CN112019193B - 用于实现量子门的控制脉冲的生成方法、装置 - Google Patents

用于实现量子门的控制脉冲的生成方法、装置 Download PDF

Info

Publication number
CN112019193B
CN112019193B CN202010906244.1A CN202010906244A CN112019193B CN 112019193 B CN112019193 B CN 112019193B CN 202010906244 A CN202010906244 A CN 202010906244A CN 112019193 B CN112019193 B CN 112019193B
Authority
CN
China
Prior art keywords
quantum gate
gate information
optimized
determining
quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010906244.1A
Other languages
English (en)
Other versions
CN112019193A (zh
Inventor
晋力京
王鑫
孟则霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Baidu Netcom Science and Technology Co Ltd
Original Assignee
Beijing Baidu Netcom Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Baidu Netcom Science and Technology Co Ltd filed Critical Beijing Baidu Netcom Science and Technology Co Ltd
Priority to CN202010906244.1A priority Critical patent/CN112019193B/zh
Publication of CN112019193A publication Critical patent/CN112019193A/zh
Application granted granted Critical
Publication of CN112019193B publication Critical patent/CN112019193B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本申请公开了用于实现量子门的控制脉冲的生成方法、装置、电子设备及计算机可读存储介质,涉及量子科学技术领域、量子计算技术领域、脉冲控制技术领域。具体实现方案为:首先获取期望量子门信息和目标量子系统的系统哈密顿量,之后根据该系统哈密顿量确定初始脉冲参数,根据该初始脉冲参数确定对应的真实量子门信息,之后基于获取到的期望量子门信息和该真实量子门信息对该初始脉冲参数进行优化,得到用于生成控制脉冲的优化脉冲参数,再根据优化脉冲参数来确定对应的控制脉冲实现量子门,以提高实现量子门的效率和质量,并节省运算资源。

Description

用于实现量子门的控制脉冲的生成方法、装置
技术领域
本申请涉及量子科学技术领域,尤其涉及量子计算技术领域、脉冲控制技术领域。
背景技术
量子控制领域中,将软件层面的量子逻辑门编译为物理脉冲信号的过程中,会受到非理想因素(如高能级泄露、串扰等)的干扰,因此需生成合理的脉冲来抑制、消除它们的影响,以提高量子门的保真度。例如通过建立模型进行仿真和优化,计算出一组脉冲参数,然后在真实的量子硬件系统根据该参数生成脉冲,消除非理想因素的影响。
因不同的量子系统之间具有不同的参数信息,并且整体流程的可用时间受到量子比特的相干时间的限制,因此量子控制系统对于脉冲参数有着较高的要求。
发明内容
本申请提供了一种用于实现量子门的控制脉冲的生成方法、装置、电子设备以及存储介质。
第一方面,本申请的实施例提供了一种用于实现量子门的控制脉冲的生成方法,包括:获取期望量子门信息和目标量子系统的系统哈密顿量;根据该系统哈密顿量确定初始脉冲参数;基于该系统哈密顿量,确定该初始脉冲参数对应的真实量子门信息;基于该期望量子门信息和该真实量子门信息对该初始脉冲参数进行优化,得到优化脉冲参数;根据该优化脉冲参数生成对应的控制脉冲。
第二方面,本申请的实施例提供了一种用于实现量子门的控制脉冲的装置,包括:系统哈密顿量获取单元,被配置成获取目标量子系统的系统哈密顿量;期望量子门获取单元,被配置成获取期望量子门信息;初始脉冲参数确定单元,被配置成根据该系统哈密顿量确定初始脉冲参数;真实量子门确定单元,被配置成基于该系统哈密顿量确定该初始脉冲参数对应的真实量子门信息;优化脉冲参数生成单元,被配置成基于该期望量子门信息和该真实量子门信息对该初始脉冲参数进行优化,得到优化脉冲参数;控制脉冲生成单元,被配置成根据该优化脉冲参数生成对应的控制脉冲。
第三方面,本申请的实施例提供了一种电子设备,包括:至少一个处理器;以及与上述至少一个处理器通信连接的存储器;其中,该存储器存储有可被上述至少一个处理器执行的指令,该指令被上述至少一个处理器执行,以使上述至少一个处理器能够执行如第一方面中任一实现方式描述的用于实现量子门的控制脉冲的生成方法。
第四方面,本申请的实施例提供了一种存储有计算机指令的非瞬时计算机可读存储介质,包括:该计算机指令用于使该计算机执行如第一方面中任一实现方式描述的用于实现量子门的控制脉冲的生成方法。
第五方面,本申请实施例提供了一种包括计算机程序的计算机程序产品,该计算机程序在被处理器执行时能够实现如第一方面中任一实现方式描述的用于实现量子门的控制脉冲的生成方法。
本申请实施例中的用于实现量子门的控制脉冲的生成方法,首先获取期望量子门信息和目标量子系统的系统哈密顿量,之后根据该系统哈密顿量确定初始脉冲参数,并根据该初始脉冲参数确定对应的真实量子门信息,之后基于获取到的期望量子门信息和该真实量子门信息对该初始脉冲参数进行优化,得到用于生成控制脉冲的优化脉冲参数,再根据优化脉冲参数来确定对应的控制脉冲实现量子门,以提高实现量子门的效率和质量,并节省运算资源。
应当理解,本部分所描述的内容并非旨在标识本申请的实施例的关键或重要特征,也不用于限制本申请的范围。本申请的其它特征将通过以下的说明书而变得容易理解。
附图说明
附图用于更好地理解本方案,不构成对本申请的限定。其中:
图1是本申请的实施例可以应用于其中的示例性系统架构图;
图2是根据本申请的用于实现量子门的控制脉冲的生成方法的一个实施例的流程图;
图3是根据本申请的用于实现量子门的控制脉冲的生成方法的另一个实施例的流程图;
图4是根据本申请的用于实现量子门的控制脉冲的生成方法的另一个实施例的流程图;
图5是根据本申请的用于实现量子门的控制脉冲的生成方法的实施例中,得到优化脉冲参数的一个流程图;
图6是根据本申请的用于实现量子门的控制脉冲的生成方法的实施例中,得到优化脉冲参数的另一个流程图;
图7是根据本申请的用于实现量子门的控制脉冲的生成装置的一个实施例的结构示意图;
图8是适于用来实现本申请实施例的用于实现量子门的控制脉冲的生成方法的电子设备的框图。
具体实施方式
以下结合附图对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
图1示出了可以应用本申请的用于实现量子门的控制脉冲的生成方法、装置、电子设备及计算机可读存储介质的实施例的示例性系统架构100。
如图1所示,系统架构100可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。
用户可以使用终端设备101、102、103通过网络104与服务器105交互,以发送目标量子系统的系统哈密顿量或接收生成的控制脉冲等。终端设备101、102、103上可以安装有量子技术相关的应用,例如使用量子密钥的应用、使用量子通信的应用和量子计时类应用等。
终端设备101、102、103可以是硬件,也可以是软件。当终端设备101、102、103为硬件时,可以是具有显示屏的各种电子设备,包括但不限于智能手机、平板电脑、膝上型便携计算机和台式计算机等等。当终端设备101、102、103为软件时,可以安装在上述所列举的电子设备中。其可以实现成多个软件或软件模块(例如用来实现用于实现量子门的控制脉冲的业务),也可以实现成单个软件或软件模块。在此不做具体限定。
需要说明的是,本申请后续各实施例所提供的用于实现量子门的控制脉冲的生成方法一般由服务器105执行,相应地,用于实现量子门的控制脉冲的装置一般设置于服务器105中。
需要指出的是,系统的哈密顿量可以存储在服务器105的本地,也可以根据实际应用场景下所有可能存储的特殊需求,将这些数据分散存储在终端设备101、102、103中,存储终端设备101、102、103的可以为原件,也可以为备份,此处不做具体限定。当终端设备101、102、103为运行在服务器105上的虚拟机时,示例性系统架构100也可以不包括终端设备101、102、103和网络104。
需要说明的是,服务器105可以是硬件,也可以是软件。当服务器105为硬件时,可以实现成多个服务器组成的分布式服务器集群,也可以实现成单个服务器。当服务器为软件时,可以实现成多个软件或软件模块(例如用来提供推送信息服务),也可以实现成单个软件或软件模块。在此不做具体限定。
应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。
继续参考图2,其示出了根据本申请的用于实现量子门的控制脉冲的生成方法的一个实施例流程200。该用于实现量子门的控制脉冲的生成方法,包括以下步骤:
步骤201,获取期望量子门信息和目标量子系统的系统哈密顿量。
在本实施例中,用于实现量子门的控制脉冲的生成方法的执行主体(例如图1所示的服务器105或者终端设备101、102、103)可以从本地或非本地的人机交互设备(例如图1所示的终端设备101、102、103)获取目标量子系统的系统哈密顿量。
具体的,哈密顿量通常表示为系统的动能项和势能项的总和,为此需要获取目标量子系统的结构和参数,确定该量子系统的动能项和势能项,以得到量子系统的系统哈密顿量。
期望量子门信息,是指用户所期望获得的量子门信息,可以由用户根据需求预先设置或在需要时实时设置,也可以在服务器、终端设备或其他存储设备中预先存储,上述执行主体可以根据具体的需要从本地或非本地的人机交互设备、存储设备中获取期望量子门信息。
期望量子门可以根据用户所期望实现的功能进行自主设置,也可以直接将期望量子门信息设置为常见泡利-X门(Pauli-X gate,以下简称X门),泡利-Y门(Pauli-Y gate,以下简称Y门),泡利-Z门(Pauli-Z gate,以下简称Z门)等量子门。
步骤202,根据该系统哈密顿量确定初始脉冲参数。
在本实施例中,根据上述步骤201中确定的系统哈密顿量,确定用于生成初始脉冲的初始脉冲参数。以高斯波形的脉冲为例,初始脉冲参数包括:初始脉冲的量子门的执行时间、脉冲振幅、脉冲宽度以及脉冲中心位置。
初始脉冲的量子门,通常可以根据该量子系统的时间演化算符所满足的动力学方程求得。为了描述时间演化算符,可以参考以下线性薛定谔方程:
Figure GDA0002906508010000051
其中,H(t)为量子系统的哈密顿量,U(t)为时间演化算符,i为虚数单位,
Figure GDA0002906508010000052
为普朗克常数。具体地,可以使用例如分离变量法、椭形函数展开法、试探函数法或三角函数假设法等微分方程展开方法求解该薛定谔方程,通过求解该线性薛定谔方程,可以确定初始脉冲对应的的量子门。
在本实施例的一些可选实现方式中,采用马格努斯展开算法根据该系统哈密顿量确定初始脉冲参数。
具体的,采用马格努斯展开算法,对上述微分方程进行展开,可以得到展开后的使用指数表示的解:
Figure GDA0002906508010000061
其中,
Figure GDA0002906508010000062
表示以自然常数e为底的矩阵指数函数,下标od表示马格努斯展开的阶数。
在本实现方式中,使用马格努斯算法对上述函数进行一阶展开,得到指数中的项为:
Figure GDA0002906508010000063
其中,tg为量子门的执行时间,根据该展开方式确定初始脉冲参数中的量子门。通过马格努斯展开方式,可以使用较快的时间获取量子门的矩阵形式。
应当理解的是,可以根据该系统哈密顿量和期望量子门来确定初始脉冲参数中的量子门的脉冲振幅、脉冲宽度以及脉冲中心位置。
以一个三能级超导量子比特为例,可以通过向XY通道施加脉冲来实现单比特量子门。在相互作用表象下,系统的哈密顿量H(t)可表述为:
Figure GDA0002906508010000064
其中,αq表示超导量子比特的失谐性强度;
Figure GDA0002906508010000065
Figure GDA0002906508010000066
分别为产生算符和湮灭算符。
此外,|0>=[1,0,0]T,|1>=1[0,1,0]T,|2>=[0,0,1]T,|0>与<0|共轭、|1>与<1|共轭、|2>与<2|共轭,p为脉冲数量,k表示脉冲序号,
Figure GDA0002906508010000067
对应x(y)通道脉冲的高斯包络函数,具体表述为:
Figure GDA0002906508010000068
Figure GDA0002906508010000069
度设置为:
Figure GDA00029065080100000610
可以确定脉冲中心位置为:
Figure GDA00029065080100000611
Figure GDA00029065080100000612
步骤203,基于系统哈密顿量,确定初始脉冲参数对应的真实量子门信息。
具体的,系统本身的哈密顿量由H(t)表示,其中,最原始的系统本身的哈密顿量可以由H0表示,由控制脉冲产生的哈密顿量由u(t)H1表示,其中u(t)表示含时脉冲的幅度。系统的演化结果与H0+u(t)H1的有关。根据上述步骤202中得到的初始脉冲参数,即量子门的执行时间、脉冲振幅、脉冲宽度以及脉冲中心位置,可以确定根据初始脉冲参数对应生成的脉冲的驱动下,对应的真实量子门信息。
步骤204,基于期望量子门信息和真实量子门信息对该初始脉冲参数进行优化,得到优化脉冲参数。
在本实施例中,在获取到期望量子门信息后,可以采用例如梯度下降法,牛顿法,共轭梯度法,启发式算法等方法,对步骤202中确定的初始脉冲参数进行优化,以调整步骤203中得到的真实量子门信息,减少该真实量子门信息与期望量子门信息之间差异,使得真实量子门信息接近于期望量子门信息。
其中,因量子门信息通常以矩阵形式进行表示,可以通过构建目标函数或者比较矩阵相似性的方式,来确定当前脉冲参数对应的真实量子门信息与该期望量子门信息的差异程度,在该差异程度满足预先确定的阈值条件时,将该当前脉冲参数确定为优化脉冲参数。其中,当前脉冲参数为采用上述的优化方法对初始脉冲参数进行优化得到。
在本实施例的一些可选实现方式中,采用下山单纯形法基于期望量子门信息和该真实量子门信息对该初始脉冲参数进行优化。
具体的,在获取到期望量子门信息后,可以根据该期望量子门信息和该真实量子门信息之间的差异程度,判断真实量子门的保真度、该脉冲生成参数的优劣,即对初始脉冲参数的优化效果进行衡量。
为比较期望量子门信息和该真实量子门信息之间的差异程度,通常会根据期望量子门信息和真实量子门信息的表达形式确定对应的函数、算法对两者进行比较。
示例性的,在期望量子门信息和真实量子门信息是以矩阵形式进行表示时,可以基于该期望量子门信息和真实量子门信息来构建相似函数,该函数通常的形式为
Figure GDA0002906508010000071
其中
Figure GDA0002906508010000072
为期望量子门信息,Ureal为真实量子门信息,Tr则是代表矩阵的迹,即矩阵对角元的和,在F等于1的时候可以认为该期望量子门信息和真实量子门信息相同。
例如相似函数的一个具体形式可以为:
Figure GDA0002906508010000081
其中,
Figure GDA0002906508010000082
为待优化参数向量,而Ureal则是使用
Figure GDA0002906508010000083
计算得到的真实量子门矩阵,Tr则是代表矩阵的迹,即矩阵对角元的和。
可以根据该相似函数的值来判断该真实量子门信息和该期望量子门信息的差异,在该相似函数中可以看出,随着真实量子门信息与期望量子门信息之间的差异减小,
Figure GDA0002906508010000084
的值会逐渐增大,即
Figure GDA0002906508010000085
的值越小则说明该真实量子门信息和该期望量子门信息的相似度越高。
下山单纯形法,即Nelder-Mead法,用于多维空间寻找目标函数的最大值最小值问题。它是基于比较的直接搜索方法,通常应用于导数不可知的非线性优化问题。可以用来求解最小化问题,(若需要求解f(x)最大化问题时,可将问题视为最小化-f(x)),该方法的基本思路中,可以将n维目标函数的n+1个测试点组成一个单纯形,然后计算的每个点的目标函数值,以找到一个新的测试点替代旧的测试点,进行迭代。例如,用质心(前n个点的均值)的反射点替换最差的点、如果反射点比当前点更好,可以继续在反射点的方向上延伸寻找;如果不如当前点,那就将所有点往一个更好的方向收缩。
在此基础上,基于下山单纯形法不需要判断该相似函数是否可导,便可较快的求得函数收敛到局部最小值的特点,从而在采用下山单纯形法求得
Figure GDA0002906508010000086
的最小值时,可以提升整体方案的运算效率,避免因计算时间过长对量子系统产生较大的影响。
步骤205,根据该优化脉冲参数生成对应的控制脉冲。
具体的,获取到最终确定的优化脉冲参数后,基于该优化脉冲参数来确定控制脉冲的生成,便可以得到生成的与优化脉冲参数对应的控制脉冲。
本申请实施例提供的用于实现量子门的控制脉冲的生成方法,首先获取期望量子门信息和目标量子系统的系统哈密顿量,之后根据该系统哈密顿量确定初始脉冲参数,根据该初始脉冲参数确定对应的真实量子门信息,之后基于获取到的期望量子门信息和该真实量子门信息对该初始脉冲参数进行优化,得到用于生成控制脉冲的优化脉冲参数,再根据优化脉冲参数来确定对应的控制脉冲实现量子门,以提高实现量子门的效率和质量,并节省运算资源。
在本实施例的一些可选的实现方式中,在基于期望量子门信息和真实量子门信息对初始脉冲参数进行优化,得到优化脉冲参数之后,在根据优化脉冲参数生成对应的控制脉冲之前,还包括:判断基于该期望量子门信息和该真实量子门信息构造的目标函数是否收敛;若该目标函数发散,则根据该优化参数重新确定系统哈密顿量,并跳转至执行根据该系统哈密顿量确定初始脉冲参数;若该目标函数收敛,则跳转至执行该根据该优化脉冲参数生成对应的控制脉冲。
具体的,在期望量子门信息和真实量子门信息的是以矩阵形式进行表示或者如线性方程、向量等其他支持利用函数关系判断两者差异性的表示形式时,可以基于该期望量子门信息和真实量子门信息来构建目标函数,例如上述示例中的相似函数
Figure GDA0002906508010000091
便于使用该目标函数来比较期望量子门信息和真实量子门信息之间的差异。
应当理解的是,在期望量子门信息和真实量子门信息接近时,构造的相似函数的值越接近1或者特定值,因此,通常使用收敛的目标函数实现期望量子门信息和真实量子门信息的相似度比较。
为方便理解该过程,继续参考图3,其示出了根据本申请的用于实现量子门的控制脉冲的生成方法的一个实施例的流程300。该用于实现量子门的控制脉冲的生成方法,包括以下步骤:
步骤301,获取期望量子门信息和目标量子系统的系统哈密顿量。
步骤302,根据该系统哈密顿量确定初始脉冲参数。
步骤303,基于该系统哈密顿量,确定该初始脉冲参数对应的真实量子门信息。
步骤304,基于期望量子门信息和该真实量子门信息对该初始脉冲参数进行优化,得到优化脉冲参数。
步骤305,判断基于该期望量子门信息和真实量子门信息构造的目标函数是否收敛。
具体的,在期望量子门信息和真实量子门信息的表达形式支持构造函数的情况下,基于期望量子门信息和真实量子门信息构造目标函数,并判断该目标函数是否收敛。
步骤306,该目标函数发散,则根据该优化参数重新确定系统哈密顿量,并跳转至执行该根据系统哈密顿量确定初始脉冲参数。
具体的,在确定该目标函数发散时,虽然无法使用该目标函数来判断期望量子门信息和真实量子门信息的相似程度,但该步得到的真实量子门信息已经是得到经过优化后的脉冲参数生成的,在此基础上使用该优化后脉冲参数重新确定系统哈密顿量,以实现二次优化,以迭代的方式逐渐对脉冲的生成参数进行优化。
步骤307,该目标函数收敛,则根据该优化脉冲参数生成对应的控制脉冲。
具体的,该步骤与图2所示的实施例中步骤205内容相似,不再赘述。
在本实施例中,步骤301-304与上述图2所示实施例中的步骤201-204相同,对此不再赘述。本实现方式中可以根据该优化参数重新确定系统哈密顿量,重新确定真实量子门信息,进而以迭代的方式对优化脉冲参数进行更新,从而确保得到的优化脉冲参数对应的真实量子门信息与该期望量子门信息之间的差异满足要求。
在本实施例的一些可选的实现方式中,根据该优化脉冲参数生成对应的控制脉冲,包括:判断该优化脉冲参数对应的真实量子门信息是否满足预先确定的阈值要求;响应于确定该优化脉冲参数对应的真实量子门信息满足预先确定的阈值要求,根据该优化脉冲参数生成对应的控制脉冲。
具体的,判断得到优化脉冲参数对应的真实量子门信息是否满足预先确定的阈值要求,如果满足的话说明该优化脉冲参数满足需求,可以使用该优化脉冲参数生成对应的控制脉冲。采用此方式对优化脉冲参数进行二次筛选,可以提升得到的优化脉冲参数的质量。
在本实施例的一些可选的实现方式中,还包括:响应于确定该优化脉冲参数对应的真实量子门信息不满足预先确定的阈值要求,基于该优化参数重新确定该系统哈密顿量;以及基于系统哈密顿量,确定该初始脉冲参数,包括:采用龙格-库塔法算法基于重新确定的系统哈密顿量重新确定所述初始脉冲参数。
具体的,在确定得到优化脉冲参数对应的真实量子门信息不满足预先确定的阈值要求时,基于该优化脉冲参数重新确定系统哈密顿量,使用龙格-库塔法算法基于该重新确定的系统哈密顿量重新确定初始脉冲参数。通过龙格-库塔法算法,可以在其他方式确定的优化脉冲参数无法满足需求时,提供一种较为稳定的确定优化脉冲参数,提高了用于实现量子门的控制脉冲的生成方法对于不同量子系统的适应性。
本申请还通过图4、图5和图6给出了用于实现量子门的控制脉冲的生成方法的另一个实施例,目的在于说明联合使用马格努斯展开算法以及龙格-库塔法算法确定系统哈密顿量,以及使用下山单纯形法作为参数优化方法的实现形式,整体流程如图4所示,使用马格努斯展开算法和使用下山单纯形法作为优化方法的流程如图5所示,使用龙格-库塔法算法和使用下山单纯形法作为优化方法的流程如图6所示。包括如下步骤:
步骤401,获取目标量子系统的系统哈密顿量。
步骤402,基于该系统哈密顿量,采用马格努斯展开算法和下山单纯形法确定优化脉冲参数。
具体的,如图5所示,该流程包括:
步骤501,采用马格努斯展开算法根据该系统哈密顿量确定矩阵形式的真实量子门信息。
步骤502,基于该期望量子门信息和该真实量子门信息构建目标函数,采用下山单纯形法基于该目标函数对该初始脉冲参数进行优化。
具体的,根据期望量子门信息和真实量子门信息构建目标函数,使用下山单纯形法确定该目标函数值最小时对应的当前脉冲参数,确定当前脉冲参数。
步骤503,判断该目标函数是否收敛,若不收敛则执行步骤504,若收敛则执行步骤505,将该当前脉冲参数作为优化脉冲参数。
步骤504,根据该当前脉冲参数重新确定系统哈密顿量,并跳转至执行步骤501。
步骤403,判断该优化脉冲参数对应的真实量子门信息是否满足预先确定的阈值要求,若满足则执行步骤406,不满足则执行步骤404。
步骤404,使用该优化脉冲参数重新确定系统哈密顿量。
步骤405,基于该重新确定的系统哈密顿量,采用龙格-库塔法算法和下山单纯形法确定优化脉冲参数。
具体的,如图6所示,该流程包括:
步骤601,采用龙格-库塔法算法根据该系统哈密顿量确定矩阵形式的真实量子门信息。
步骤602,采用下山单纯形法基于该期望量子门信息和该真实量子门信息对该初始脉冲参数进行优化。
具体的,根据期望量子门信息和真实量子门信息构建目标函数,使用下山单纯形法确定该目标函数值最小时对应的当前脉冲参数,确定当前脉冲参数。
步骤603,判断该目标函数是否收敛,若不收敛则执行步骤504,若收敛则执行步骤605,将该当前脉冲参数作为优化脉冲参数。
步骤604,则根据该优化脉冲参数重新确定系统哈密顿量,并跳转至执行步骤601。
步骤406,输出优化脉冲参数,并根据该脉冲参数生成对应的控制脉冲。
本实施例提供的用于实现量子门的控制脉冲的生成方法中,在图2所示的实施的基础上,结合使用了马格努斯展开算法和龙格-库塔法两种算法,不仅针对不同量子系统都可以稳定、高速的生成满足要求的控制脉冲参数,提高了用于实现量子门的控制脉冲的生成方法对于不同量子系统的适应性。
进一步为加深理解,本申请还结合一个具体应用场景,给以验证本申请技术方案的有效性和优势。具体的,超导电路的参数取为tg=30ns,αq=-200MHz;希望优化脉冲对应的量子门趋近于常用的X门,即,期望量子门信息
Figure GDA0002906508010000121
目标函数ggoal=0.005。
将采用本申请的技术方案所得结果与传统的技术方案进行了对比,具体结果如表一所示:
Figure GDA0002906508010000122
Figure GDA0002906508010000131
表一
通过上面的对比,可以清晰看到在生成X门的效果中,本申请的技术方案可以快速的得到高保真度的量子门,而传统的生成方式中,无论是量子门的生成速度还是生成的质量都与本申请中的有着较大的差距。
为了进一步展现本技术方案的普遍性,我们也测试了更具有一般性的哈达玛门(Hadamard gate,以下简称H门),具体效果呈现如表二。可以清晰看出,使用本申请的技术方案,对于H门也可以有很好的适用效果。
Figure GDA0002906508010000132
表二
通过上述内容可以看出,本申请中提供的技术方案,可以针对不同量子系统提供与其相适应的控制脉冲,再根据优化脉冲参数来确定对应的控制脉冲实现量子门,以提高实现量子门的效率和质量,并节省运算资源。
进一步参考图7,作为对上述各图所示方法的实现,本申请提供了一种用于实现量子门的控制脉冲的装置的一个实施例,该装置实施例与图2所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。
如图7所示,本实施例的用于实现量子门的控制脉冲的生成装置700可以包括:系统哈密顿量获取单元701,被配置成获取目标量子系统的系统哈密顿量;期望量子门获取单元702,被配置成获取期望量子门信息;初始脉冲参数确定单元703,被配置成根据该系统哈密顿量确定初始脉冲参数;真实量子门确定单元704,被配置成基于该系统哈密顿量,确定该初始脉冲参数对应的真实量子门信息;优化脉冲参数生成单元705,被配置成获取期望量子门信息,基于该期望量子门信息和该真实量子门信息对该初始脉冲参数进行优化,得到优化脉冲参数;控制脉冲生成单元706,被配置成根据该优化脉冲参数生成对应的控制脉冲。
在本实施例中,用于实现量子门的控制脉冲的生成装置700中:系统哈密顿量获取单元701、期望量子门获取单元702初始脉冲参数确定单元703、真实量子门确定单元704、优化脉冲参数生成单元705和控制脉冲生成单元706的具体处理及其所带来的技术效果可分别参考图2对应实施例中的步骤201-204的相关说明,在此不再赘述。
在本实施例的一些可选的实现方式中,真实量子门确定单元704中基于该系统哈密顿量,确定该初始脉冲参数,包括:采用马格努斯展开算法基于该系统哈密顿量确定该初始脉冲参数。
在本实施例的一些可选的实现方式中,优化脉冲参数生成单元705中该基于该期望量子门信息和该真实量子门信息,对该初始脉冲参数进行优化,包括:采用下山单纯形法基于该期望量子门信息和该真实量子门信息对该初始脉冲参数进行优化。
在本实施例的一些可选的实现方式中,系统哈密顿量获取单元701中获取目标量子系统的系统哈密顿量,包括:目标函数判断单元,被配置成判断基于该期望量子门信息和该真实量子门信息构造的目标函数是否收敛;以及该系统哈密顿量获取单元,进一步被配置成若该目标函数发散,则根据该优化参数重新确定系统哈密顿量;初始脉冲参数确定单元,进一步被配置成基于重新确定的系统哈密顿量重新确定初始脉冲参数;控制脉冲生成单元,进一步被配置成若该目标函数收敛,根据该优化脉冲参数生成对应的控制脉冲。
在本实施例的一些可选的实现方式中,优化脉冲参数生成单元705中根据该优化脉冲参数生成对应的控制脉冲,包括:判断该优化脉冲参数是否满足预先确定的阈值要求;响应于确定该优化脉冲参数对应的该真实量子门信息满足预先确定的阈值要求,根据该优化脉冲参数生成对应的控制脉冲。
在本实施例的一些可选的实现方式中,该装置还包括,系统哈密顿量获取单元701进一步被配置成,响应于确定该优化脉冲参数对应的该真实量子门信息不满足该阈值要求,基于该优化参数重新确定该系统哈密顿量;以及真实量子门确定单元704进一步被配置成,采用龙格-库塔法算法基于重新确定的系统哈密顿量重新确定该初始脉冲参数。
本实施例作为对应于上述方法实施例的装置实施例存在,相同内容参考对于上述方法实施例的说明,对此不再赘述。通过本申请实施例提供的用于实现量子门的控制脉冲的装置,可以针对不同量子系统的需求对控制脉冲参数进行优化,再根据优化脉冲参数来确定对应的控制脉冲实现量子门,以提高实现量子门的效率和质量,并节省运算资源。
根据本申请的实施例,本申请还提供了一种电子设备和一种可读存储介质。
如图8所示,是根据本申请实施例的用于实现量子门的控制脉冲的生成方法的电子设备的框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
如图8所示,该电子设备包括:一个或多个处理器801、存储器802,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在电子设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个电子设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图8中以一个处理器801为例。
存储器802即为本申请所提供的非瞬时计算机可读存储介质。其中,该存储器存储有可由至少一个处理器执行的指令,以使上述至少一个处理器执行本申请所提供的用于实现量子门的控制脉冲的生成方法。本申请的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本申请所提供的用于实现量子门的控制脉冲方法。
存储器802作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本申请实施例中的用于实现量子门的控制脉冲的生成方法对应的程序指令/模块(例如,附图7所示的系统哈密顿量获取单元701、期望量子门获取单元702、初始脉冲参数确定单元703、真实量子门确定单元704、优化脉冲参数生成单元705和控制脉冲生成单元706)。处理器801通过运行存储在存储器802中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的用于实现量子门的控制脉冲的生成方法。
存储器802可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据推送信息的电子设备的使用所创建的数据等。此外,存储器802可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。在一些实施例中,存储器802可选包括相对于处理器801远程设置的存储器,这些远程存储器可以通过网络连接至推送信息的电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
用于实现量子门的控制脉冲的生成方法的电子设备还可以包括:输入装置803和输出装置804。处理器801、存储器802、输入装置803和输出装置804可以通过总线或者其他方式连接,图8中以通过总线连接为例。
输入装置803可接收输入的数字或字符信息,以及产生与用于实现量子门的控制脉冲的电子设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置804可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、至少一个上述输入装置、和至少一个上述输出装置。
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本申请保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本申请的精神和原则之内所作的修改、等同替换和改进等,均应包含在本申请保护范围之内。

Claims (14)

1.一种用于实现量子门的控制脉冲的生成方法,包括:
获取期望量子门信息和目标量子系统的系统哈密顿量;
根据所述系统哈密顿量确定初始脉冲参数;
基于所述系统哈密顿量,确定所述初始脉冲参数对应的真实量子门信息;
基于所述期望量子门信息和所述真实量子门信息对所述初始脉冲参数进行优化,得到优化脉冲参数;
根据所述优化脉冲参数生成对应的控制脉冲。
2.根据权利要求1所述的方法,其中,所述根据所述系统哈密顿量确定初始脉冲参数,包括:
采用马格努斯展开算法根据所述系统哈密顿量确定所述初始脉冲参数。
3.根据权利要求1或2所述的方法,其中,所述基于所述期望量子门信息和所述真实量子门信息,对所述初始脉冲参数进行优化,包括:
采用下山单纯形法基于所述期望量子门信息和所述真实量子门信息对所述初始脉冲参数进行优化。
4.根据权利要求2所述的方法,在所述基于所述期望量子门信息和所述真实量子门信息对所述初始脉冲参数进行优化,得到优化脉冲参数之后,在根据所述优化脉冲参数生成对应的控制脉冲之前,所述方法还包括:
判断基于所述期望量子门信息和所述真实量子门信息构造的目标函数是否收敛;
若所述目标函数发散,则根据所述优化脉冲参数重新确定所述系统哈密顿量,并跳转至执行所述根据所述系统哈密顿量确定初始脉冲参数;
若所述目标函数收敛,则跳转至执行所述根据所述优化脉冲参数生成对应的控制脉冲。
5.根据权利要求4所述的方法,所述根据所述优化脉冲参数生成对应的控制脉冲,包括:
判断所述优化脉冲参数对应的所述真实量子门信息是否满足预先确定的量子门保真度的阈值要求;
响应于确定所述优化脉冲参数对应的所述真实量子门信息满足预先确定的阈值要求,根据所述优化脉冲参数生成对应的控制脉冲。
6.根据权利要求5所述的方法,还包括:
响应于确定所述优化脉冲参数对应的所述真实量子门信息不满足预先确定的阈值要求,基于所述优化脉冲参数重新确定所述系统哈密顿量,跳转至执行所述根据所述系统哈密顿量确定初始脉冲参数;以及
所述根据所述系统哈密顿量确定初始脉冲参数,包括:采用龙格-库塔法算法基于重新确定的系统哈密顿量重新确定所述初始脉冲参数。
7.一种用于实现量子门的控制脉冲的生成装置,包括:
系统哈密顿量获取单元,被配置成获取目标量子系统的系统哈密顿量;
期望量子门获取单元,被配置成获取期望量子门信息;
初始脉冲参数确定单元,被配置成根据所述系统哈密顿量确定初始脉冲参数;
真实量子门确定单元,被配置成基于所述系统哈密顿量,确定所述初始脉冲参数对应的真实量子门信息;
优化脉冲参数生成单元,被配置成基于所述期望量子门信息和所述真实量子门信息对所述初始脉冲参数进行优化,得到优化脉冲参数;
控制脉冲生成单元,被配置成根据所述优化脉冲参数生成对应的控制脉冲。
8.根据权利要求7所述的装置,其中,所述初始脉冲参数确定单元中所述根据所述系统哈密顿量,确定所述初始脉冲参数,包括:
采用马格努斯展开算法根据所述系统哈密顿量确定所述初始脉冲参数。
9.根据权利要求7或8所述的装置,其中,所述优化脉冲参数生成单元中所述基于所述期望量子门信息和所述真实量子门信息,对所述初始脉冲参数进行优化,包括:
采用下山单纯形法基于所述期望量子门信息和所述真实量子门信息对所述初始脉冲参数进行优化。
10.根据权利要求8所述的装置,其中,所述系统哈密顿量获取单元中,包括:
目标函数判断单元,被配置成判断基于所述期望量子门信息和所述真实量子门信息构造的目标函数是否收敛;以及
所述系统哈密顿量获取单元,进一步被配置成若所述目标函数发散,则根据所述优化脉冲参数重新确定所述系统哈密顿量;
初始脉冲参数确定单元,进一步被配置成根据重新确定的系统哈密顿量重新确定所述初始脉冲参数;
控制脉冲生成单元,进一步被配置成若所述目标函数收敛,根据所述优化脉冲参数生成对应的控制脉冲。
11.根据权利要求10所述的装置,其中,所述优化脉冲参数生成单元中所述根据所述优化脉冲参数生成对应的控制脉冲,包括:
判断所述优化脉冲参数是否满足预先确定的阈值要求;
响应于确定所述优化脉冲参数对应的所述真实量子门信息满足预先确定的阈值要求,根据所述优化脉冲参数生成对应的控制脉冲。
12.根据权利要求11所述的装置,还包括:
所述哈密顿量获取单元,进一步被配置成响应于确定所述优化脉冲参数对应的所述真实量子门信息不满足所述阈值要求,基于所述优化脉冲参数重新确定所述系统哈密顿量;以及
所述真实量子门确定单元,进一步被配置成采用龙格-库塔法算法基于重新确定的系统哈密顿量重新确定所述初始脉冲参数。
13.一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-6中任一项所述的方法。
14.一种存储有计算机指令的非瞬时计算机可读存储介质,包括:所述计算机指令用于使所述计算机执行权利要求1-6中任一项所述的方法。
CN202010906244.1A 2020-09-01 2020-09-01 用于实现量子门的控制脉冲的生成方法、装置 Active CN112019193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010906244.1A CN112019193B (zh) 2020-09-01 2020-09-01 用于实现量子门的控制脉冲的生成方法、装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010906244.1A CN112019193B (zh) 2020-09-01 2020-09-01 用于实现量子门的控制脉冲的生成方法、装置

Publications (2)

Publication Number Publication Date
CN112019193A CN112019193A (zh) 2020-12-01
CN112019193B true CN112019193B (zh) 2021-10-22

Family

ID=73515524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010906244.1A Active CN112019193B (zh) 2020-09-01 2020-09-01 用于实现量子门的控制脉冲的生成方法、装置

Country Status (1)

Country Link
CN (1) CN112019193B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333503B1 (en) 2018-11-26 2019-06-25 Quantum Machines Quantum controller with modular and dynamic pulse generation and routing
US10454459B1 (en) 2019-01-14 2019-10-22 Quantum Machines Quantum controller with multiple pulse modes
US10505524B1 (en) 2019-03-06 2019-12-10 Quantum Machines Synchronization in a quantum controller with modular and dynamic pulse generation and routing
US11164100B2 (en) 2019-05-02 2021-11-02 Quantum Machines Modular and dynamic digital control in a quantum controller
US10931267B1 (en) 2019-07-31 2021-02-23 Quantum Machines Frequency generation in a quantum controller
US11245390B2 (en) 2019-09-02 2022-02-08 Quantum Machines Software-defined pulse orchestration platform
US10862465B1 (en) 2019-09-02 2020-12-08 Quantum Machines Quantum controller architecture
US11507873B1 (en) 2019-12-16 2022-11-22 Quantum Machines Highly scalable quantum control
US11043939B1 (en) 2020-08-05 2021-06-22 Quantum Machines Frequency management for quantum control
CN112749809B (zh) * 2021-01-14 2021-12-14 北京百度网讯科技有限公司 构造量子仿真系统的方法和装置
CN112819170B (zh) * 2021-01-22 2021-11-05 北京百度网讯科技有限公司 控制脉冲生成方法、装置、系统、设备及存储介质
US20220329237A1 (en) * 2021-04-08 2022-10-13 Quantum Machines System and method for pulse generation during quantum operations
US11671180B2 (en) 2021-04-28 2023-06-06 Quantum Machines System and method for communication between quantum controller modules
CN113516248B (zh) * 2021-07-12 2022-04-12 北京百度网讯科技有限公司 一种量子门测试方法、装置及电子设备
CN113537501B (zh) * 2021-07-12 2022-04-29 北京百度网讯科技有限公司 电磁串扰的标定和缓释方法、装置及电子设备
CN113487035B (zh) * 2021-08-03 2022-05-27 北京百度网讯科技有限公司 量子门的控制脉冲确定方法、装置及电子设备
CN114298317A (zh) * 2021-12-28 2022-04-08 北京量子信息科学研究院 控制参数确定方法、装置、计算机设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478258A (zh) * 2016-06-02 2019-03-15 谷歌有限责任公司 使用子逻辑控制训练量子演进
CN109643326A (zh) * 2016-08-17 2019-04-16 国际商业机器公司 有效减少在量子硬件上模拟费米子哈密顿量所需资源
WO2019152019A1 (en) * 2018-01-31 2019-08-08 Niu Yuezhen Universal control for implementing quantum gates
CN111464154A (zh) * 2019-01-22 2020-07-28 华为技术有限公司 一种控制脉冲的计算方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478258A (zh) * 2016-06-02 2019-03-15 谷歌有限责任公司 使用子逻辑控制训练量子演进
CN109643326A (zh) * 2016-08-17 2019-04-16 国际商业机器公司 有效减少在量子硬件上模拟费米子哈密顿量所需资源
WO2019152019A1 (en) * 2018-01-31 2019-08-08 Niu Yuezhen Universal control for implementing quantum gates
CN111464154A (zh) * 2019-01-22 2020-07-28 华为技术有限公司 一种控制脉冲的计算方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Pulse-controlled quantum gate sequences on a strongly coupled qubit chain;Holger Frydrych 等;《PHYSICAL REVIEW A》;20151211;1-10 *

Also Published As

Publication number Publication date
CN112019193A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN112019193B (zh) 用于实现量子门的控制脉冲的生成方法、装置
CN111563186B (zh) 量子数据存储方法、读取方法、装置及计算设备
US20210286791A1 (en) Method and apparatus for processing label data, device, and storage medium
CN112488317B (zh) 量子控制中的仿真方法、装置、经典计算机及存储介质
US10671573B2 (en) Generating data tables
CN111582454A (zh) 生成神经网络模型的方法和装置
US20230409938A1 (en) Validating and estimating runtime for quantum algorithms
CN111639753B (zh) 用于训练图像处理超网络的方法、装置、设备以及存储介质
US9495501B1 (en) Large cluster persistence during placement optimization of integrated circuit designs
US10616103B2 (en) Constructing staging trees in hierarchical circuit designs
US20210319185A1 (en) Method for generating conversation, electronic device and storage medium
JP7492079B2 (ja) クラウドプラットフォームを更新するための方法及び装置
US20230004753A9 (en) Method, apparatus, electronic device and storage medium for training semantic similarity model
CN110991648A (zh) 一种高斯分布量子态确定方法、装置以及电子设备
CN111027704A (zh) 量子资源估计方法、装置和电子设备
CN111325332A (zh) 卷积神经网络的处理方法和装置
Qiu et al. Cost minimization for heterogeneous systems with Gaussian distribution execution time
US11362663B2 (en) Quantum pulse determining method, apparatus, device and readable storage medium
JP7220733B2 (ja) ユーザappインタレストの埋め込み方法及び装置、電子機器、記憶媒体並びにコンピュータプログラム
CN112580723B (zh) 多模型融合方法、装置、电子设备和存储介质
CN111783951A (zh) 基于超网络的模型获取方法、装置、设备及存储介质
CN111160552A (zh) 负采样处理方法、装置、设备和计算机存储介质
US11941055B2 (en) Method and apparatus for graph computing, electronic device and storage medium
CN111865683B (zh) 虚拟网关版本灰度发布方法、装置、设备以及存储介质
CN111340222B (zh) 神经网络模型搜索方法、装置以及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant