CN112022093A - A skin imaging system - Google Patents
A skin imaging system Download PDFInfo
- Publication number
- CN112022093A CN112022093A CN202010828577.7A CN202010828577A CN112022093A CN 112022093 A CN112022093 A CN 112022093A CN 202010828577 A CN202010828577 A CN 202010828577A CN 112022093 A CN112022093 A CN 112022093A
- Authority
- CN
- China
- Prior art keywords
- light
- skin
- subsystem
- skin area
- imaging system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 47
- 238000012545 processing Methods 0.000 claims abstract description 27
- 238000001228 spectrum Methods 0.000 claims abstract description 16
- 230000001678 irradiating effect Effects 0.000 claims abstract description 8
- 239000000835 fiber Substances 0.000 claims description 23
- 230000003287 optical effect Effects 0.000 claims description 20
- 230000003595 spectral effect Effects 0.000 claims description 19
- 239000013307 optical fiber Substances 0.000 claims description 8
- 238000013519 translation Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 abstract description 10
- 230000007547 defect Effects 0.000 abstract description 5
- 238000012014 optical coherence tomography Methods 0.000 description 32
- 208000009077 Pigmented Nevus Diseases 0.000 description 12
- 206010027145 Melanocytic naevus Diseases 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000037311 normal skin Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000000701 chemical imaging Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 241000211181 Manta Species 0.000 description 1
- 208000007256 Nevus Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- NFGXHKASABOEEW-LDRANXPESA-N methoprene Chemical compound COC(C)(C)CCCC(C)C\C=C\C(\C)=C\C(=O)OC(C)C NFGXHKASABOEEW-LDRANXPESA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
- A61B5/0035—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/443—Evaluating skin constituents, e.g. elastin, melanin, water
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/444—Evaluating skin marks, e.g. mole, nevi, tumour, scar
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dermatology (AREA)
- Radiology & Medical Imaging (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【技术领域】【Technical field】
本发明涉及生物医学成像领域,特别涉及一种皮肤成像系统。The invention relates to the field of biomedical imaging, in particular to a skin imaging system.
【背景技术】【Background technique】
光学相干断层扫描成像技术(Optical Coherence Tomography,OCT)和高光谱成像(Hyper-spectral Imaging,HSI)两种新型的生物医学光学成像技术,可以实现对在体生物组织的无损成像,具有高灵敏度、高分辨率、非侵入和无辐射等优点。这两种技术已经在生物医学领域有着广泛的应用,成为了临床门诊检查的重要手段。但是在实际诊断过程中,两种技术分别具有成像上的缺陷,比如OCT成像存在着图像分辨率与成像范围之间的矛盾以及几乎无法获得分子信息等不足之处;高光谱成像有着对于生物样品深度信息的获取能力较差的缺陷。Optical coherence tomography (Optical Coherence Tomography, OCT) and hyperspectral imaging (Hyper-spectral Imaging, HSI) are two new biomedical optical imaging technologies, which can achieve non-destructive imaging of biological tissues in vivo, with high sensitivity, High resolution, non-invasive and radiation-free. These two technologies have been widely used in the field of biomedicine and have become important means of clinical outpatient examination. However, in the actual diagnosis process, the two techniques have imaging defects, such as the contradiction between image resolution and imaging range and the inability to obtain molecular information in OCT imaging. The defect of poor ability to obtain depth information.
为此,我们提出一种皮肤成像系统。To this end, we propose a skin imaging system.
【发明内容】[Content of the invention]
本发明的主要目的在于提供一种皮肤成像系统,用于生物医学成像的OCT系统与HSI系统结合成为一套双模态成像系统,实现OCT系统和HSI系统的优势互补,有效地解决了上述技术背景中存在的问题。The main purpose of the present invention is to provide a skin imaging system. The OCT system used for biomedical imaging and the HSI system are combined to form a dual-modal imaging system, which realizes the complementary advantages of the OCT system and the HSI system, and effectively solves the above-mentioned technology. problems in the background.
为实现上述目的,本发明采取的技术方案为:To achieve the above object, the technical scheme adopted in the present invention is:
一种皮肤成像系统,包括OCT子系统、HSI子系统和图像处理单元;A skin imaging system includes an OCT subsystem, an HSI subsystem and an image processing unit;
OCT子系统:用于发射光信号,并使光信号通过反射形成参考光及皮肤区域的样品光,同时使样品光和参考光发生干涉以形成干涉光谱信息;OCT subsystem: used to emit light signals, and make the light signals form reference light and sample light in the skin area through reflection, and at the same time cause the sample light and reference light to interfere to form interference spectral information;
HSI子系统用于向皮肤区域发射白光信号,并对白光信号照射皮肤区域所产生的反射光进行分光后汇聚,以获取所有波长范围内的光谱图;The HSI subsystem is used to emit white light signals to the skin area, and to split and condense the reflected light generated by the white light signals irradiating the skin area to obtain spectral maps in all wavelength ranges;
图像处理单元:用于根据干涉光谱信息生成皮肤区域的深度图像,对光谱图进行重建修正以获取皮肤区域的高光谱图像,并将深度图像和高光谱图像相融合以获取皮肤图像。Image processing unit: used to generate a depth image of the skin area according to the interference spectral information, reconstruct and correct the spectral map to obtain a hyperspectral image of the skin area, and fuse the depth image and the hyperspectral image to obtain a skin image.
可选地,OCT子系统包括:Optionally, the OCT subsystem includes:
扫频光源:用于发射激光信号;Sweep frequency light source: used to emit laser signals;
第一光纤耦合器:用于对扫频光源输出的激光信号进行分光,并使分光后的光信号分别射入参考臂和样品臂;The first fiber coupler: used to split the laser signal output by the frequency sweep light source, and make the split optical signal enter the reference arm and the sample arm respectively;
参考臂:用于对所接收的入射光进行反射以形成产生参考光;Reference arm: used to reflect the received incident light to generate reference light;
样品臂:用于将所接收的入射光发射至待成像皮肤区域并经反射形成样品光;Sample arm: used to emit the received incident light to the skin area to be imaged and form sample light after reflection;
第二光纤耦合器:用于使样品光和参考光发生干涉以形成干涉光谱信息;The second fiber coupler: used to interfere the sample light and the reference light to form interference spectral information;
平衡探测器:用于探测干涉光谱信息并输出至图像处理单元。Balanced detector: used to detect interference spectrum information and output to the image processing unit.
可选地,样品臂包括扫描振镜和第一消色差透镜,射入样品臂的入射光经扫描振镜换向后,再经过第一消色差透镜聚焦于皮肤区域。Optionally, the sample arm includes a scanning galvanometer and a first achromatic lens, and the incident light entering the sample arm is commutated by the scanning galvanometer and then focused on the skin area through the first achromatic lens.
可选地,扫描振镜配置有高速模拟输出装置,高速模拟输出装置能够输出模拟信号以控制扫描振镜实现皮肤区域的扫描。Optionally, the scanning galvanometer is equipped with a high-speed analog output device, and the high-speed analog output device can output an analog signal to control the scanning galvanometer to scan the skin area.
可选地,扫描振镜前端还配置有第一光纤准直器,用于对射入扫描振镜的光信号进行准直处理。Optionally, the front end of the scanning galvanometer is further configured with a first optical fiber collimator, which is used for collimating the optical signal incident on the scanning galvanometer.
可选地,参考臂包括第二光纤准直器、第三光纤准直器、第一平面镜和第二平面镜,射入参考臂的入射光经第二光纤准直器准直后经第一平面镜、第二平面镜反射后进入第三光纤准直器。Optionally, the reference arm includes a second fiber collimator, a third fiber collimator, a first plane mirror and a second plane mirror, and the incident light entering the reference arm is collimated by the second fiber collimator and then passed through the first plane mirror. , The second plane mirror enters the third fiber collimator after reflection.
可选地,HSI子系统包括:Optionally, the HSI subsystem includes:
白光光源:用于向皮肤区域发射白光信号;White light source: used to emit white light signals to the skin area;
前置光学系统:用于对白光信号照射皮肤区域所产生的反射光消色差,并通过聚焦处理使反射光能够通过预设的入射狭缝;Front optical system: It is used to achromatize the reflected light generated by the white light signal irradiating the skin area, and through focusing processing, the reflected light can pass through the preset incident slit;
光谱仪:用于根据预设的步长进行推扫,对通过入射狭缝的反射光进行分光及汇聚处理以获取皮肤区域所有波长范围内的光谱;其中,步长等于入射狭缝的宽度;Spectrometer: used for push-brooming according to the preset step size, and performing spectral splitting and convergence processing on the reflected light passing through the incident slit to obtain the spectrum in all wavelength ranges of the skin area; where the step size is equal to the width of the incident slit;
CCD相机:用于探测光谱仪输出的光谱以形成光谱图。CCD camera: used to detect the spectrum output by the spectrometer to form a spectrogram.
可选地,光谱仪配置有电动平移台,用于驱动光谱仪运行以完成推扫操作。Optionally, the spectrometer is configured with a motorized translation stage for driving the spectrometer to run to complete the push-broom operation.
可选地,前置光学系统包括至少两个同轴线设置的第二消色差透镜。Optionally, the front optical system includes at least two second achromatic lenses arranged coaxially.
可选地,还包括二向色镜,二向色镜用于将OCT子系统和HSI子系统发出的光信号聚焦于皮肤区域,同时用于将皮肤区域反射的光信号分别反射至OCT子系统和HSI子系统。Optionally, a dichroic mirror is also included, and the dichroic mirror is used to focus the optical signals emitted by the OCT subsystem and the HSI subsystem on the skin area, and at the same time, it is used to reflect the optical signals reflected from the skin area to the OCT subsystem. and HSI subsystem.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本皮肤成像系统包括OCT子系统、HSI子系统和图像处理单元,利用OCT技术与高光谱技术的双重成像,既能弥补各自成像技术的缺陷,又能实现优势互补,在满足高分辨率的同时,又能获得较大的成像深度,在实际诊断过程中,本皮肤成像系统弥补了OCT子系统和HSI子系统两种技术分别具有的在成像上的缺陷,有利于精确确定病变区域的表面边界以及通过深度结构信息分析病变组织与正常组织差异。This skin imaging system includes OCT subsystem, HSI subsystem and image processing unit. Using the dual imaging of OCT technology and hyperspectral technology, it can not only make up for the defects of the respective imaging technologies, but also achieve complementary advantages. , and can obtain a larger imaging depth. In the actual diagnosis process, the skin imaging system makes up for the imaging defects of the OCT subsystem and the HSI subsystem respectively, which is beneficial to accurately determine the surface boundary of the lesion area. And analyze the difference between diseased tissue and normal tissue through deep structural information.
【附图说明】【Description of drawings】
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings described herein are used to provide a further understanding of the present invention and constitute a part of the present application. The exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute an improper limitation of the present invention.
图1为本皮肤成像系统实施例中的整体结构图。FIG. 1 is an overall structural diagram of an embodiment of a skin imaging system.
图2为本皮肤成像系统实施例中的色素痣样品。FIG. 2 is a pigmented nevus sample in the embodiment of the skin imaging system.
图3为本皮肤成像系统实施例中的正常皮肤光谱去噪前后对比图。FIG. 3 is a comparison diagram before and after spectral denoising of normal skin in an embodiment of the skin imaging system.
图4为本皮肤成像系统实施例中的HSI子系统光谱分辨率实测图。FIG. 4 is an actual measurement diagram of the spectral resolution of the HSI subsystem in the embodiment of the skin imaging system.
图5为本皮肤成像系统实施例中的多种聚类算法结果和对比图。FIG. 5 is a result and comparison diagram of various clustering algorithms in an embodiment of the skin imaging system.
图6为本皮肤成像系统实施例中的色素痣样品的3D重建图。FIG. 6 is a 3D reconstruction diagram of a pigmented nevus sample in an embodiment of the skin imaging system.
图7为本皮肤成像系统实施例中的皮肤的B-scan图以及拉平后的B-scan图。FIG. 7 is a B-scan diagram of the skin in the embodiment of the skin imaging system and a B-scan diagram after flattening.
图8为本皮肤成像系统实施例中的正常皮肤与色素痣样品的A-scan对比图。FIG. 8 is an A-scan comparison diagram of normal skin and a pigmented nevus sample in an embodiment of the skin imaging system.
图9为本皮肤成像系统实施例中的衰减系数拟合结果。FIG. 9 is a fitting result of the attenuation coefficient in the embodiment of the skin imaging system.
图10为本皮肤成像系统实施例中的OCT子系统B-scan图。FIG. 10 is a B-scan diagram of the OCT subsystem in the embodiment of the skin imaging system.
图中:1、扫频光源;2、第一光纤耦合器;3、第二光纤耦合器;4、第一光纤准直器;5、第一平面镜;6、第二平面镜;7、第二光纤准直器;8、平衡探测器;9、第三光纤准直器;10、扫描振镜;11、第一消色差透镜;12、样品;13、白光光源;14、第二消色差透镜;15、前置光学系统;16、入射狭缝;17、光谱仪;18、CCD相机;19、图像处理单元;20、二向色镜。In the figure: 1. Frequency sweep light source; 2. The first fiber coupler; 3. The second fiber coupler; 4. The first fiber collimator; 5, The first plane mirror; 6, The second plane mirror; 7, The second Fiber collimator; 8. Balance detector; 9. Third fiber collimator; 10. Scanning mirror; 11. First achromatic lens; 12. Sample; 13. White light source; 14. Second
【具体实施方式】【Detailed ways】
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the technical means, creative features, goals and effects realized by the present invention easy to understand, the technical solutions in the embodiments of the present invention will be described clearly and completely below with reference to the accompanying drawings in the embodiments of the present invention. The described embodiments are only some, but not all, embodiments of the present invention. The following description of at least one exemplary embodiment is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
以下OCT子系统指代光学相干断层扫描成像子系统,HSI子系统指代高光谱成像子系统。The following OCT subsystem refers to the optical coherence tomography imaging subsystem, and the HSI subsystem refers to the hyperspectral imaging subsystem.
如图1所示,本发明所提供的皮肤成像系统包括OCT子系统、HSI子系统和图像处理单元19;As shown in FIG. 1 , the skin imaging system provided by the present invention includes an OCT subsystem, an HSI subsystem and an
OCT子系统发射光信号,并使光信号通过反射形成参考光及皮肤区域的样品光,同时使样品光和参考光发生干涉以形成干涉光谱信息;The OCT subsystem emits an optical signal, and the optical signal is reflected to form the reference light and the sample light of the skin area, and at the same time, the sample light and the reference light interfere to form the interference spectrum information;
HSI子系统向皮肤区域发射白光信号,并对白光信号照射皮肤区域所产生的反射光进行分光后汇聚,以获取所有波长范围内的光谱图;The HSI subsystem emits a white light signal to the skin area, and divides and condenses the reflected light generated by the white light signal irradiating the skin area to obtain spectrograms in all wavelength ranges;
图像处理单元19一方面根据OCT子系统形成的干涉光谱信息生成皮肤区域的深度图像,另一方面根据HSI子系统获得的光谱图进行重建修正以获取皮肤区域的高光谱图像,最后,将深度图像和高光谱图像相融合以获取皮肤图像。On the one hand, the
OCT子系统和HSI子系统的运行没有先后限定,可以是OCT子系统先运行、HSI子系统后运行;也可以HSI子系统先运行、OCT子系统后运行,又或者OCT子系统和HSI子系统同时运行。The operation of the OCT subsystem and the HSI subsystem is not limited in sequence. It can be that the OCT subsystem runs first and the HSI subsystem runs later; or the HSI subsystem runs first and the OCT subsystem runs after, or the OCT subsystem and the HSI subsystem run. run simultaneously.
在一些实施例中,OCT子系统包括扫频光源1、参考臂、样品臂、第一光纤耦合器2、第二光纤耦合器3和平衡探测器8;In some embodiments, the OCT subsystem includes a swept frequency light source 1, a reference arm, a sample arm, a first fiber coupler 2, a second fiber coupler 3, and a balanced detector 8;
在该实施例中,扫频光源1的型号可为SS-OCT1060,Axsun Technology Inc,其光源中心波长为1060nm,带宽为110nm,扫频速率为100kHz;平衡探测器8型号可为PDB471C,Thorlabs;需要说明的是,扫频光源1和平衡探测器8型号的型号不仅限本实施例的型号。In this embodiment, the model of the swept frequency light source 1 can be SS-OCT1060, Axsun Technology Inc, the center wavelength of the light source is 1060nm, the bandwidth is 110nm, and the frequency sweep rate is 100kHz; the model of the balanced detector 8 can be PDB471C, Thorlabs; It should be noted that the models of the frequency sweep light source 1 and the balanced detector 8 are not limited to the models of this embodiment.
首先,扫频光源1发出的光经由第一光纤耦合器2分光;之后,分别进入样品臂(50%)和参考臂(50%),参考臂所接收的入射光通过反射以形成产生参考光,样品臂所接收的入射光通过改变方向后,实现对待成像皮肤区域的聚焦并经反射形成样品光;最后,样品臂中的样品光与参考臂中的参考光在第二光纤耦合器3中发生光干涉形成干涉光谱信息,平衡探测器8探测到干涉光谱信息并将该干涉光谱信息输出至图像处理单元19进行处理,具体的为,平衡探测器8中探测到的干涉光谱信号先通过一个低通滤波器(型号可为SLP-150+,Mini-circuits)滤除高于155MHz频率的其他信号,然后经过一个12位双通道数据采集卡(型号为ATS9351,Alazartech)输出至图像处理单元19。First, the light emitted by the swept frequency light source 1 is split through the first fiber coupler 2; after that, it enters the sample arm (50%) and the reference arm (50%) respectively, and the incident light received by the reference arm is reflected to form a reference light , after the incident light received by the sample arm changes direction, the skin area to be imaged is focused and reflected to form sample light; finally, the sample light in the sample arm and the reference light in the reference arm are in the second fiber coupler 3 Optical interference occurs to form interference spectrum information, the balance detector 8 detects the interference spectrum information and outputs the interference spectrum information to the
在一些实施例中,样品臂包括扫描振镜10和第一消色差透镜11;In some embodiments, the sample arm includes a
扫描振镜10的型号可为GVSM002/M,Thorlabs;第一消色差透镜11的型号可为AC254-125-B-ML,Thorlabs;The model of the
射入样品臂中的光通过扫描振镜10改变方向后,再经过第一消色差透镜11实现在皮肤区域的聚焦。The light entering the sample arm changes direction through the
在一些实施例中,扫描振镜10配置有高速模拟输出装置;In some embodiments, the
高速模拟输出装置的型号可为PCIe-6363,National Instruments;The model of the high-speed analog output device can be PCIe-6363, National Instruments;
高速模拟输出装置能输出模拟信号控制驱动扫描振镜10实现X和Y方向的扫描,最后通过图像处理单元19对数据进行分析和可视化处理。The high-speed analog output device can output analog signals to control and drive the scanning
在一些实施例中,样品臂配置的扫描振镜10前端还配置有第一光纤准直器4,第一光纤准直器4用于对射入扫描振镜10的光信号进行准直处理。In some embodiments, the front end of the
在一些实施例中,参考臂包括第二光纤准直器7、第三光纤准直器9、第一平面镜5和第二平面镜6,射入参考臂的入射光经第二光纤准直器7准直后经第一平面镜5、第二平面镜6反射后进入第三光纤准直器9。In some embodiments, the reference arm includes a second fiber collimator 7 , a third fiber collimator 9 , a first plane mirror 5 and a second plane mirror 6 , and the incident light entering the reference arm passes through the second fiber collimator 7 After collimation, it enters the third fiber collimator 9 after being reflected by the first plane mirror 5 and the second plane mirror 6 .
上述的射入到参考臂的入射光依次经过第二光纤准直器7、第一平面镜5、第二平面镜6、和第三光纤准直器9实现对入射光方向的改变。The above-mentioned incident light incident on the reference arm passes through the second fiber collimator 7 , the first plane mirror 5 , the second plane mirror 6 , and the third fiber collimator 9 in sequence to change the direction of the incident light.
在一些实施例中,HSI子系统包括白光光源13、前置光学系统15、光谱仪17和CCD相机18;In some embodiments, the HSI subsystem includes a
白光光源13向皮肤区域发射白光信号,前置光学系统15对该白光信号照射皮肤区域所产生的反射光消色差,并通过聚焦处理使反射光能够通过光谱仪17预设的入射狭缝16;The
光谱仪17设置在移动设备上并基于事先预设的步长进行推扫,同时,光谱仪17对通过入射狭缝16的反射光进行分光及汇聚处理以获取皮肤区域所有波长范围内的光谱;The
上述步长等于入射狭缝16的宽度,以使得光谱仪17每一步的推扫都会获得这该皮肤区域在所有波长范围内的光谱图;The above-mentioned step size is equal to the width of the incident slit 16, so that each step of the push-broom of the
CCD探测相机采集得到上述光谱图,并通过后期在计算机上的数据处理,重建校正后得到所有波长处的生物组织图像;The CCD detection camera collects the above-mentioned spectrograms, and through the later data processing on the computer, the biological tissue images at all wavelengths are obtained after reconstruction and correction;
在本实施例中,可采用2盏60W宽光束LED聚光灯作为白光光源13的,CCD探测相机的型号为MANTA G-201-30FPS,Allied Vision。In this embodiment, two 60W wide-beam LED spotlights can be used as the
在一些实施例中,光谱仪17配置有电动平移台,用于驱动光谱仪17运行以完成推扫操作,具体的为将光谱仪17固定在电动平移台上对其进行推扫。In some embodiments, the
在一些实施例中,前置光学系统15包括至少两个同轴线设置的第二消色差透镜14,第二消色差透镜14对白光信号照射皮肤区域所产生的反射光消色差并聚焦处理使反射光能够通过预设的入射狭缝16。In some embodiments, the front
在本实施例中,上述狭缝的宽度为22μm。In this embodiment, the width of the above-mentioned slit is 22 μm.
在一些实施例中,皮肤成像系统还包括二向色镜20,二向色镜20将OCT子系统和HSI子系统发出的光信号聚焦于皮肤区域,同时将皮肤区域反射的光信号分别反射至OCT子系统和HSI子系统;In some embodiments, the skin imaging system further includes a
本系统的成像性能参数如下:OCT系统A-scan速度达到100kHz,成像深度5mm(空气中),轴向和横向分辨率分别为8μm和70.3μm;HSI系统成像光谱范围是465-630nm,光谱分辨率和空间分辨率分别为2.1nm和31.3μm,具体参见图4,高光谱子系统光谱分辨率的实测图。The imaging performance parameters of this system are as follows: the A-scan speed of the OCT system reaches 100 kHz, the imaging depth is 5 mm (in air), and the axial and lateral resolutions are 8 μm and 70.3 μm, respectively; the imaging spectral range of the HSI system is 465-630 nm, and the spectral resolution The rate and spatial resolution are 2.1 nm and 31.3 μm, respectively. For details, see Figure 4, the measured map of the spectral resolution of the hyperspectral subsystem.
图像处理单元19包括计算机等基本信息处理设备;The
本系统中图像处理单元19包括OCT子系统和HSI子系统的时序控制、数据采集、图像重建、图像实时显示和图像预处理等,同时图像处理单元19软件部分基于Labview和Matlab的混合编程实现;In this system, the
在Labview的前面板上设置数据采集时的参数,同时实时显示OCT部分的B-scan图像和原始干涉光谱等以及高光谱部分的光谱图像等,图像预处理主要包括OCT子系统光谱整形、傅里叶变换、固定模式噪声去除等以及高光谱子系统的波长标定。The parameters of data acquisition are set on the front panel of Labview, and the B-scan image and original interference spectrum of the OCT part and the spectral image of the hyperspectral part are displayed in real time at the same time. Image preprocessing mainly includes spectral shaping of the OCT subsystem, Fourier Leaf transformation, fixed pattern noise removal, etc. and wavelength calibration of hyperspectral subsystems.
具体实验及其分析:Specific experiments and their analysis:
该实验为对皮肤色素痣进行检测和研究分析;This experiment is for the detection and research analysis of skin pigmented moles;
实验的样品如图2所示,实验设置高光谱图像大小为240×150像素,光谱维度900维,视场大小为5.28mm×3.3mm;OCT的En-face图像大小为2000×300像素,视场大小为12mm×4mm。The sample of the experiment is shown in Figure 2. The size of the hyperspectral image is 240 × 150 pixels, the spectral dimension is 900 dimensions, and the field of view is 5.28 mm × 3.3 mm. The size of the OCT En-face image is 2000 × 300 pixels. The field size is 12mm x 4mm.
对高光谱数据进行平滑去噪、多元散射校正、降维、聚类处理后分析;Perform smoothing denoising, multivariate scattering correction, dimensionality reduction, and cluster analysis on hyperspectral data;
平滑去噪方法采用高斯加权滤波器,平滑窗口设置为5,结果如图3所示;降维方法为PCA方法,将900维降成100维,降维准确度达到90%(如表1所示);The smoothing denoising method adopts Gaussian weighted filter, the smoothing window is set to 5, and the result is shown in Figure 3; Show);
聚类方法为K-means、GMM和HAC算法,得到的处理结果如图5和表2所示,该系统数据在三种算法下均能得到90%以上的准确率和较高的Dice系数,其中,HAC算法得到的准确率和Dice系数均最高,准确率为92.61%,Dice系数为94.53%。The clustering methods are K-means, GMM and HAC algorithms. The processing results obtained are shown in Figure 5 and Table 2. The system data can obtain more than 90% accuracy and high Dice coefficient under the three algorithms. Among them, the accuracy rate and Dice coefficient obtained by HAC algorithm are the highest, the accuracy rate is 92.61%, and the Dice coefficient is 94.53%.
图5中:In Figure 5:
其中,(a)金标准;(b)结果;(c)对比;Among them, (a) gold standard; (b) result; (c) comparison;
其中,1代表K-means算法;2代表GMM算法;3代表HAC算法。Among them, 1 represents the K-means algorithm; 2 represents the GMM algorithm; 3 represents the HAC algorithm.
表1Table 1
表2Table 2
另一方面,利用OCT数据重建检测区域的三维图像(图6)并且通过衰减系数和分形维数定量分析色素痣区域和正常皮肤区域的差异。On the other hand, a three-dimensional image of the detection area was reconstructed using OCT data (Fig. 6) and the difference between the pigmented nevus area and the normal skin area was quantitatively analyzed by attenuation coefficient and fractal dimension.
图6中:(a)皮肤表面图;(b)色素痣剖面图。In Fig. 6: (a) skin surface view; (b) sectional view of pigmented nevus.
衰减系数的测量中,本研究从皮肤表面往下分三层拟合,第一层为1-50pixel,第二层为51-150pixel,第三层为151-250pixel,拟合结果参见图9;为了使得拟合误差更小,两条曲线均由感兴趣区域内相邻的300个A-scan(轴向扫描)平均而成;从图8中可以看出,由于正常皮肤和色素痣的散射特性不同,在前150个pixel中正常皮肤组织与病变组织相比具有更高的A-scan灰度值,正常组织的A-scan第一个反射峰值较病变组织的A-scan更晚出现,落后约25pixel,在第一层与第二层中色素痣的衰减系数均高于正常皮肤,在第三层中,两者的A-scan曲线几乎重合,具体实验结果参见表3;In the measurement of the attenuation coefficient, this study is divided into three layers from the skin surface downward, the first layer is 1-50 pixels, the second layer is 51-150 pixels, and the third layer is 151-250 pixels, and the fitting results are shown in Figure 9; In order to make the fitting error smaller, both curves are averaged from 300 adjacent A-scans (axial scans) in the region of interest; it can be seen from Figure 8 that due to the scattering of normal skin and pigmented nevus The characteristics are different. In the first 150 pixels, the normal skin tissue has a higher A-scan gray value than the diseased tissue. The first reflection peak of the A-scan of the normal tissue appears later than the A-scan of the diseased tissue. About 25 pixels behind, the attenuation coefficient of pigmented moles in the first layer and the second layer is higher than that of normal skin. In the third layer, the A-scan curves of the two almost overlap. The specific experimental results are shown in Table 3;
分形维数的测量中,选取每相隔5张的一共20张B-scan进行分析,区域大小为64×64pixel,结果如图10和表4所示,由表4可见,色素痣区域的分形维数与正常皮肤组织差异明显(P<0.05),分形维数值提高了3.56%,这表明在色素痣区域内细胞更加紊乱、不规则,内部组成更加复杂。In the measurement of fractal dimension, a total of 20 B-scans separated by 5 are selected for analysis, and the area size is 64×64 pixels. The results are shown in Figure 10 and Table 4. It can be seen from Table 4 that the fractal dimension of the pigmented mole area The difference between the number and normal skin tissue was obvious (P<0.05), and the fractal dimension value increased by 3.56%, which indicated that the cells in the pigmented nevus area were more disordered and irregular, and the internal composition was more complex.
图7皮肤的一个B-scan图以及拉平后的B-scan图;Figure 7 A B-scan of the skin and the B-scan after flattening;
图7中:(a)皮肤B-scan采集图,隆起处为色素痣区域在此B-scan上的显示;(b)基于皮肤表面拉平后的B-scan图,左边虚线框部分为正常皮肤的A-scan感兴趣区域,右边虚线框内为色素痣的A-scan感兴趣区域。In Figure 7: (a) B-scan acquisition image of the skin, the raised area is the display of the pigmented nevus area on this B-scan; (b) The B-scan image based on the flattened skin surface, the dashed frame on the left is normal skin The A-scan region of interest of the nevus is shown in the dashed box on the right.
图10中:上面虚线框内为正常皮肤组织感兴趣区域,下面虚线框内为色素痣。In Figure 10: the area of interest in normal skin tissue is in the upper dashed box, and the pigmented mole is in the lower dashed box.
表3table 3
表4Table 4
综上,通过本实验得到的实验结果证明能利用本双模态系统获得色素痣的更多信息并对色素痣病变组织进行识别,取得较好的效果。To sum up, the experimental results obtained in this experiment prove that the dual-modal system can be used to obtain more information about pigmented nevus and identify the lesions of pigmented nevus, and achieve better results.
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. Those skilled in the art should understand that the present invention is not limited by the above-mentioned embodiments, and the descriptions in the above-mentioned embodiments and the description are only to illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will have Various changes and modifications fall within the scope of the claimed invention. The claimed scope of the present invention is defined by the appended claims and their equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010828577.7A CN112022093B (en) | 2020-08-17 | 2020-08-17 | Skin imaging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010828577.7A CN112022093B (en) | 2020-08-17 | 2020-08-17 | Skin imaging system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112022093A true CN112022093A (en) | 2020-12-04 |
CN112022093B CN112022093B (en) | 2023-11-07 |
Family
ID=73577496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010828577.7A Active CN112022093B (en) | 2020-08-17 | 2020-08-17 | Skin imaging system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112022093B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112773335A (en) * | 2021-02-07 | 2021-05-11 | 苏州大学 | Sensor, imaging system and imaging method applied to optical coherent elastography |
CN113237891A (en) * | 2021-03-10 | 2021-08-10 | 深圳市华讯方舟光电技术有限公司 | Detection system |
CN113812928A (en) * | 2021-11-22 | 2021-12-21 | 北京航空航天大学 | Multimodal imaging device based on Raman spectroscopy and optical coherence tomography |
CN114569065A (en) * | 2021-12-31 | 2022-06-03 | 复旦大学 | Skin state detection system and method based on optical coherence tomography |
CN115024696A (en) * | 2022-08-12 | 2022-09-09 | 北京心联光电科技有限公司 | OCT imaging method, system and equipment |
CN115715668A (en) * | 2022-11-15 | 2023-02-28 | 浙江大学 | Method and device for detecting lipid plaque by combining OCT imaging and absorption spectrum |
CN116019425A (en) * | 2023-03-27 | 2023-04-28 | 皑高森德医疗器械(北京)有限责任公司 | Digital skin model based on hyperspectral image and application thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110109903A1 (en) * | 2009-11-09 | 2011-05-12 | National Tsing Hua University | Imaging Spectrometer |
US20120188538A1 (en) * | 2011-01-24 | 2012-07-26 | Vanderbilt University | Common detector for combined raman spectroscopy-optical coherence tomography |
US20140085622A1 (en) * | 2012-09-27 | 2014-03-27 | Northrop Grumman Systems Corporation | Three-dimensional hyperspectral imaging systems and methods using a light detection and ranging (lidar) focal plane array |
US20140240514A1 (en) * | 2011-09-30 | 2014-08-28 | Los Alamos National Laboratory | Full-frame, programmable hyperspectral imager |
CN108732133A (en) * | 2018-04-12 | 2018-11-02 | 杭州电子科技大学 | It is a kind of based on the plant disease of optical image technology in body nondestructive detection system |
US20190117078A1 (en) * | 2017-09-12 | 2019-04-25 | Sonendo, Inc. | Optical systems and methods for examining a tooth |
US20190137254A1 (en) * | 2017-06-12 | 2019-05-09 | Sightline Innovation Inc. | Multimodal image data acquisition system and method |
WO2019183838A1 (en) * | 2018-03-28 | 2019-10-03 | 深圳市太赫兹科技创新研究院 | Optical coherence tomography system |
US20200066405A1 (en) * | 2010-10-13 | 2020-02-27 | Gholam A. Peyman | Telemedicine System With Dynamic Imaging |
-
2020
- 2020-08-17 CN CN202010828577.7A patent/CN112022093B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110109903A1 (en) * | 2009-11-09 | 2011-05-12 | National Tsing Hua University | Imaging Spectrometer |
US20200066405A1 (en) * | 2010-10-13 | 2020-02-27 | Gholam A. Peyman | Telemedicine System With Dynamic Imaging |
US20120188538A1 (en) * | 2011-01-24 | 2012-07-26 | Vanderbilt University | Common detector for combined raman spectroscopy-optical coherence tomography |
US20140240514A1 (en) * | 2011-09-30 | 2014-08-28 | Los Alamos National Laboratory | Full-frame, programmable hyperspectral imager |
US20140085622A1 (en) * | 2012-09-27 | 2014-03-27 | Northrop Grumman Systems Corporation | Three-dimensional hyperspectral imaging systems and methods using a light detection and ranging (lidar) focal plane array |
US20190137254A1 (en) * | 2017-06-12 | 2019-05-09 | Sightline Innovation Inc. | Multimodal image data acquisition system and method |
US20190117078A1 (en) * | 2017-09-12 | 2019-04-25 | Sonendo, Inc. | Optical systems and methods for examining a tooth |
WO2019183838A1 (en) * | 2018-03-28 | 2019-10-03 | 深圳市太赫兹科技创新研究院 | Optical coherence tomography system |
CN108732133A (en) * | 2018-04-12 | 2018-11-02 | 杭州电子科技大学 | It is a kind of based on the plant disease of optical image technology in body nondestructive detection system |
Non-Patent Citations (2)
Title |
---|
MELISSA C. SKALA: "Combined Hyperspectral and Spectral Domain Optical Coherence Tomography Microscope for Non-invasive Hemodynamic Imaging", 《OPT LETT.》 * |
ROBIN GUAY-LORD: "Combined optical coherence tomography and hyperspectral imaging using a double-clad fiber coupler", 《JOURNAL OF BIOMEDICAL OPTICS》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112773335A (en) * | 2021-02-07 | 2021-05-11 | 苏州大学 | Sensor, imaging system and imaging method applied to optical coherent elastography |
CN112773335B (en) * | 2021-02-07 | 2021-12-28 | 苏州大学 | Sensor, imaging system and imaging method applied to optical coherence elastography |
WO2022165902A1 (en) * | 2021-02-07 | 2022-08-11 | 苏州大学 | Sensor applied to optical coherence elastography, imaging system, and imaging method |
CN113237891A (en) * | 2021-03-10 | 2021-08-10 | 深圳市华讯方舟光电技术有限公司 | Detection system |
CN113812928A (en) * | 2021-11-22 | 2021-12-21 | 北京航空航天大学 | Multimodal imaging device based on Raman spectroscopy and optical coherence tomography |
CN113812928B (en) * | 2021-11-22 | 2022-04-08 | 北京航空航天大学 | Multimodal imaging device based on Raman spectroscopy and optical coherence tomography |
CN114569065A (en) * | 2021-12-31 | 2022-06-03 | 复旦大学 | Skin state detection system and method based on optical coherence tomography |
CN115024696A (en) * | 2022-08-12 | 2022-09-09 | 北京心联光电科技有限公司 | OCT imaging method, system and equipment |
CN115715668A (en) * | 2022-11-15 | 2023-02-28 | 浙江大学 | Method and device for detecting lipid plaque by combining OCT imaging and absorption spectrum |
CN116019425A (en) * | 2023-03-27 | 2023-04-28 | 皑高森德医疗器械(北京)有限责任公司 | Digital skin model based on hyperspectral image and application thereof |
CN116019425B (en) * | 2023-03-27 | 2023-05-23 | 皑高森德医疗器械(北京)有限责任公司 | Digital skin model based on hyperspectral image and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN112022093B (en) | 2023-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112022093B (en) | Skin imaging system | |
US11510574B2 (en) | Three-dimensional (3D) optical coherence tomography angiography (OCTA) method and system based on feature space | |
US11419499B2 (en) | Optical coherence tomography for cancer screening and triage | |
CN105559756B (en) | Microangiography method and system based on full spatial modulation spectrum segmentation and angle compounding | |
CN109115804B (en) | A device and method for quantitatively detecting glass subsurface defects | |
Drexler et al. | State-of-the-art retinal optical coherence tomography | |
US10045692B2 (en) | Self-referenced optical coherence tomography | |
US9823127B2 (en) | Systems and methods for deep spectroscopic imaging of biological samples with use of an interferometer and spectrometer | |
CN107595250B (en) | Blood flow imaging method and system based on motion and graph mixed contrast | |
US10354385B2 (en) | Optical coherence tomography (OCT) data processing method, storage medium storing program for executing the OCT data processing method, and processing device | |
US20140288419A1 (en) | Method and apparatus for quantitative imaging of blood perfusion in living tissue | |
CN112136182B (en) | System and method for blood flow imaging based on Gabor optical coherence tomography | |
CN112168144B (en) | Optical coherence tomography system for burned skin | |
CN108670239B (en) | A three-dimensional blood flow imaging method and system based on feature space | |
CN105996999B (en) | Method and system for measuring sample depth resolution attenuation coefficient based on OCT | |
JP2016209182A (en) | Imaging device, method for operating imaging device, information processor, and method for operating information processor | |
CN108245130B (en) | Optical coherence tomography angiography device and method | |
CN111354055B (en) | Optical coherence tomography depth reconstruction method based on depth learning | |
CN106137134A (en) | The compound blood flow imaging method and system of multi-angle | |
CN113331809A (en) | Method and device for imaging three-dimensional blood flow in cavity based on MEMS micro galvanometer | |
CN110383019A (en) | Image-based handheld imager system and method of use | |
CN106491078A (en) | Remove the method and device of ordered dither noise in blood-stream image | |
CN104545872B (en) | Method and device for reconstructing three-dimensional micro blood flow distribution on basis of linearly dependent coefficients | |
Blatter et al. | High-speed functional OCT with self-reconstructive bessel illumination at 1300nm | |
US20200359887A1 (en) | Oct radiomic features for differentiation of early malignant melanoma from benign nevus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |