CN112018756A - 气电联合系统日前鲁棒协调优化调度方法 - Google Patents

气电联合系统日前鲁棒协调优化调度方法 Download PDF

Info

Publication number
CN112018756A
CN112018756A CN202010773908.1A CN202010773908A CN112018756A CN 112018756 A CN112018756 A CN 112018756A CN 202010773908 A CN202010773908 A CN 202010773908A CN 112018756 A CN112018756 A CN 112018756A
Authority
CN
China
Prior art keywords
gas
natural gas
combined system
electric
scheduling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010773908.1A
Other languages
English (en)
Inventor
何川
吕祥梅
刘天琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202010773908.1A priority Critical patent/CN112018756A/zh
Publication of CN112018756A publication Critical patent/CN112018756A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Mathematical Analysis (AREA)
  • Strategic Management (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Economics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Operations Research (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Development Economics (AREA)
  • Software Systems (AREA)
  • Educational Administration (AREA)
  • Databases & Information Systems (AREA)
  • Game Theory and Decision Science (AREA)
  • Algebra (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种气电联合系统日前鲁棒协调优化调度方法,将位于同一地理位置的燃气机组,电转气设备和天然气储气设备建模为能源枢纽,气电联合系统的鲁棒优化模型通过CCG法的主问题‑子问题框架进行求解,非线性的天然气约束通过分段线性化进行线性化处理,并且加入到主问题中进行求解,另外,双层的安全检查子问题被转化为单层的双线性问题,进而通过极值点法重新写成混合整数规划的形式,仿真分析表明电转气设备能够通过将过剩的风力发电转化为天然气来有效地降低弃风率。鲁棒优化模型能够在电力负荷和风力发电不确定的情况下保证气电联合系统运行的安全性,总体来说就是投入更多的机组来提供足够的系统爬坡能力。

Description

气电联合系统日前鲁棒协调优化调度方法
技术领域
本发明属于综合能源系统优化运行技术领域,特别涉及一种气电联合系统日前鲁棒协调优化调度方法。
背景技术
对于包含大量燃气机组的电力系统来说,电力系统发电计划和发电成本将会直接受到天然气价格或者天然气生产成本的影响。而且电能供给的可靠性和安全性问题将在电力负荷和天然气负荷同时达到高峰时凸显。此外,天然气气井停运以及天然气管道的安全事故既会导致多个燃气机组强迫停运,也会给天然气系统运营商也面临着来自燃气机组更加波动的负荷,因为需要通过频繁调节燃气机组来平抑负荷或者风力发电的不确定性。将电力系统和天然气系统一起进行建模形成气电联合系统以确保在不确定环境下达到最优协调优化运行是很有必要的。
虽然目前鲁棒优化已经比较成功地应用到了电力系统调度运行中来应对各种不确定性,但是,目前基于鲁棒优化的气电联合系统日前协调优化调度方面的研究还较少。而且,大多数文献并没有全完反映气电联合系统的运行成本,比如说燃气机组的运行成本以及天然气系统的生产成本。此外,燃气机组和电转气设备一般被看作是独立的设备并且是独立优化调度。并且,也没有燃气机组、电转气设备和天然气储气设备之间的协调研究。
因此,针对上述背景,进一步利用鲁棒优化对气电联合系统日前协调优化调度进行研究是很必要的。
发明内容
本发明所要解决的技术问题是提供一种气电联合系统日前鲁棒协调优化调度方法,该方法通过建立燃气机组和电转气设备等气电联合系统耦合设备的数学模型,结合系统运行约束、网络约束和针对不确定性的约束,建立了气电联合系统日前鲁棒协调优化调度模型,通过CCG(Column-and-Constraint Generation)求解法建立并求解系统的主问题与子问题,最后通过MATLAB编程,采用Gurobi进行求解算例仿真,验证了电转气设备能够通过将过剩的风力发电转化为天然气来有效地降低弃风率;鲁棒优化模型能够在电力负荷和风力发电不确定的情况下保证气电联合系统运行的安全性。
为解决上述技术问题,本发明采用的技术方案是:
一种气电联合系统日前鲁棒协调优化调度方法,包括以下步骤:
(1):建立气电联合系统中的能量枢纽;
(2):构建以最小化基础场景系统中与能量供应以及储能设备运行相关的总成本为目标函数,考虑协调优化调度运行约束、协调优化调度网络约束、气电耦合约束和考虑不确定性的约束的气电联合系统日前鲁棒协调优化调度模型;
(3):建立CCG求解法中的气电联合系统日前鲁棒协调优化调度模型主问题;
(4):利用辅助二进制变量f将非线性的天然气潮流模型中的符号函数sgn替换掉,再引入辅助变量r来代表公式中的乘积项,最后通过分段线性化将主问题中的非线性的天然气潮流模型转换为混合整数线性规划(MILP)的形式;
(5):建立CCG求解中的气电联合系统日前鲁棒协调优化调度模型子问题;
(6):运用CCG法求解气电联合系统日前鲁棒协调优化调度模型;
(7):输入气电联合系统数据、设备参数、运行参数等,采用商业求解器Gurobi对综合能源配网优化运行模型进行求解,得出气电联合系统短期协调优化结果。
进一步的,在步骤(1)所述气电联合系统中的能量枢纽具体如下:
能量枢纽代表电能和天然气之间的转换和储存过程,具体包括燃气机组、电转气设备和储气设备。
进一步的,在步骤(2)所述气电联合系统日前鲁棒协调优化调度模型具体如下:
(2.1)目标函数
Figure BDA0002617662390000031
式中:t,i,j分别为为时间,发电机组和天然气气井的索引;GU为燃气机组的集合;(·)b为基础场景对应的变量;
Figure BDA0002617662390000032
为基础场景中机组i的调度出力安排;Fi c
Figure BDA0002617662390000033
分别机组i的热耗曲线以及燃料价格;
Figure BDA0002617662390000034
Figure BDA0002617662390000035
分别为机组i开机和停机的燃料消耗;Gjt为天然气井j的产气量;
Figure BDA0002617662390000036
指天然气储气设备s的天然气流出量;
Figure BDA0002617662390000037
Figure BDA0002617662390000038
分别为天然气井j的生产成本和天然气储气设备s的储气费用。
(2.2)运行约束
(2.2.1)能量生产约束
Figure BDA0002617662390000039
Figure BDA00026176623900000310
Figure BDA00026176623900000311
Figure BDA00026176623900000312
Figure BDA00026176623900000313
Figure BDA00026176623900000314
Figure BDA00026176623900000315
Figure BDA00026176623900000316
Figure BDA0002617662390000041
Figure BDA0002617662390000042
式中:a为电转气设备的索引;
Figure BDA0002617662390000043
Figure BDA0002617662390000044
机组i和电转气设备a在t时刻的工作状态(commitment statuses);
Figure BDA0002617662390000045
机组i在t-1时刻的工作状态;Pi min和Pi max为机组i的最小和最大容量;
Figure BDA0002617662390000046
Figure BDA00026176623900000431
分别为电转气设备a的基础场景调度和最大容量;
Figure BDA0002617662390000047
为基础场景中机组i在t时刻的调度出力安排;
Figure BDA0002617662390000048
为基础场景中机组i在t-1时刻的调度出力安排;
Figure BDA0002617662390000049
Figure BDA00026176623900000410
分别为机组i开机和停机的燃料消耗;N(e)为连接到母线e的一系列设备集合;
Figure BDA00026176623900000411
Figure BDA00026176623900000412
代表机组i在t时刻的开机和停机时间计数器;
Figure BDA00026176623900000413
Figure BDA00026176623900000414
代表机组i在t-1时刻的的开机和停机时间计数器;Ti on和Ti off为机组i最小开停机时间;sui和sdi分别为机组i开机和停机的燃料消耗;URi和DRi分别为机组i的上爬坡率和下爬坡率;Gjt为天然气井j的生产水平;
Figure BDA00026176623900000415
Figure BDA00026176623900000416
为天然气井j的生产水平下限和上限。
(2.2.2)能量储存约束
Figure BDA00026176623900000417
Figure BDA00026176623900000418
Figure BDA00026176623900000419
Figure BDA00026176623900000420
式中:Est为天然气储气设备s在t时刻的储气量;
Figure BDA00026176623900000421
Figure BDA00026176623900000422
分别为储气设备s的注入气量和流出气量;
Figure BDA00026176623900000423
Figure BDA00026176623900000424
分别代表储气设备s的最小和最大储气容量;
Figure BDA00026176623900000425
Figure BDA00026176623900000426
为储气设备s的最小和最大气流量限制。
(2.2.3)风力发电约束
Figure BDA00026176623900000427
式中:
Figure BDA00026176623900000428
为风电场w基础场景下的调度;
Figure BDA00026176623900000429
为风电场w预测出力,即可用的风力发电。
(2.3)网络约束
(2.3.1)节点平衡
Figure BDA00026176623900000430
Figure BDA0002617662390000051
式中:
Figure BDA0002617662390000052
为电力输电线路l在基础场景下的潮流;s(l)/s(mn)和r(l)/r(mn)分别为输电线路l和天然气管道mn的送端(sending)母线/节点以及受端(receiving)母线/节点;
Figure BDA0002617662390000053
为基础场景的电力负荷d;G(m)为连接到天然气节点m的一系列设备集合;GLmn,t指天然气管道mn中的天然气潮流;Git和Gat分别代表燃气机组i的天然气消耗量和电转气设备a的天然气产量;Ggt为天然气负荷g的耗气量。
(2.3.2)能量潮流
Figure BDA0002617662390000054
Figure BDA0002617662390000055
Figure BDA0002617662390000056
Figure BDA0002617662390000057
式中:
Figure BDA0002617662390000058
Figure BDA0002617662390000059
分别为输电线路l送端母线和受端母线的相角;xl为线路l的电抗;
Figure BDA00026176623900000510
指输电线路l最大的潮流限制;πmt为天然气节点m的气压平方;Kmn为天然气管道Weymouth特性参数。
(2.3.3)节点约束
Figure BDA00026176623900000511
Figure BDA00026176623900000512
Figure BDA00026176623900000513
式中:
Figure BDA00026176623900000514
Figure BDA00026176623900000515
分别为电力网络母线e相角最小和最大限制;
Figure BDA00026176623900000516
Figure BDA00026176623900000517
为天然气网络节点m最小和最大的气压平方限制;Γc>1为压缩常数,促进天然气从低气压节点流向高气压节点。
(2.4)气电耦合约束
Figure BDA00026176623900000518
Figure BDA0002617662390000061
式中:HHV指高发热值(high heating value),其值为1.026MBtu/kcf;φ为能量转换系数,且=φ=3.4MBtu/MWh;
Figure BDA0002617662390000062
为电转气设备的效率。
(2.5)针对不确定性的约束
Figure BDA0002617662390000063
Figure BDA0002617662390000064
Figure BDA0002617662390000065
Figure BDA0002617662390000066
Figure BDA0002617662390000067
Figure BDA0002617662390000068
Figure BDA0002617662390000069
Figure BDA00026176623900000610
Figure BDA00026176623900000611
Figure BDA00026176623900000612
Figure BDA00026176623900000613
Figure BDA00026176623900000614
Figure BDA00026176623900000615
Figure BDA00026176623900000616
v1t,v2t≥0
式中:不确定的电力负荷
Figure BDA00026176623900000617
可以在区间
Figure BDA00026176623900000618
之内任意取值。
Figure BDA00026176623900000619
Figure BDA00026176623900000620
分别为发电机组,电转气设备和风电场根据不同的电力负荷
Figure BDA00026176623900000621
以及风力发电
Figure BDA00026176623900000622
的不确定值,然后调整之后的调度安排;(·)u为在不确定环境下对应的变量;v1t和v2t为松弛变量;D分别W对应电力负荷和风力发电的不确定性合集;NT,ND和NW分别为小时,电力负荷和风电场的数量;
Figure BDA0002617662390000071
以及
Figure BDA0002617662390000072
为不确定性合集中的二进制指示标;Δd和Δw为不确定行预算,其取值范围在0到NT之间;
Figure BDA0002617662390000073
Figure BDA0002617662390000074
为电力负荷和风力发电的预测偏差;
Figure BDA0002617662390000075
Figure BDA0002617662390000076
分别为调整后潮流和母线相角;λ为约束条件对应的对偶变量;
Figure BDA00026176623900000723
Figure BDA00026176623900000724
为机组矫正动作下爬坡和上爬坡能力。
进一步的,在步骤(3)所述CCG求解法中的气电联合系统日前鲁棒协调优化调度模型主问题具体如下:
ΔDk≤εRO
Figure BDA0002617662390000077
Figure BDA0002617662390000078
Figure BDA0002617662390000079
Figure BDA00026176623900000710
Figure BDA00026176623900000711
Figure BDA00026176623900000712
Figure BDA00026176623900000713
Figure BDA00026176623900000714
Figure BDA00026176623900000715
Figure BDA00026176623900000716
Figure BDA00026176623900000717
v1t,k,v2t,k≥0
Figure BDA00026176623900000718
Figure BDA00026176623900000719
Figure BDA00026176623900000720
Figure BDA00026176623900000721
Figure BDA00026176623900000722
Figure BDA0002617662390000081
Figure BDA0002617662390000082
Figure BDA0002617662390000083
Figure BDA0002617662390000084
Figure BDA0002617662390000085
Figure BDA0002617662390000086
式中:(·)worst为最坏场景对应的变量。
进一步的,在步骤(4)所述将非线性的天然气潮流模型转换为混合整数线性规划(MILP)的形式具体如下:
(4.1)利用辅助二进制变量f将非线性的天然气潮流模型中的符号函数sgn替换掉,于是得到如下公式:
Figure BDA0002617662390000087
Figure BDA0002617662390000088
Figure BDA0002617662390000089
Figure BDA00026176623900000810
式中:
Figure BDA00026176623900000811
Figure BDA00026176623900000812
分别指代天然气在管道mn中的流动方向,比如
Figure BDA00026176623900000813
就代表天然气由节点m流向节点n。
(4.2)进一步,引入辅助变量r来代表上式中的乘积项,再根据著名的代数运算结果,得到以下公式:
Figure BDA00026176623900000814
Figure BDA00026176623900000815
Figure BDA00026176623900000816
Figure BDA00026176623900000817
Figure BDA00026176623900000818
式中:
Figure BDA00026176623900000819
Figure BDA00026176623900000820
为节点m气压平方的下界和上界。
(4.3)最后,利用分段线性化的方法将在一定区间范围内的单一变量的平方y=q2进行线性逼近,如下式所示:
Figure BDA0002617662390000091
Figure BDA0002617662390000092
Figure BDA0002617662390000093
Figure BDA0002617662390000094
进一步的,在步骤(5)所述CCG求解法中的气电联合系统日前鲁棒协调优化调度模型子问题具体如下:
Figure BDA0002617662390000095
s.t.-1≤λ1,et≤1
Figure BDA0002617662390000096
1,s(l)t1,r(l)t+xl·λ2,lt3,lt4,lt=0
λ1,et7,it8,it11,it12,it13,i(t+1)14,i(t+1)≤0,t=1,i∈N(e)
λ1,et7,it8,it11,it12,it13,it14,it13,i(t+1)14,i(t+1)≤0,
t=2,...,NT-1,i∈N(e)
λ1,et7,it8,it11,it12,it13,it14,it≤0,t=NT,i∈N(e)
1,et9,at≤0,a∈N(e)
λ1,et10,wt≤0,w∈N(e)
λ3,lt4,lt5,et6,et7,it8,it9,at10,wt11,it12,it13,it14,it≤0
Figure BDA0002617662390000101
Figure BDA0002617662390000102
Figure BDA0002617662390000103
Figure BDA0002617662390000104
Figure BDA0002617662390000105
Figure BDA0002617662390000106
式中:
Figure BDA0002617662390000107
Figure BDA0002617662390000108
为辅助的连续变量,分别对应不确定的电力负荷
Figure BDA0002617662390000109
取到其均值,上限和下限;
Figure BDA00026176623900001010
Figure BDA00026176623900001011
为辅助的二进制变量,也是分别对应不确定的电力负荷
Figure BDA00026176623900001012
取到其均值,上限和下限。
进一步的,在步骤(6)所述CCG法求解气电联合系统日前鲁棒协调优化调度模型具体如下:
具体步骤包括以下4步:
(6.1)设置电力系统最坏场景的最大安全违规阈值εRO和迭代计数器k=1。
(6.2)求解CCG法所描述的主问题,将求解所得到的最优结果
Figure BDA00026176623900001013
Figure BDA00026176623900001014
Figure BDA00026176623900001015
带入到CCG法描述的子问题中来检验电力系统的安全性。
(6.3)根据主问题得到的最优结果
Figure BDA00026176623900001016
Figure BDA00026176623900001017
求解CCG法描述的子问题,辨识得到电力系统最坏场景对应的电力负荷
Figure BDA00026176623900001018
和风力发电
Figure BDA00026176623900001019
(6.4)如果得到的最坏场景的最大安全违规小于设置的阈值εRO,停止迭代;否则,利用第k次迭代中得到的最坏场景
Figure BDA00026176623900001020
Figure BDA00026176623900001021
生成CCG约束,返回步骤(6.2)继续迭代。
进一步的,在步骤(7)所述所述气电联合系统数据还包括配网系统拓扑结构以及各线路信息,所述设备参数包括燃气机组、电转气设备、风力发电机的数量、容量以及出力上下限等,所述运行参数包括向上级网络购入能源的价格、设备的各种运行参数、负荷侧数值以及电、气负荷预测数据。
与现有技术相比,本发明的有益效果是:
1)提出了基于鲁棒优化的气电联合系统日前调度协调优化模型,考虑了电力系统中的不确定性参数和天然气系统的产气成本。给出了燃气机组和电转气设备等气电联合系统耦合设备的数学模型。
2)将位于同一地理位置的燃气机组,电转气设备和天然气储气设备整合建模为能量枢纽,其功能可以类比为电力系统中大型的储能设备。能量枢纽能够有效地平衡电力负荷和风力发电的不确定性,并且能有效增强气电联合系统运行时的经济性和安全性。
附图说明
图1是本发明所述方法的步骤流程图;
图2是气电联合系统中的能量枢纽描述图;
图3是CCG法的求解流程图;
图4是气电联合系统算例仿真所用的24母线的IEEE标准RTS电力系统图;
图5是12节点的天然气系统图;
图6是电力负荷的预测值、上限值、下限值和最坏场景下的值的曲线图;
图7是风电出力的预测值、上限值、下限值和最坏场景下的值的曲线图;
图8是能量枢纽在基础场景和最坏场景下的整体功率输出图。
具体实施方式
为了详尽说明本发明所公开的技术方案,下面结合附图和具体实施例对本发明作进一步说明。
本发明公开的是一种气电联合系统日前鲁棒协调优化调度方法。具体实施步骤流程如图1所示,本发明技术方案包括以下步骤:
步骤1:建立气电联合系统中的能量枢纽。
能量枢纽代表电能和天然气之间的转换和储存过程,具体包括燃气机组、电转气设备和储气设备。
步骤2:构建以最小化基础场景系统中与能量供应以及储能设备运行相关的总成本为目标函数,考虑协调优化调度运行约束、协调优化调度网络约束、气电耦合约束和考虑不确定性的约束的气电联合系统日前鲁棒协调优化调度模型。
(2.1)目标函数
气电联合系统日前鲁棒协调优化调度的目标是最小化基础场景系统中与能量供应以及储能设备运行相关的总成本。目标函数如下式所示。需要注意的是,燃气机组的运行费用,包括调度成本和启停成本,通过天然气系统中天然气气井的生产成本计算。
Figure BDA0002617662390000121
式中:t,i,j分别为为时间,发电机组和天然气气井的索引;GU为燃气机组的集合;(·)b为基础场景对应的变量;
Figure BDA0002617662390000122
为基础场景中机组i的调度出力安排;Fi c
Figure BDA0002617662390000123
分别机组i的热耗曲线以及燃料价格;
Figure BDA0002617662390000124
Figure BDA0002617662390000125
分别为机组i开机和停机的燃料消耗;Gjt为天然气井j的产气量;
Figure BDA0002617662390000126
指天然气储气设备s的天然气流出量;
Figure BDA0002617662390000127
Figure BDA0002617662390000128
分别为天然气井j的生产成本和天然气储气设备s的储气费用。
(2.2)运行约束
(2.2.1)能量生产约束
在电力系统中,燃气机组的出力以及电转气设备的电能消耗都受到其最大最小容量的限制,即:连接到电力系统同一条母线上的燃气机组和电转气设备不能同时运行。另外,发电机组还应该满足最小机组启停时间、开机和停机的燃气消耗约束、上爬坡率和下爬坡率限制;天然气井的生产水平也受到其物理特性或者合约上下限的限制,即:
Figure BDA0002617662390000129
Figure BDA0002617662390000131
Figure BDA0002617662390000132
Figure BDA0002617662390000133
Figure BDA0002617662390000134
Figure BDA0002617662390000135
Figure BDA0002617662390000136
Figure BDA0002617662390000137
Figure BDA0002617662390000138
Figure BDA0002617662390000139
式中:a为电转气设备的索引;
Figure BDA00026176623900001310
Figure BDA00026176623900001311
机组i和电转气设备a在t时刻的工作状态(commitment statuses);
Figure BDA00026176623900001312
机组i在t-1时刻的工作状态;Pi min和Pi max为机组i的最小和最大容量;
Figure BDA00026176623900001313
Figure BDA00026176623900001314
分别为电转气设备a的基础场景调度和最大容量;
Figure BDA00026176623900001315
为基础场景中机组i在t时刻的调度出力安排;
Figure BDA00026176623900001316
为基础场景中机组i在t-1时刻的调度出力安排;
Figure BDA00026176623900001317
Figure BDA00026176623900001318
分别为机组i开机和停机的燃料消耗;N(e)为连接到母线e的一系列设备集合;
Figure BDA00026176623900001319
Figure BDA00026176623900001320
代表机组i在t时刻的开机和停机时间计数器;
Figure BDA00026176623900001321
Figure BDA00026176623900001322
代表机组i在t-1时刻的的开机和停机时间计数器;Ti on和Ti off为机组i最小开停机时间;sui和sdi分别为机组i开机和停机的燃料消耗;URi和DRi分别为机组i的上爬坡率和下爬坡率;Gjt为天然气井j的生产水平;
Figure BDA00026176623900001323
Figure BDA00026176623900001324
为天然气井j的生产水平下限和上限。
(2.2.2)能量储存约束
天然气可以被大量储存在储气设备中,为天然气系统运行提供足够保障。因此,天然气储气设备供给的灵活性可以平衡日内的或者季节性的天然气负荷波动。天然气储气设备的约束包括储气量的平衡、储气容量的限制以及注入气量和流出气量的限制,即:
Figure BDA00026176623900001325
Figure BDA0002617662390000141
Figure BDA0002617662390000142
Figure BDA0002617662390000143
式中:Est为天然气储气设备s在t时刻的储气量;
Figure BDA0002617662390000144
Figure BDA0002617662390000145
分别为储气设备s的注入气量和流出气量;
Figure BDA0002617662390000146
Figure BDA0002617662390000147
分别代表储气设备s的最小和最大储气容量;
Figure BDA0002617662390000148
Figure BDA0002617662390000149
为储气设备s的最小和最大气流量限制。
(2.2.3)风力发电约束
每个时刻的风电场调度都受到预测的可用风力发电的限制,即:
Figure BDA00026176623900001410
式中:
Figure BDA00026176623900001411
为风电场w基础场景下的调度;
Figure BDA00026176623900001412
为风电场w预测出力,即可用的风力发电。
(2.3)网络约束
(2.3.1)节点平衡
电力系统和天然气系统同时具有能量流的节点平衡守恒规律。电力网络的节点平衡和天然气网络的节点平衡代表了一个节点的注入能量等于流出能量,即:
Figure BDA00026176623900001413
Figure BDA00026176623900001414
式中:
Figure BDA00026176623900001415
为电力输电线路l在基础场景下的潮流;s(l)/s(mn)和r(l)/r(mn)分别为输电线路l和天然气管道mn的送端(sending)母线/节点以及受端(receiving)母线/节点;
Figure BDA00026176623900001416
为基础场景的电力负荷d;G(m)为连接到天然气节点m的一系列设备集合;GLmn,t指天然气管道mn中的天然气潮流;Git和Gat分别代表燃气机组i的天然气消耗量和电转气设备a的天然气产量;Ggt为天然气负荷g的耗气量。
(2.3.2)能量潮流
电力系统输电网络可以通过直流潮流法(DC power flow)来模拟,其中,输电线路上的潮流由节点的相角差和线路的阻抗决定,即:
Figure BDA0002617662390000151
Figure BDA0002617662390000152
Figure BDA0002617662390000153
Figure BDA0002617662390000154
式中:
Figure BDA0002617662390000155
Figure BDA0002617662390000156
分别为输电线路l送端母线和受端母线的相角;xl为线路l的电抗;
Figure BDA0002617662390000157
指输电线路l最大的潮流限制;πmt为天然气节点m的气压平方;Kmn为天然气管道Weymouth特性参数。
(2.3.3)节点约束
电力网络的母线相角和天然气网络的节点气压都受到其上下界的限制,即:
Figure BDA0002617662390000158
Figure BDA0002617662390000159
Figure BDA00026176623900001510
式中:
Figure BDA00026176623900001511
Figure BDA00026176623900001512
分别为电力网络母线e相角最小和最大限制;
Figure BDA00026176623900001513
Figure BDA00026176623900001514
为天然气网络节点m最小和最大的气压平方限制;Γc>1为压缩常数,促进天然气从低气压节点流向高气压节点。
(2.4)气电耦合约束
燃气机组代表着最大的工业天然气用户,是天然气网络中的负荷。另一方面,电转气设备在天然气网络中为天然气生产设备。燃气机组的天然气消耗量和电转气设备的天然气生产量由其每小时的调度决定,即:
Figure BDA00026176623900001515
Figure BDA00026176623900001516
式中:HHV指高发热值(high heating value),其值为1.026MBtu/kcf;φ为能量转换系数,且=φ=3.4MBtu/MWh;
Figure BDA0002617662390000161
为电转气设备的效率。
(2.5)针对不确定性的约束
本发明只考虑电力系统中的不确定性。由于需要保证电力系统运行的安全性,采用一个双层的max-min问题来识别在不确定性环境下造成最大安全违规(largestviolation)场景,并且最大的安全违规必须小于调度人员设置的一个阈值。电力负荷和风力发电的不确定性合集、节点平衡、潮流和相角关系、潮流和相角的限制、容量的限制、不确定环境下矫正爬坡能力、上下爬坡能力以及松弛变量的非负性如下式所示:
Figure BDA0002617662390000162
Figure BDA0002617662390000163
Figure BDA0002617662390000164
Figure BDA0002617662390000165
Figure BDA0002617662390000166
Figure BDA0002617662390000167
Figure BDA0002617662390000168
Figure BDA0002617662390000169
Figure BDA00026176623900001610
Figure BDA00026176623900001611
Figure BDA00026176623900001612
Figure BDA00026176623900001613
Figure BDA0002617662390000171
Figure BDA0002617662390000172
v1t,v2t≥0
式中:不确定的电力负荷
Figure BDA0002617662390000173
可以在区间
Figure BDA0002617662390000174
之内任意取值。
Figure BDA0002617662390000175
Figure BDA0002617662390000176
分别为发电机组,电转气设备和风电场根据不同的电力负荷
Figure BDA0002617662390000177
以及风力发电
Figure BDA0002617662390000178
的不确定值,然后调整之后的调度安排;(·)u为在不确定环境下对应的变量;v1t和v2t为松弛变量;D分别W对应电力负荷和风力发电的不确定性合集;NT,ND和NW分别为小时,电力负荷和风电场的数量;
Figure BDA0002617662390000179
以及
Figure BDA00026176623900001710
为不确定性合集中的二进制指示标;Δd和Δw为不确定行预算,其取值范围在0到NT之间;
Figure BDA00026176623900001711
Figure BDA00026176623900001712
为电力负荷和风力发电的预测偏差;
Figure BDA00026176623900001713
Figure BDA00026176623900001714
分别为调整后潮流和母线相角;λ为约束条件对应的对偶变量;
Figure BDA00026176623900001715
Figure BDA00026176623900001716
为机组矫正动作下爬坡和上爬坡能力。
步骤3:建立CCG解法中的气电联合系统日前鲁棒协调优化调度模型主问题。
主问题为机组组合及调度安排问题,主要是最小化基础场景的运行成本,约束条件包括基础场景约束以及有关于最坏场景的约束最坏场景所对应的电力负荷
Figure BDA00026176623900001717
和风力发电
Figure BDA00026176623900001718
由第k次迭代中的子问题中求解得到。如下式所示:
ΔDk≤εRO
Figure BDA00026176623900001719
Figure BDA00026176623900001720
Figure BDA00026176623900001721
Figure BDA00026176623900001722
Figure BDA00026176623900001723
Figure BDA00026176623900001724
Figure BDA00026176623900001725
Figure BDA00026176623900001726
Figure BDA0002617662390000181
Figure BDA0002617662390000182
Figure BDA0002617662390000183
v1t,k,v2t,k≥0
Figure BDA0002617662390000184
Figure BDA0002617662390000185
Figure BDA0002617662390000186
Figure BDA0002617662390000187
Figure BDA0002617662390000188
Figure BDA0002617662390000189
Figure BDA00026176623900001810
Figure BDA00026176623900001811
Figure BDA00026176623900001812
Figure BDA00026176623900001813
Figure BDA00026176623900001814
式中:(·)worst为最坏场景对应的变量。
步骤4:利用辅助二进制变量f将非线性的天然气潮流模型中的符号函数sgn替换掉,再引入辅助变量r来代表公式中的乘积项,最后通过分段线性化将主问题中的非线性的天然气潮流模型转换为混合整数线性规划(MILP)的形式。
首先由于混合整数非线性规划问题求解起来比较困难,并且电力系统调度员也比较倾向于使用混合整数线性规划模型来安排日前机组组合和调度安排。故本发明也将模型中非线性的天然气潮流模型转换为混合整数线性规划(MILP)的形式,来得到更好的运算效率。
(4.1)利用辅助二进制变量f将非线性的天然气潮流模型中的符号函数sgn替换掉,于是得到如下公式:
Figure BDA0002617662390000191
Figure BDA0002617662390000192
Figure BDA0002617662390000193
Figure BDA0002617662390000194
式中:
Figure BDA0002617662390000195
Figure BDA0002617662390000196
分别指代天然气在管道mn中的流动方向,比如
Figure BDA0002617662390000197
就代表天然气由节点m流向节点n。
(4.2)进一步,引入辅助变量r来代表上式中的乘积项,再根据著名的代数运算结果,得到以下公式:
Figure BDA0002617662390000198
Figure BDA0002617662390000199
Figure BDA00026176623900001910
Figure BDA00026176623900001911
Figure BDA00026176623900001912
式中:
Figure BDA00026176623900001913
Figure BDA00026176623900001914
为节点m气压平方的下界和上界。
(4.3)最后,利用分段线性化的方法将在一定区间范围内的单一变量的平方y=q2进行线性逼近,如下式所示:
Figure BDA00026176623900001915
Figure BDA00026176623900001916
Figure BDA00026176623900001917
Figure BDA00026176623900001918
步骤5:建立CCG求解中的气电联合系统日前鲁棒协调优化调度模型子问题。
子问题为最坏场景的确定辨识问题,用来找到造成最大安全违规的场景,再通过对偶理论将其转化为单层的双线性最大化优化问题,再利用极值点方法将双线性的问题转化为混合整数线性规划问题,具体如下式所示:
Figure BDA0002617662390000201
s.t.-1≤λ1,et≤1
Figure BDA0002617662390000202
1,s(l)t1,r(l)t+xl·λ2,lt3,lt4,lt=0
λ1,et7,it8,it11,it12,it13,i(t+1)14,i(t+1)≤0,t=1,i∈N(e)
λ1,et7,it8,it11,it12,it13,it14,it13,i(t+1)14,i(t+1)≤0,
t=2,...,NT-1,i∈N(e)
λ1,et7,it8,it11,it12,it13,it14,it≤0,t=NT,i∈N(e)
1,et9,at≤0,a∈N(e)
λ1,et10,wt≤0,w∈N(e)
λ3,lt4,lt5,et6,et7,it8,it9,at10,wt11,it12,it13,it14,it≤0
Figure BDA0002617662390000203
Figure BDA0002617662390000204
Figure BDA0002617662390000205
Figure BDA0002617662390000206
Figure BDA0002617662390000207
Figure BDA0002617662390000208
式中:
Figure BDA0002617662390000209
Figure BDA00026176623900002010
为辅助的连续变量,分别对应不确定的电力负荷
Figure BDA00026176623900002011
取到其均值,上限和下限;
Figure BDA00026176623900002012
Figure BDA00026176623900002013
为辅助的二进制变量,也是分别对应不确定的电力负荷
Figure BDA00026176623900002014
取到其均值,上限和下限。
步骤6:运用CCG法求解气电联合系统日前鲁棒协调优化调度模型。
具体步骤包括以下4步:
1)设置电力系统最坏场景的最大安全违规阈值εRO和迭代计数器k=1。
2)求解CCG法所描述的主问题,将求解所得到的最优结果
Figure BDA0002617662390000211
Figure BDA0002617662390000212
带入到CCG法描述的子问题中来检验电力系统的安全性。
3)根据主问题得到的最优结果
Figure BDA0002617662390000213
Figure BDA0002617662390000214
求解CCG法描述的子问题,辨识得到电力系统最坏场景对应的电力负荷
Figure BDA0002617662390000215
和风力发电
Figure BDA0002617662390000216
4)如果得到的最坏场景的最大安全违规小于设置的阈值εRO,停止迭代;否则,利用第k次迭代中得到的最坏场景
Figure BDA0002617662390000217
Figure BDA0002617662390000218
生成CCG约束,返回步骤2)继续迭代。
步骤7:输入气电联合系统数据、设备参数、运行参数等,采用商业求解器Gurobi对综合能源配网优化运行模型进行求解,得出气电联合系统短期协调优化结果。
下面通过具体实施例详细说明本发明效果。
(1)算例介绍
算例采用24母线的IEEE标准RTS电力系统以及12节点的天然气系统进行计算。24母线的电力系统如图4所示,12节点的天然气系统如图5所示。电力系统包含了26个发电机组,其中7个为燃气机组,38条输电线路,电力负荷峰值为2850MW。发电机组1-4连接母线1,由天然气网络节点11供气,发电机组5连接母线16,由天然气网络节点5供气,并且发电机组6-7连接母线23,由天然气网络节点12供气。本发明采用冬天电力负荷曲线,并且输电线路的输电容量减小为原来的60%。其中连接母线22的水电机组替换为容量为300MW的风电场,另外,在母线18处添加一个200MW的风电场。
电力负荷和风力发电的预测值,预测下限和预测上限,以及最坏场景的曲线如图6和图7所示。
12节点的天然气系统包含3个天然气气井,8个天然气管道,2个压缩机站,1个储气设备,8个天然气负荷。天然气储气设备位于天然气网络节点5,其最大注入气量和流出气量为500kcf/h,最大储气容量为4000kcf。非燃气机组的燃料价格为2.5$/MBtu,3个天然气气井的生产成本分别为2$/kcf,2$/kcf以及2.1$/kcf。天然气储气设备的运行成本是注入天然气和流出天然气产生的费用,设为0.3$/kcf。气电联合系统还包括2个电转气设备,分别连接电力系统母线16和17,以及天然气系统节点5和3。两个电转气设备的容量分别为100MW和50MW,效率为0.64。需要注意的是,连接电力网络母线16和天然气网络节点5的,燃气机组,电转气设备和储能设备构成一个能量枢纽。
测试工具为matlab编程,Gurobi求解器求解。使用的电脑为主频2.6GHz的英特尔i7处理器以及12GB的内存。
(2)实施例场景介绍
为验证本发明所提出的基于鲁棒优化的气电联合系统协调优化调度模型的有效性,本发明通过以下5个实例来验证气电联合系统鲁棒优化协调调度的有效性。
实例1:不包含电转气设备的确定性算例,即不考虑电力负荷和风力发电的不确定性。
实例2:在实例1中考虑电转气设备。
实例3:实例1中考虑鲁棒优化的协调调度。
实例4:实例2中考虑鲁棒优化的协调调度。
实例5:实例4中考虑不同的不确定性预算。
(3)实例结果分析
由图8可以得到:电转气设备在1点到6点的时候运行,其余时刻是燃气机组进行发电。1点到6点的时候,风力发电充足,但是电力系统不能提供足够的向下爬坡能力来接纳过剩的风电。此时启用电转气设备来将过剩的风能转化为天然气,这样做既能减小弃风,也能使系统运行更加的经济。在剩下的其他时间段,电力负荷相对较高时,启用燃气机组为系统提供向上和向下爬坡能力来应对最坏场景。因此,在保证气电联合系统运行的经济性和安全性方面,能量枢纽在能量的转换和储存中起来了很重要的作用。位于同一地理位置的燃气机组和电转气设备的运行就像抽水蓄能一样,将整个天然气系统作为储蓄设备,能够有效地减小电力负荷和风力发电的波动和不确定性。
从表1中可以看出,随机优化模型得到的结果和鲁棒优化模型取不确定性预算为1时得到的结果比较接近。因为随机优化模型考虑了大部分的高概率的场景,所以得到的运行成本较低。但此时系统并不鲁棒,因为当出现低概率的最坏场景时,电力系统将面临严重的失负荷以及较大的运行成本。
表1不同不确定性预算的结果对比
Figure BDA0002617662390000231
本发明提出的气电联合系统的鲁棒协调优化调度模型和随机优化的运行计算效率通过表2进行对比。不确定性预算为1的鲁棒优化模型辨识出了12个最坏场景,且整个程序的运行时间为4441秒。运行时间长是因为模型进行了12次迭代,并且加入了大量的复杂天然气系统约束。相比之下,拥有10个场景的随机优化模型的计算时间则相对较少,为709秒。主要原因是其不包含最坏场景辨识子问题,以及没有循环迭代。另外,不同的不确定性预算能够影响鲁棒优化模型的运算时间。当不确定性预算设置为24时,辨识出来的最坏场景只有一个,这大大缩短了CCG算法迭代的次数,并且总的计算时间减少为142秒。
表2模型计算性能的对比
不确定性预算 总时间(s) 迭代次数/场景数
0 36 0
1 4441 12
24 142 1
随机优化 649 10
以上所述,仅为本发明的具体实施例,但并不因此限值本发明的专利保护范围,凡是利用本发明说明书以及附图内容进行等效变化或替换,直接或间接运用到其他相关技术领域,都应包括在本发明的保护范围之内。

Claims (8)

1.一种气电联合系统日前鲁棒协调优化调度方法,其特征在于,包括以下步骤:
步骤1:建立气电联合系统中的能量枢纽;
步骤2:构建以最小化基础场景系统中与能量供应以及储能设备运行相关的总成本为目标函数,考虑协调优化调度运行约束、协调优化调度网络约束、气电耦合约束和考虑不确定性的约束的气电联合系统日前鲁棒协调优化调度模型;
步骤3:建立CCG求解法中的气电联合系统日前鲁棒协调优化调度模型主问题;
步骤4:利用辅助二进制变量f将非线性的天然气潮流模型中的符号函数sgn替换掉,再引入辅助变量r来代表公式中的乘积项,最后通过分段线性化将主问题中的非线性的天然气潮流模型转换为混合整数线性规划的形式;
步骤5:建立CCG求解中的气电联合系统日前鲁棒协调优化调度模型子问题;
步骤6:运用CCG法求解气电联合系统日前鲁棒协调优化调度模型;
步骤7:输入气电联合系统数据、设备参数、运行参数等,采用商业求解器Gurobi对综合能源配网优化运行模型进行求解,得出气电联合系统短期协调优化结果。
2.根据权利要求1所述的气电联合系统日前鲁棒协调优化调度方法,其特征在于,步骤1所述气电联合系统中的能量枢纽具体如下:
能量枢纽代表电能和天然气之间的转换和储存过程,具体包括燃气机组、电转气设备和储气设备。
3.根据权利要求1所述的气电联合系统日前鲁棒协调优化调度方法,其特征在于,步骤2所述气电联合系统日前鲁棒协调优化调度模型具体如下:
(1)目标函数
Figure FDA0002617662380000021
式中:t,i,j分别为为时间,发电机组和天然气气井的索引;GU为燃气机组的集合;(·)b为基础场景对应的变量;
Figure FDA0002617662380000022
为基础场景中机组i的调度出力安排;Fi c和Ci fuel分别机组i的热耗曲线以及燃料价格;
Figure FDA0002617662380000023
Figure FDA0002617662380000024
分别为机组i开机和停机的燃料消耗;Gjt为天然气井j的产气量;
Figure FDA0002617662380000025
指天然气储气设备s的天然气流出量;
Figure FDA0002617662380000026
Figure FDA0002617662380000027
分别为天然气井j的生产成本和天然气储气设备s的储气费用;
(2)运行约束
(2.1)能量生产约束
Figure FDA0002617662380000028
Figure FDA0002617662380000029
Figure FDA00026176623800000210
Figure FDA00026176623800000211
Figure FDA00026176623800000212
Figure FDA00026176623800000213
Figure FDA00026176623800000214
Figure FDA00026176623800000215
Figure FDA00026176623800000216
Figure FDA00026176623800000217
式中:a为电转气设备的索引;
Figure FDA00026176623800000218
Figure FDA00026176623800000219
机组i和电转气设备a在t时刻的工作状态(commitment statuses);
Figure FDA00026176623800000220
机组i在t-1时刻的工作状态;Pi min和Pi max为机组i的最小和最大容量;
Figure FDA00026176623800000221
和Pa max分别为电转气设备a的基础场景调度和最大容量;
Figure FDA00026176623800000222
为基础场景中机组i在t时刻的调度出力安排;
Figure FDA00026176623800000223
为基础场景中机组i在t-1时刻的调度出力安排;
Figure FDA00026176623800000224
Figure FDA00026176623800000225
分别为机组i开机和停机的燃料消耗;N(e)为连接到母线e的一系列设备集合;
Figure FDA0002617662380000038
Figure FDA0002617662380000039
代表机组i在t时刻的开机和停机时间计数器;
Figure FDA00026176623800000311
Figure FDA00026176623800000310
代表机组i在t-1时刻的的开机和停机时间计数器;Ti on和Ti off为机组i最小开停机时间;sui和sdi分别为机组i开机和停机的燃料消耗;URi和DRi分别为机组i的上爬坡率和下爬坡率;Gjt为天然气井j的生产水平;
Figure FDA00026176623800000312
Figure FDA00026176623800000313
为天然气井j的生产水平下限和上限;
(2.2)能量储存约束
Figure FDA0002617662380000031
Figure FDA0002617662380000032
Figure FDA0002617662380000033
Figure FDA0002617662380000034
式中:Est为天然气储气设备s在t时刻的储气量;
Figure FDA00026176623800000322
Figure FDA00026176623800000323
分别为储气设备s的注入气量和流出气量;
Figure FDA00026176623800000316
Figure FDA00026176623800000317
分别代表储气设备s的最小和最大储气容量;
Figure FDA00026176623800000314
Figure FDA00026176623800000315
为储气设备s的最小和最大气流量限制;
(2.3)风力发电约束
Figure FDA0002617662380000035
式中:
Figure FDA00026176623800000319
为风电场w基础场景下的调度;
Figure FDA00026176623800000318
为风电场w预测出力,即可用的风力发电;
(3)网络约束
(3.1)节点平衡
Figure FDA0002617662380000036
Figure FDA0002617662380000037
式中:
Figure FDA00026176623800000320
为电力输电线路l在基础场景下的潮流;s(l)/s(mn)和r(l)/r(mn)分别为输电线路l和天然气管道mn的送端(sending)母线/节点以及受端(receiving)母线/节点;
Figure FDA00026176623800000321
为基础场景的电力负荷d;G(m)为连接到天然气节点m的一系列设备集合;GLmn,t指天然气管道mn中的天然气潮流;Git和Gat分别代表燃气机组i的天然气消耗量和电转气设备a的天然气产量;Ggt为天然气负荷g的耗气量;
(3.2)能量潮流
Figure FDA0002617662380000041
Figure FDA0002617662380000042
Figure FDA0002617662380000043
Figure FDA0002617662380000044
式中:
Figure FDA00026176623800000412
Figure FDA00026176623800000413
分别为输电线路l送端母线和受端母线的相角;xl为线路l的电抗;
Figure FDA00026176623800000414
指输电线路l最大的潮流限制;πmt为天然气节点m的气压平方;Kmn为天然气管道Weymouth特性参数;
(3.3)节点约束
Figure FDA0002617662380000045
Figure FDA0002617662380000046
Figure FDA0002617662380000047
式中:
Figure FDA00026176623800000415
Figure FDA00026176623800000416
分别为电力网络母线e相角最小和最大限制;
Figure FDA00026176623800000418
Figure FDA00026176623800000417
为天然气网络节点m最小和最大的气压平方限制;Γc>1为压缩常数,促进天然气从低气压节点流向高气压节点;
(4)气电耦合约束
Figure FDA0002617662380000048
Figure FDA0002617662380000049
式中:HHV指高发热值(high heating value),其值为1.026MBtu/kcf;φ为能量转换系数,且=φ=3.4MBtu/MWh;
Figure FDA00026176623800000411
为电转气设备的效率;
(5)针对不确定性的约束
Figure FDA00026176623800000410
Figure FDA0002617662380000051
Figure FDA0002617662380000052
Figure FDA0002617662380000053
Figure FDA0002617662380000054
Figure FDA0002617662380000055
Figure FDA0002617662380000056
Figure FDA0002617662380000057
Figure FDA0002617662380000058
Figure FDA0002617662380000059
Figure FDA00026176623800000510
Figure FDA00026176623800000511
Figure FDA00026176623800000512
Figure FDA00026176623800000513
v1t,v2t≥0
式中:不确定的电力负荷
Figure FDA00026176623800000520
可以在区间
Figure FDA00026176623800000514
之内任意取值。
Figure FDA00026176623800000526
Figure FDA00026176623800000516
分别为发电机组,电转气设备和风电场根据不同的电力负荷
Figure FDA00026176623800000521
以及风力发电
Figure FDA00026176623800000517
的不确定值,然后调整之后的调度安排;(·)u为在不确定环境下对应的变量;v1t和v2t为松弛变量;D分别W对应电力负荷和风力发电的不确定性合集;NT,ND和NW分别为小时,电力负荷和风电场的数量;
Figure FDA00026176623800000522
以及
Figure FDA00026176623800000523
为不确定性合集中的二进制指示标;Δd和Δw为不确定行预算,其取值范围在0到NT之间;
Figure FDA00026176623800000519
Figure FDA00026176623800000518
为电力负荷和风力发电的预测偏差;
Figure FDA00026176623800000524
Figure FDA00026176623800000525
分别为调整后潮流和母线相角;λ为约束条件对应的对偶变量;Ri down和Ri up为机组矫正动作下爬坡和上爬坡能力。
4.根据权利要求1所述的气电联合系统日前鲁棒协调优化调度方法,其特征在于,步骤3所述CCG求解法中的气电联合系统日前鲁棒协调优化调度模型主问题具体如下:
ΔDk≤εRO
Figure FDA0002617662380000061
Figure FDA0002617662380000062
Figure FDA0002617662380000063
Figure FDA0002617662380000064
Figure FDA0002617662380000065
Figure FDA0002617662380000066
Figure FDA0002617662380000067
Figure FDA0002617662380000068
Figure FDA0002617662380000069
Figure FDA00026176623800000610
Figure FDA00026176623800000611
v1t,k,v2t,k≥0
Figure FDA00026176623800000612
Figure FDA00026176623800000613
Figure FDA00026176623800000614
Figure FDA00026176623800000615
Figure FDA00026176623800000616
Figure FDA00026176623800000617
Figure FDA00026176623800000618
Figure FDA00026176623800000619
Figure FDA00026176623800000620
Figure FDA0002617662380000071
Figure FDA0002617662380000072
式中:(·)worst为最坏场景对应的变量。
5.根据权利要求1所述的气电联合系统日前鲁棒协调优化调度方法,其特征在于,步骤4所述将非线性的天然气潮流模型转换为混合整数线性规划的形式具体如下:
(1)利用辅助二进制变量f将非线性的天然气潮流模型中的符号函数sgn替换掉,于是得到如下公式:
Figure FDA0002617662380000073
Figure FDA0002617662380000074
Figure FDA0002617662380000075
Figure FDA0002617662380000076
式中:
Figure FDA0002617662380000077
Figure FDA0002617662380000078
分别指代天然气在管道mn中的流动方向,比如
Figure FDA0002617662380000079
就代表天然气由节点m流向节点n;
(2)进一步,引入辅助变量r来代表上式中的乘积项,再根据著名的代数运算结果,得到以下公式:
Figure FDA00026176623800000710
Figure FDA00026176623800000711
Figure FDA00026176623800000712
Figure FDA00026176623800000713
Figure FDA00026176623800000714
式中:
Figure FDA00026176623800000715
Figure FDA00026176623800000716
为节点m气压平方的下界和上界;
(3)最后,利用分段线性化的方法将在一定区间范围内的单一变量的平方y=q2进行线性逼近,如下式所示:
Figure FDA00026176623800000717
Figure FDA00026176623800000718
Figure FDA0002617662380000081
Figure FDA0002617662380000082
6.根据权利要求1所述的气电联合系统日前鲁棒协调优化调度方法,其特征在于,步骤5所述CCG求解法中的气电联合系统日前鲁棒协调优化调度模型子问题具体如下:
Figure FDA0002617662380000083
s.t.-1≤λ1,et≤1
Figure FDA0002617662380000084
1,s(l)t1,r(l)t+xl·λ2,lt3,lt4,lt=0
λ1,et7,it8,it11,it12,it13,i(t+1)14,i(t+1)≤0,t=1,i∈N(e)
λ1,et7,it8,it11,it12,it13,it14,it13,i(t+1)14,i(t+1)≤0,
t=2,...,NT-1,i∈N(e)
λ1,et7,it8,it11,it12,it13,it14,it≤0,t=NT,i∈N(e)
1,et9,at≤0,a∈N(e)
λ1,et10,wt≤0,w∈N(e)
λ3,lt4,lt5,et6,et7,it8,it9,at10,wt11,it12,it13,it14,it≤0
Figure FDA0002617662380000085
Figure FDA0002617662380000086
Figure FDA0002617662380000087
Figure FDA0002617662380000088
Figure FDA0002617662380000089
Figure FDA00026176623800000810
式中:
Figure FDA0002617662380000091
Figure FDA0002617662380000092
为辅助的连续变量,分别对应不确定的电力负荷
Figure FDA0002617662380000093
取到其均值,上限和下限;
Figure FDA0002617662380000094
Figure FDA0002617662380000095
为辅助的二进制变量,也是分别对应不确定的电力负荷
Figure FDA0002617662380000096
取到其均值,上限和下限。
7.根据权利要求1所述的气电联合系统日前鲁棒协调优化调度方法,其特征在于,步骤6所述CCG法求解气电联合系统日前鲁棒协调优化调度模型具体如下:
具体步骤包括以下4步:
1)设置电力系统最坏场景的最大安全违规阈值εRO和迭代计数器k=1;
2)求解CCG法所描述的主问题,将求解所得到的最优结果
Figure FDA0002617662380000097
Figure FDA0002617662380000098
带入到CCG法描述的子问题中来检验电力系统的安全性;
3)根据主问题得到的最优结果
Figure FDA0002617662380000099
Figure FDA00026176623800000910
求解CCG法描述的子问题,辨识得到电力系统最坏场景对应的电力负荷
Figure FDA00026176623800000911
和风力发电
Figure FDA00026176623800000912
4)如果得到的最坏场景的最大安全违规小于设置的阈值εRO,停止迭代;否则,利用第k次迭代中得到的最坏场景
Figure FDA00026176623800000913
Figure FDA00026176623800000914
生成CCG约束,返回步骤2)继续迭代。
8.根据权利要求1所述的气电联合系统日前鲁棒协调优化调度方法,其特征在于,步骤7所述气电联合系统数据还包括配网系统拓扑结构以及各线路信息,所述设备参数包括燃气机组、电转气设备、风力发电机的数量、容量以及出力上下限等,所述运行参数包括向上级网络购入能源的价格、设备的各种运行参数、负荷侧数值以及电、气负荷预测数据。
CN202010773908.1A 2020-08-04 2020-08-04 气电联合系统日前鲁棒协调优化调度方法 Pending CN112018756A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010773908.1A CN112018756A (zh) 2020-08-04 2020-08-04 气电联合系统日前鲁棒协调优化调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010773908.1A CN112018756A (zh) 2020-08-04 2020-08-04 气电联合系统日前鲁棒协调优化调度方法

Publications (1)

Publication Number Publication Date
CN112018756A true CN112018756A (zh) 2020-12-01

Family

ID=73500171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010773908.1A Pending CN112018756A (zh) 2020-08-04 2020-08-04 气电联合系统日前鲁棒协调优化调度方法

Country Status (1)

Country Link
CN (1) CN112018756A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701687A (zh) * 2021-01-25 2021-04-23 四川大学 考虑价格型联合需求响应的气电配网系统鲁棒优化运行方法
CN112713615A (zh) * 2020-12-23 2021-04-27 山东大学 电—气综合能源系统快速协调调度方法及系统
CN115169950A (zh) * 2022-07-26 2022-10-11 山东大学 一种基于多参数规划的电-气系统分布式协同方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160258361A1 (en) * 2015-03-03 2016-09-08 General Electric Company Methods and systems for enhancing control of power plant generating units
CN106372742A (zh) * 2016-08-19 2017-02-01 天津大学 考虑电转气多源储能型微网日前最优经济调度方法
CN110061528A (zh) * 2019-04-11 2019-07-26 华中科技大学 一种气电联合系统日前鲁棒调度方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160258361A1 (en) * 2015-03-03 2016-09-08 General Electric Company Methods and systems for enhancing control of power plant generating units
CN106372742A (zh) * 2016-08-19 2017-02-01 天津大学 考虑电转气多源储能型微网日前最优经济调度方法
CN110061528A (zh) * 2019-04-11 2019-07-26 华中科技大学 一种气电联合系统日前鲁棒调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHUAN HE,ET AL: ""Robust coordination of interdependent electricity and natural gas systems in day-ahead scheduling for facilitating volatile renewable generations via power-to-gas technology"", 《JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713615A (zh) * 2020-12-23 2021-04-27 山东大学 电—气综合能源系统快速协调调度方法及系统
CN112701687A (zh) * 2021-01-25 2021-04-23 四川大学 考虑价格型联合需求响应的气电配网系统鲁棒优化运行方法
CN112701687B (zh) * 2021-01-25 2023-03-24 四川大学 考虑价格型联合需求响应的气电配网系统鲁棒优化运行方法
CN115169950A (zh) * 2022-07-26 2022-10-11 山东大学 一种基于多参数规划的电-气系统分布式协同方法及系统

Similar Documents

Publication Publication Date Title
Nguyen-Hong et al. Optimal sizing of energy storage devices in isolated wind-diesel systems considering load growth uncertainty
Qadrdan et al. Operating strategies for a GB integrated gas and electricity network considering the uncertainty in wind power forecasts
Ma et al. Risk-constrained non-probabilistic scheduling of coordinated power-to-gas conversion facility and natural gas storage in power and gas based energy systems
Clegg et al. Storing renewables in the gas network: modelling of power‐to‐gas seasonal storage flexibility in low‐carbon power systems
Alabdulwahab et al. Coordination of interdependent natural gas and electricity infrastructures for firming the variability of wind energy in stochastic day-ahead scheduling
Moradi-Sepahvand et al. Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation
Fu et al. Research on joint optimal dispatching method for hybrid power system considering system security
CN107944757A (zh) 电力互联系统可再生能源消纳能力评估分析方法
CN112018756A (zh) 气电联合系统日前鲁棒协调优化调度方法
CN111769553A (zh) 考虑风电不确定性的气电互联系统优化运行方法
Javadi et al. Optimal spinning reserve allocation in presence of electrical storage and renewable energy sources
Chen et al. Stochastic dynamic economic dispatch of wind-integrated electricity and natural gas systems considering security risk constraints
Shabazbegian et al. Co-optimization of resilient gas and electricity networks; a novel possibilistic chance-constrained programming approach
Zhang et al. Feasibility identification and computational efficiency improvement for two-stage RUC with multiple wind farms
Ameli et al. Coordinated operation of gas and electricity systems for flexibility study
Chen et al. Gas-power coordination: from day-ahead scheduling to actual operation
Faridpak et al. A series multi-step approach for operation Co-optimization of integrated power and natural gas systems
Li et al. A two-stage distributionally robust optimization model for wind farms and storage units jointly operated power systems
Zhang et al. Multitime scale co-optimized dispatch for integrated electricity and natural gas system considering bidirectional interactions and renewable uncertainties
Sun et al. Improving the restorability of bulk power systems with the implementation of a WF-BESS system
Wen et al. Optimal distributed energy storage investment scheme for distribution network accommodating high renewable penetration
Pudjianto et al. Whole system value of long-duration electricity storage in systems with high penetration of renewables
Liu et al. Accommodating uncertain wind power investment and coal-fired unit retirement by robust energy storage system planning
Tiwari et al. Unit commitment problem in renewable integrated environment with storage: A review
Zhang et al. Multiple stage stochastic planning of integrated electricity and gas system based on distributed approximate dynamic programming

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201201

RJ01 Rejection of invention patent application after publication