CN112018587B - 一种抑制sbs实现高功率单频光纤激光输出的方法 - Google Patents

一种抑制sbs实现高功率单频光纤激光输出的方法 Download PDF

Info

Publication number
CN112018587B
CN112018587B CN202010733214.5A CN202010733214A CN112018587B CN 112018587 B CN112018587 B CN 112018587B CN 202010733214 A CN202010733214 A CN 202010733214A CN 112018587 B CN112018587 B CN 112018587B
Authority
CN
China
Prior art keywords
pump light
power
light
fiber laser
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010733214.5A
Other languages
English (en)
Other versions
CN112018587A (zh
Inventor
徐善辉
杨昌盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hengqin Firay Sci Tech Co ltd
Original Assignee
Hengqin Firay Sci Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hengqin Firay Sci Tech Co ltd filed Critical Hengqin Firay Sci Tech Co ltd
Priority to CN202010733214.5A priority Critical patent/CN112018587B/zh
Publication of CN112018587A publication Critical patent/CN112018587A/zh
Application granted granted Critical
Publication of CN112018587B publication Critical patent/CN112018587B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种抑制SBS实现高功率单频光纤激光输出的系统及方法,系统为:基于主振荡器功率放大器(MOPA)结构的全光纤激光系统;该系统由种子光纤和主放大器组成;种子激光器通过模场适配器耦合到主放大级,主放大器级由合束器、半导体激光器、Nufern PLMA‑YDF‑25/400、包层功率剥离器(CPS)和输出石英块保持器(QBH)组成。方法包含以下步骤:1、对泵浦光进行筛选,2、对泵浦光进行光束整形提高光束质量,3、合束器进行选择,4、改变信号光大小与泵浦光测试功率大小;本发明通过提高上能级与下能级转移速率以提高输出光功率,为提高泵浦光的使用率,对泵浦光光束进行整形提高其光束质量进一步增加泵浦光吸收。

Description

一种抑制SBS实现高功率单频光纤激光输出的方法
【技术领域】
本发明涉及光纤激光技术领域,具体涉及到一种抑制SBS实现高功率单频光纤激光输出的系统及方法。
【背景技术】
单频光纤激光器具有结构简单、体积小、重量轻、散热性好、环境影响小、免维护等优点。在很多应用领域,通常要求单频光纤激光具有大功率或高能量输出,如非线形频率转换、相干合束、激光雷达等。甚至,一些更为特殊的应用领域,对输出激光的工作波长、偏振态、线宽、光束质量、运转状态等性能指标也提出了一定的要求。然而,基于单一振荡器(或谐振腔) 形式的单频光纤激光器,虽然可以实现稳定地单一纵模(单频)激光运转,但是一般都使用单模纤芯泵浦方式,强烈受制于单模泵浦源可提供的低泵浦功率和腔内热效应等因素,其输出功率被限制在百毫瓦量级水平。从上述的分析可知,依赖单一振荡器或谐振腔直接输出大功率单频光纤激光存在困难。为了获得大功率单频光纤激光输出,可以将小功率单频激光器作为种子源,使用主振荡功率放大(master oscillator power amplifier,MOPA)技术方案进行单频激光的功率放大。在大功率MOPA单频激光器中,由于双包层光纤相对有限的纤芯尺寸、较长的作用长度以及线宽较窄,容易受到非线形效应的影响。对于连续单频光纤激光器而言,存在的主要非线形效应有受激布里渊散射(SBS)、受激拉曼散射(SRS)和光克尔效应等。
窄线宽MOPA单频激光输出功率还是主要受限于SBS效应,当前进一步提升MOPA单频激光输出功率的关键问题就是如何抑制SBS效应。提高 SBS阈值的方式主要有:①增大双包层光纤的模场面积(大芯径)以降低信号激光的功率密度,即使用短长度(典型:1~3m)大模场面积光纤;②在沿双包层光纤轴向施加温度或应力分布等,以降低SBS的有效增益系数;③使用窄线宽或多波长种子源,信号功率分布在多个频率成分上,使得每个频率成分的谱功率密度降低;④使用特殊结构的光纤来抑制SBS。
抑制SBS最有效方式使用短长度大芯径的高掺杂Yb3+增益光纤,但大芯径影响激光器光束质量指标,同时高惨杂增益光纤市场难以购买。为解决上述问题,本发明在不增加芯径与惨杂浓度采用(6+1)×1合数器增大泵浦光耦合进增益光纤以提高Yb3+上能级转化率,同时提高注入信号光功率增加上能级粒子转移至下能级。通过提高上能级与下能级转移速率以提高输出光功率。为提高泵浦光的使用率,对泵浦光光束进行整形提高其光束质量进一步增加泵浦光吸收。
【发明内容】
为解决上述问题,本发明提出了一种抑制SBS实现高功率单频光纤激光输出的系统及方法。
本发明的技术方案如下:
一种抑制SBS实现高功率单频光纤激光输出的方法:
所述抑制SBS实现高功率单频光纤激光输出的系统为基于主振荡器功率放大器(MOPA)结构的全光纤激光系统;该系统由种子光纤和主放大器组成;种子激光器通过模场适配器耦合到主放大级;
所述主放大器级由(6+1)×1合束器、6个半导体激光器、Nufern PLMA-YDF-25/400、包层功率剥离器(CPS)和输出石英块保持器(QBH) 组成;
所述抑制SBS实现高功率单频光纤激光输出的方法包括如下步骤:
步骤1:对泵浦光进行筛选:
采用光束质量分析仪对半导体激光器产生的泵浦光进行测试,选取数值孔径(NA)<1.8的泵浦光使用;
步骤2:对泵浦光进行光束整形提高光束质量:
将步骤1中选取的泵浦光光纤走势设计为漏斗形状,得到数值孔径(NA) <1.4泵浦光;
步骤3:合束器进行选择:
将信号光与泵浦光通入合束器进行测试:泵浦光和信号光耦合效率均高于95%,且测试其光斑是否正常:信号光光斑椭圆度高于98%,同时将6个泵浦模块接入合束器测试其能量分布(高斯分布)是否集中于中心位置;
步骤4:改变信号光大小与泵浦光测试功率大小:信号光与最终输出高功率单频光纤激光比例为1:400,泵浦光与最终输出高功率单频光纤激光比例为 2:1,Nufern PLMA-YDF-25/400按照上述比例调节大小,得到高功率单频激光。
本发明在不增加芯径与惨杂浓度采用(6+1)×1合数器增大泵浦光耦合进增益光纤以提高Yb3+上能级转化率,通过提高上能级(粒子对泵浦光的吸收)与下能级(激光输出)转移速率提高输出功率,再不改变增益光纤参数是提高激光器输出功率(通过提高上能级(粒子对泵浦光的吸收)与下能级 (激光输出)转移速率提高输出功率)为提高泵浦光的使用率,对泵浦光光束进行整形提高其光束质量进一步增加泵浦光吸收。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处描述的具体实施例仅用于解释本发明,并不用于限定本发明。
一种抑制SBS实现高功率单频光纤激光输出的方法:
所述抑制SBS实现高功率单频光纤激光输出的系统为基于主振荡器功率放大器(MOPA)结构的全光纤激光系统;该系统由种子光纤和主放大器组成;种子激光器通过模场适配器耦合到主放大级;
所述主放大器级由(6+1)×1合束器、6个半导体激光器、Nufern PLMA-YDF-25/400、包层功率剥离器(CPS)和输出石英块保持器(QBH) 组成;
所述抑制SBS实现高功率单频光纤激光输出的方法包括如下步骤:
步骤1:对泵浦光进行筛选:
采用光束质量分析仪对半导体激光器产生的泵浦光进行测试,选取数值孔径(NA)<1.8的泵浦光使用;
步骤2:对泵浦光进行光束整形提高光束质量:
将步骤1中选取的泵浦光光纤走势设计为漏斗形状,得到数值孔径(NA) <1.4泵浦光;
步骤3:合束器进行选择:
将信号光与泵浦光通入合束器进行测试:泵浦光和信号光耦合效率均高于95%,且测试其光斑是否正常:信号光光斑椭圆度高于98%,同时将6个泵浦模块接入合束器测试其能量分布(高斯分布)是否集中于中心位置;
步骤4:改变信号光大小与泵浦光测试功率大小:信号光与最终输出高功率单频光纤激光比例为1:400,泵浦光与最终输出高功率单频光纤激光比例为 2:1,Nufern PLMA-YDF-25/400按照上述比例调节大小,得到高功率单频激光。
在980nm处,25/400有源光纤的泵浦吸收系数为0.6db/m,并对增益光纤的长度进行了优化,以保证有效的泵浦吸收和非线性效应抑制。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种抑制SBS实现高功率单频光纤激光输出的方法,其特征在于,
所述抑制SBS实现高功率单频光纤激光输出的系统为基于主振荡器功率放大器(MOPA)结构的全光纤激光系统;该系统由种子光纤和主放大器组成;种子激光器通过模场适配器耦合到主放大级;
所述主放大器级由(6+1)×1合束器、6个半导体激光器、Nufern PLMA-YDF-25/400、包层功率剥离器(CPS)和输出石英块保持器(QBH)组成;
在980nm处,25/400有源光纤的泵浦吸收系数为0.6db/m;
所述抑制SBS实现高功率单频光纤激光输出的方法包括如下步骤:
步骤1:对泵浦光进行筛选:
采用光束质量分析仪对半导体激光器产生的泵浦光进行测试,选取数值孔径(NA)<1.8的泵浦光使用;
步骤2:对泵浦光进行光束整形提高光束质量:
将步骤1中选取的泵浦光光纤走势设计为漏斗形状,得到数值孔径(NA)<1.4泵浦光;
步骤3:合束器进行选择:
将信号光与泵浦光通入合束器进行测试:泵浦光和信号光耦合效率均高于95%,且测试其光斑是否正常:信号光光斑椭圆度高于98%,同时将6个泵浦模块接入合束器测试其能量分布,即高斯分布是否集中于中心位置;
步骤4:改变信号光大小与泵浦光测试功率大小:信号光与最终输出高功率单频光纤激光比例为1:400,泵浦光与最终输出高功率单频光纤激光比例为2:1,Nufern PLMA-YDF-25/400按照上述比例调节大小,得到高功率单频激光。
CN202010733214.5A 2020-07-27 2020-07-27 一种抑制sbs实现高功率单频光纤激光输出的方法 Active CN112018587B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010733214.5A CN112018587B (zh) 2020-07-27 2020-07-27 一种抑制sbs实现高功率单频光纤激光输出的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010733214.5A CN112018587B (zh) 2020-07-27 2020-07-27 一种抑制sbs实现高功率单频光纤激光输出的方法

Publications (2)

Publication Number Publication Date
CN112018587A CN112018587A (zh) 2020-12-01
CN112018587B true CN112018587B (zh) 2022-06-03

Family

ID=73500296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010733214.5A Active CN112018587B (zh) 2020-07-27 2020-07-27 一种抑制sbs实现高功率单频光纤激光输出的方法

Country Status (1)

Country Link
CN (1) CN112018587B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112816962A (zh) * 2021-04-19 2021-05-18 上海思岚科技有限公司 一种激光雷达同轴光学核心装置
CN115313135B (zh) * 2022-09-29 2022-12-30 安徽华创鸿度光电科技有限公司 椭圆光斑激光器
CN115566519B (zh) * 2022-12-07 2023-03-07 中国航天三江集团有限公司 高功率高光束质量窄线宽光纤激光放大系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459313A (zh) * 2008-12-31 2009-06-17 华南理工大学 多波长输出的超窄线宽单频光纤激光器
US10348051B1 (en) * 2018-05-18 2019-07-09 Luminar Technologies, Inc. Fiber-optic amplifier

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120009A1 (en) * 2010-03-26 2011-09-29 Lawrence Livermore National Security, Llc Multi-pass amplifier architecture for high power laser systems
US9293888B2 (en) * 2013-10-30 2016-03-22 Raytheon Company Method and apparatus for high-power raman beam-combining in a multimode optical fiber
CN105068181B (zh) * 2015-08-28 2018-04-10 清华大学 一种光纤包层光滤除器及其制造方法
CN105356205A (zh) * 2015-11-10 2016-02-24 武汉锐科光纤激光技术股份有限公司 一种长脉宽、高峰值功率准连续光纤激光器系统
CN106356704A (zh) * 2016-10-19 2017-01-25 华南理工大学 一种0.9μm波段高功率单频光纤激光器
CN107946878A (zh) * 2017-12-29 2018-04-20 横琴东辉科技有限公司 一种0.9μm波段超低噪声窄线宽单频光纤激光光源
CN108512023B (zh) * 2018-05-29 2023-08-25 中国人民解放军国防科技大学 一种实现高亮度窄线宽掺镱光纤激光放大的系统
CN111193173A (zh) * 2020-01-17 2020-05-22 成都翱翔拓创光电科技合伙企业(有限合伙) 一种基于侧面泵浦技术的窄线宽光纤激光器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459313A (zh) * 2008-12-31 2009-06-17 华南理工大学 多波长输出的超窄线宽单频光纤激光器
US10348051B1 (en) * 2018-05-18 2019-07-09 Luminar Technologies, Inc. Fiber-optic amplifier

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Mode Depression Phenomena of SBS in Large Core (>100μmDiameter) Fibers;C.Y. Zhu 等;《2010 Academic Symposium on Optoelectronics and Microelectronics Technology and 10th Chinese-Russian Symposium on Laser Physics and Laser TechnologyOptoelectronics Technology (ASOT)》;20101101;全文 *
窄线宽光纤放大器中受激布里渊散射抑制研究进展;冉阳 等;《激光与光电子学进展》;20150404;全文 *

Also Published As

Publication number Publication date
CN112018587A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN112018587B (zh) 一种抑制sbs实现高功率单频光纤激光输出的方法
CN111541138B (zh) 一种抑制大功率窄线宽光纤激光器中受激布里渊散射装置
CN113675720A (zh) 一种基于带内泵浦的高效率单频掺铥光纤激光器
Wang et al. Dual-wavelength bidirectional pumped high-power Raman fiber laser
Sim et al. High-power cascaded Raman fibre laser using phosphosilicate fibre
CN106711747B (zh) 一种基于同带泵浦技术的复合腔结构光纤振荡器
CN205863635U (zh) 一种光纤激光器
Even et al. High-power double-clad fiber lasers: a review
Huang et al. Theoretical Modeling of Ho-Doped Fiber Lasers Pumped by Laser-Diodes Around 1.125$\mu $ m
Tian et al. A novel structure for Raman suppression in narrow linewidth fiber amplifier seeded by a fiber oscillator
CN116598876A (zh) 一种抑制线偏振光纤激光器受激布里渊散射的系统及方法
CN216085690U (zh) 一种简易超连续谱光纤谐振腔
CN106451049B (zh) 800±100nm波段高重频全光纤激光产生装置
Wei et al. Cladding-pumped erbium-ytterbium co-doped fiber amplifier with dual-wavelength auxiliary signal injection of 1030 and 1040 nm
Xiao et al. Numerical modeling and optimization of hundred-watt-level 2.8 μm and 1.6 μm cascaded heavily-erbium-doped fluoride fiber amplifiers
CN106848815B (zh) 一种基于载氢光纤的大功率随机光纤激光器
Meng et al. Demonstration of 3 kW-Level Nearly Single Mode Monolithic Fiber Amplifier Emitting at 1050 Nm Employing Tapered Yb-Doped Fiber
Chen et al. Modeling and numerical simulation of the gain of a 1310nm praseodymium-doped fiber amplifier
Tench et al. Performance benefits of 1860 nm vs. 1940 nm pumping of holmium-doped fibres with significant ion pairing
Wang et al. Efficient Pulsed Raman Laser with Wavelength above 2.1 μm Pumped by Noise‐Like Pulse
Suyama et al. 14.4-dB Gain of Erbium-Doped Fiber Amplifier Pumped by 1.49-µm Laser Diode
Dragic SBS-suppressed, single mode Yb-doped fiber amplifiers
CN116260031B (zh) 一种泵浦共享型窄线宽光纤激光器
CN110048294B (zh) 一种产生高功率中红外超快脉冲激光的方法
Guo et al. Dual-wavelength pumped 2.8 μm Er-doped ZBLAN fiber laser with high overall optical efficiency

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant