大限制,且液滴粒径分布广泛(从亚微米到上百微米),运动特性差异显著,这都导致通风系统控制效果欠佳,且后续还需要净化设备对液滴进行净化处理,造成二次能耗;使用化学抑雾方法时,向液滴散发槽中添加表面活性剂等化学物质,会增加废液中的污染物成分,造成化学二次污染。基于此,亟待一种新技术可实现生产工艺中有害液滴高效控制。
声波作为机械波,在不同频段对不同颗粒具有不同的作用效果,如低频声波形成的行波对细微颗粒(10μm以下)具有较好的聚并效应。超声波形成的驻波具有颗粒聚并效应,超声波形成的行波对较大颗粒(10μm以上)具有显著机械效应等。在固体颗粒物和液滴净化领域都有单独利用上述声波聚并效应的技术(CN105698557A、 CN110652815A)。
发明内容
本发明的目的是提供一种能对液滴散发抑制的双频段复合声波抑雾方法。
本发明采用的技术方案是:一种双频段复合声波抑雾方法,其方法特征是:至少包括,低频声波源和超声波源,低频声波源和超声波源分别受控于控制单元,向液滴槽发送低频声波和超声波,低频声波源形成低频声场实现对小粒径液滴的聚并:利用低频声波产生的行波形成低频声场实现对小粒径液滴的聚并,使其聚并为大液滴;然后由超声波源产生的声辐射力控制大粒径液滴运动;液滴在声场中受到超声辐射力会使液滴的运动状态发生改变,液滴粒径越大,其受超声辐射力作用运动距离越大,通过超声辐射力实现对大粒径液滴运动的控制,抑制其散发到环境中。
所述的低频声波源≈1kHz。
所述的低频声波源是由两排相对放置的低频声波发射器构成,形成低频声波发射阵列,低频声波发射器在输入频率、电压振幅可控的正弦电压信号的作用下发射。
低频声波源传播方向相反的低频行波,形成低频叠加声场。
低频声波源和超声波源或安置于液滴散发槽外部,也可安置于液滴散发槽内壁面,以使小粒径液滴聚并。
所述的超声波源由两排多个超声波发射器并排布置而成,两排超声波发射器或同时工作或交替工作。
所述的超声波源可或为多排超声波器。
所述的控制单元包括对低频声波源和超声波源的强度调节电路。
所述的控制单元包括对低频声波源和超声波源的场源发散角调节装置。
作为优选,包括一个导液槽,用于引导抑制后附着在槽子内壁上的有害液滴,以减少有害液滴在槽子内壁的长时间附着,减缓槽子内壁的腐蚀速率。
导液槽与原槽子内壁角度宜在90°至180°之间,本实施例给出的角度为90°,但不同具体实施过程中导液槽于原槽子内壁所成角度不仅限于90°。
本发明的原理是:行波声场中的空气随着声音的传播而振动,它携带不同大小的液滴会以不同的振幅振动。液滴之间的相对运动使它们更频繁地碰撞、聚集并长大成更大的液滴。当生产工艺中散发的有害液滴在穿越低频声场时,由于小液滴随空气介质的跟随性好、振幅大,而大液滴受惯性力影响、不易随气流振动,小液滴与大液滴会不断碰撞,发生聚并现象,小液滴聚并为大液滴。
本发明所具有的有益效果是:本发明利用低频声波(≈1kHz)产生的行波形成的低频声场实现对小液滴的聚并,同时利用超声波行波(>20kHz)的超声辐射力控制大粒径液滴的运动,最终抑制生产工艺中产生的不同粒径有害液滴的散发。本发明提供了一种结构简单,操作简便,绿色环保的抑雾技术。在不影响原有生产工艺的条件下,利用声波抑制多粒径分布有害液滴的散发,保护工人、生产设备和建筑结构。
附图说明
下面结合实施例及附图对本发明作进一步说明:
图1为本发明的实施例结构示意图;
图2为本发明低频声波源示意图;
图3为本发明超声波源示意图;
图4为本发明智能监测装置示意图;
图5本发明的实施例控制原理示意图;
图6是环境温度为25℃时,大粒径(10-90μm)液滴受到超声波声辐射力作用时的运动距离与超声波振幅、频率的关系图;
图7分别展示了0μm、12μm、56μm、94μm振幅的超声波对水雾的运动的控制效果图;
图8给出:1kHz的低频声波,对粒径为5微米及以下液滴的夹带率高达80%,对液滴粒径对5-10微米的液滴,夹带率也在60%以上的示意图。
图中:1、低频声波源;101、左低频声波发射器;102、右低频声波发射器;103、固定架;104、低频发射阵列;2、超声波源;201、上超声波阵列;202、下超声波阵列;203、支架;204超声波发射器;205旋转调节钮;3、控制单元;301、温湿度监测器;302、有害液滴浓度检测器;303、控制器;304、操作按键;305、直杆;4、液滴槽;5、可伸缩支撑架。
具体实施方式
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
如图1、图2、图5所示,一种双频段复合声波抑雾方法,包括低频声波源1和超声波源2,低频声波源和超声波源分别受控于控制单元3,向液滴槽4发送低频声波和超声波,低频声波源形成低频声场实现对小粒径液滴的聚并:利用低频声波产生的行波形成低频声场实现对小粒径液滴的聚并,使其聚并为大液滴;然后由超声波源产生的声辐射力控制大粒径液滴运动;液滴在声场中受到超声辐射力会使液滴的运动状态发生改变,液滴粒径越大,其受超声辐射力作用运动距离越大,通过超声辐射力实现对大粒径液滴运动的控制,抑制其散发到环境中。
如图2所示,低频声波源1由面对面放置的左低频声波发射器101和右低频声波发射器102构成,左低频声波发射器101和右低频声波发射器102固定在固定架103上。
左低频声波发射器101和右低频声波发射器102由若干个低频声波发射器构成低频发射阵列104;左低频声波发射器101下部设有液滴槽4。
控制单元3控制左低频声波发射器101和右低频声波发射器102的输出相反方向可控制振幅和频率声波,形成低频声场,声场分布表现为具有波峰和波谷的复合声场。当来自酸洗槽5散发的酸性液滴通过该低频声场时,小液滴会获得较大的速度,而大液滴则获得相对小液滴较小的速度,大、小液滴会碰撞、聚集,它们在碰撞中融合在一起,小液滴聚并形成大液滴。
液滴槽4用于收集、引导由超声波源控制后附着在槽子内壁上的有害液滴,以减少有害液滴在槽子内壁的长时间附着,减缓槽内壁的腐蚀速率;同时,当液滴槽4中液滴积聚到一定程度时会重新流入液面,一定程度上减缓了由于声波振动导致的附着在槽子内壁上的液滴的二次散发。
如图3所示,超声波源2由上下两组并排的超声波阵列构成,上超声波阵列201和下超声波阵列202固定在支架203上,上超声波阵列201和下超声波阵列202各由多个超声波发射器204组成,当液滴穿过低频声场的上方时,受超声辐射力作用影响,运动状态发生改变,重新下落回到液面处,利用高频段超声波的辐射力对液滴运动状态进行有效控制,抑制其散发。
上超声波阵列201和下超声波阵列202同样受控于控制单元3,控制单元3控制上超声波阵列201和下超声波阵列202同时工作或分时工作。
上超声波阵列201和下超声波阵列202的多个超声波发射器204同样受控与控制单元3控制,控制单元3控制上超声波阵列201和下超声波阵列202的每一个超声波发射器204同时工作或分时工作。
低频声波源1与超声波源2通过可伸缩支撑架5相连接,可伸缩支撑架5配有旋转调节钮205,在确保液面上方无障碍物,有充足的投料、加液空间的情况下,来支撑超声波源2。
通过调节支撑架的高度从而调节超声波源2的高度,控制超声波发射器与液滴的作用距离;通过调节旋转调节钮205调节超声波源2的水平角度,控制超声波与液滴的作用角度,改变液滴受到的超声辐射力的方向,实现对液滴运动的控制。
图4为控制单元3示意图,控制单元3还包括:温湿度监测器301、有害液滴浓度检测器302、控制器303、操作按键304,温湿度监测器301、有害液滴浓度检测器302、控制器303、操作按键304固定在直杆305上。
其中,直杆305用于支撑、固定监测仪器与控制仪器;为减轻声波振动对监测仪器与控制仪器的影响,直杆305宜采用减震材料。在设备工作时,温湿度监测器301测量环境的温湿度,根据声波在不同温湿度环境中的传播速度并结合两块相对放置的低频声波发射板的距离,修正低频声波发射器的发射频率,以使两块低频声波发射板之间形成有利于小粒径液滴聚并的低频叠加声场(≈1kHz),声场分布表现为具有波峰和波谷的复合声场。声场分布用多个位置的瞬时声压的时空分布表示,声场控制方程数学描述依据包括声学波动方程;声场边界条件数学描述依据包括声源辐射声波特征和相邻声源之间的边界特征。有害液滴浓度检测器302监测设备上方空气中酸液滴的浓度,并反馈给控制器;当监测仪监测到的酸性液滴浓度发生明显变化时,控制器会发出信号,调节低频声波的频率和超声波发射器的振幅,保证抑雾效果的同时降低设备耗能。低频声波发射器的工作频率、超声波发射器的工作振幅亦可由控制器303和操作按键304控制。
本发明基于如下理论 :
超声波对液滴的机械效应的大小和液滴尺寸紧密相关。液滴在声场中受到的超声辐射力会使液滴的运动状态发生改变,液滴受到的超声辐射力与液滴粒径的平方成正比,液滴在声场中运动方程如下:
Figure 282192DEST_PATH_IMAGE001
其中,
Figure 809120DEST_PATH_IMAGE002
为重力加速度,
Figure 651174DEST_PATH_IMAGE003
Figure 92388DEST_PATH_IMAGE004
分别为液滴和空气的速度,m/s;
Figure 703498DEST_PATH_IMAGE005
Figure 57119DEST_PATH_IMAGE006
分别为液 滴和空气的密度,kg/m3;f为超声波频率,Hz;A为超声波振幅,m;
Figure 606043DEST_PATH_IMAGE007
为阻力系数,
Figure 336102DEST_PATH_IMAGE008
分 别为纯水液滴和空气对超声波的吸收系数,m-1;x为传播距离,m。
图6-1、6-2是环境温度为25℃时,大粒径(10-90μm)液滴受到超声波声辐射力作用时的运动距离与超声波振幅、频率的关系可以看出:液滴粒径越大,其受超声辐射力作用运动距离越大,可以通过超声辐射力实现对大粒径液滴运动的控制,抑制其散发到环境中。
为了更加直观、清晰的表现超声波控制液滴运动,此处利用雾化器产生的水雾(5-50μm)来模拟有害液滴受超声波作用时的运动情况。图7分别展示了0μm、12μm、56μm、94μm振幅的超声波对水雾的运动的控制效果,通过实验可以证实,超声波可以改变竖直向上散发的水雾的运动轨迹,且随着超声波振幅的增强,超声波的作用愈加明显,可以使水雾沿超声波传播方向做定向运动。因此,在实际工程中,针对不同工艺过程,调整超声波的作用方向,就可以改变液滴污染物的运动方向,从而达到抑制液滴散发、扩散的效果。当采用的超声波频率为20KHz时,宜采用振幅≥56μm,以得到较为良好抑制效果。
而图6-3、6-4是当环境温度为25℃时,1μm与10μm液滴运动距离与超声波振幅、频率的关系。可以看出超声波对1μm的液滴的机械效应很不明显,不能有效的改变液滴的运动轨迹。因此,为了进一步提高超声波的抑雾效果,需要采用低频声波产生的行波的聚并效应来减少小粒径液滴的数量。
从图8可以看出:1kHz的低频声波,对粒径为5微米及以下液滴的夹带率高达80%,对液滴粒径对5-10微米的液滴,夹带率也在60%以上。夹带率反映了声场中液滴随声波振动而震荡的程度,颗粒物夹带率高则表示其易随声波振动而震荡,从而更易与其他液滴碰撞,聚并为大液滴。通过分析得知:低频段声波对小粒径液滴(<5μm)夹带作用显著,可利用低频段声波实现小粒径液滴的聚并。因此,本专利采用1kHz的频率作为低频声波的默认发射频率,以获得更好的聚并效果。
以上所述仅是本发明的优选实施方式,本发明具体应用领域不仅限于水雾的控制,针对酸雾、碱雾、油雾等散发过程,在不脱离本发明原理的前提下,设计出的控制液滴散发的装置皆应视为本发明的保护范围。应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种双频段复合声波抑雾方法,其特征是:至少包括,低频声波源和超声波源,低频声波源和超声波源分别受控于控制单元,向液滴槽发送低频声波和超声波;利用低频声波产生的行波形成低频声场实现对小于5μm粒径液滴的聚并,使其聚并为大液滴;然后由超声波源产生的声辐射力控制大粒径液滴运动;液滴在声场中受到超声辐射力会使液滴的运动状态发生改变,液滴粒径越大,其受超声辐射力作用运动距离越大,通过超声辐射力实现对大粒径液滴运动的控制,抑制生产工艺中产生的不同粒径有害液滴的散发;所述的低频声波源等于1kHz,超声波源为>20kHz;
低频声波源由面对面放置的左低频声波发射器、右低频声波发射器和固定架构成,左低频声波发射器和右低频声波发射器固定在固定架上,左低频声波发射器下部设有液滴槽;液滴槽用于收集、引导由超声波源控制后附着在槽子内壁上的有害液滴;
超声波源由上下两组并排的超声波阵列和支架构成,上超声波阵列和下超声波阵列固定在支架上,低频声波源与超声波源通过可伸缩支撑架相连接;
控制单元包括:温湿度监测器、有害液滴浓度检测器、控制器、操作按键,温湿度监测器、有害液滴浓度检测器、控制器、操作按键固定在直杆上;控制单元控制左低频声波发射器和右低频声波发射器的输出相反方向可控制振幅和频率声波,形成低频声场,声场分布表现为具有波峰和波谷的复合声场。
2.根据权利要求1所述的一种双频段复合声波抑雾方法,其特征是:所述的低频声波源传播方向相反的低频行波,形成低频叠加声场。
3.根据权利要求1所述的一种双频段复合声波抑雾方法,其特征是:所述的超声波源由两排多个超声波发射器并排布置而成,两排超声波发射器或同时工作或交替工作。
4.根据权利要求1所述的一种双频段复合声波抑雾方法,其特征是:所述的控制单元包括对低频声波源和超声波源的强度调节电路。
5.根据权利要求1所述的一种双频段复合声波抑雾方法,其方法特征是:所述的控制单元包括对低频声波源和超声波源的场源发散角调节装置。
CN202010769763.8A 2020-08-04 2020-08-04 一种双频段复合声波抑雾方法 Active CN112023604B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010769763.8A CN112023604B (zh) 2020-08-04 2020-08-04 一种双频段复合声波抑雾方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010769763.8A CN112023604B (zh) 2020-08-04 2020-08-04 一种双频段复合声波抑雾方法

Publications (2)

Publication Number Publication Date
CN112023604A CN112023604A (zh) 2020-12-04
CN112023604B true CN112023604B (zh) 2022-06-24

Family

ID=73582205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010769763.8A Active CN112023604B (zh) 2020-08-04 2020-08-04 一种双频段复合声波抑雾方法

Country Status (1)

Country Link
CN (1) CN112023604B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219318A (zh) * 2007-09-18 2008-07-16 东南大学 声波与外加种子颗粒联合作用脱除微颗粒物的装置和方法
WO2019116986A1 (ja) * 2017-12-12 2019-06-20 シャープ株式会社 調湿装置および調湿方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007009234A1 (en) * 2005-07-18 2007-01-25 Andreas Mandelis Method and apparatus using infrared photothermal radiometry (ptr) and modulated laser luminescence (lum) for diagnostics of defects in teeth
GB2518136B (en) * 2013-07-22 2016-09-14 Echovista Gmbh Ultrasonically clearing precipitation
CN106902610B (zh) * 2017-03-24 2023-03-17 中国计量大学 一种声凝并增效除雾器
CN110252056B (zh) * 2019-06-05 2021-05-11 东华大学 一种倾斜入射的超声驻波动态扫描式含尘空气净化装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219318A (zh) * 2007-09-18 2008-07-16 东南大学 声波与外加种子颗粒联合作用脱除微颗粒物的装置和方法
WO2019116986A1 (ja) * 2017-12-12 2019-06-20 シャープ株式会社 調湿装置および調湿方法

Also Published As

Publication number Publication date
CN112023604A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
US8845785B2 (en) Air purification system and method using an ultrasonic wave
Riera et al. Airborne ultrasound for the precipitation of smokes and powders and the destruction of foams
CN112023604B (zh) 一种双频段复合声波抑雾方法
WO2010125750A1 (ja) 空気清浄システムおよび空気清浄方法
CN106823665B (zh) 一种基于多孔板振动的声波团聚装置及其除尘方法
CN104874245A (zh) 广域大气水雾混合吸附净化方法及装置
EP3578886A1 (en) An air treatment system and method
JP5235999B2 (ja) 超音波発生装置及びそれを搭載した設備機器
Yang et al. Agglomeration of oil droplets assisted by low-frequency sonic pretreatment
CN212328735U (zh) 一种高效超声波雾化发生装置
RU2725584C1 (ru) Устройство ультразвуковой коагуляции инородных частиц в газовых потоках
CN2910389Y (zh) 一种低频声波清洁器
Wu et al. Study on agglomeration of ultrafine droplet particles by acoustic air-jet generators
CN208553524U (zh) 一种抑烟消尘装置
CN201034623Y (zh) 摆式光电控制型移动感应器
Khmelev et al. Ultrasonic coagulation of suspended particles in resonant gas gaps
CN206660865U (zh) 一种声凝并增效除雾器
CN211725170U (zh) 声波除雾器
RU2360198C1 (ru) Способ осаждения капелек пара в градирне
CN215233032U (zh) 一种高低频声波联合作用的惯性除尘装置
US11865551B2 (en) Methods and systems for negative ion-based pollution reduction
CN216223687U (zh) 碳捕集系统
KR102616931B1 (ko) 음파 파동을 이용한 시정장애입자 제거 장치 및 제거 방법
CN106902610A (zh) 一种声凝并增效除雾器
TWI837717B (zh) 室內空污清零的中心控制器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant