CN112017695A - 一种自动识别生理声音的系统及方法 - Google Patents

一种自动识别生理声音的系统及方法 Download PDF

Info

Publication number
CN112017695A
CN112017695A CN202010142913.2A CN202010142913A CN112017695A CN 112017695 A CN112017695 A CN 112017695A CN 202010142913 A CN202010142913 A CN 202010142913A CN 112017695 A CN112017695 A CN 112017695A
Authority
CN
China
Prior art keywords
sound
physiological
sounds
frequency domain
time domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010142913.2A
Other languages
English (en)
Inventor
赵列宾
殷勇
刘世建
董斌
张磊
顾炜珺
张静
袁加俊
罗雯懿
周宏远
曲菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Tuoxiao Intelligent Technology Co ltd
Shanghai Childrens Medical Center Affiliated to Shanghai Jiaotong University School of Medicine
Original Assignee
Shanghai Tuoxiao Intelligent Technology Co ltd
Shanghai Childrens Medical Center Affiliated to Shanghai Jiaotong University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Tuoxiao Intelligent Technology Co ltd, Shanghai Childrens Medical Center Affiliated to Shanghai Jiaotong University School of Medicine filed Critical Shanghai Tuoxiao Intelligent Technology Co ltd
Priority to CN202010142913.2A priority Critical patent/CN112017695A/zh
Publication of CN112017695A publication Critical patent/CN112017695A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
    • G10L25/63Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for estimating an emotional state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/003Detecting lung or respiration noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/02Feature extraction for speech recognition; Selection of recognition unit
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/16Speech classification or search using artificial neural networks
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/18Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/24Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being the cepstrum
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/27Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
    • G10L25/66Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for extracting parameters related to health condition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computational Linguistics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Pulmonology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Psychiatry (AREA)
  • Epidemiology (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明提供一种自动识别生理声音的系统,包括:收集模块,用于生理声音的收集,并将采集的生理声音转化生成代表声学振动电子信号;特征提取模块,用于从所述生理声音中提取时域特征值和频域特征值;识别分类模块,用于分类所述的时域特征值与频域特征值并识别时域特征值与频域特征值所属的至少一个类别。本发明提供自动识别生理声音的系统利用识别分类模块中预先构件的识别分类参数来对在潜在异常生理声音特征进行识别,并根据1秒钟所含异常生理声音的数量来进行生理声音类别的识别,整个过程基于算法是一种可量化及标准化的系统,并且识别的准确率高。

Description

一种自动识别生理声音的系统及方法
技术领域
本发明涉及医疗识别技术领域,尤其涉及一种自动识别生理声音的系统及方法。
背景技术
生理声音包括心音、肺音、肠鸣音、血管回音、气管呼吸音、支气管呼吸音以及手足呼吸音等各种器官发出的声音。其中呼吸音俗称肺音,它能够反映肺部组织、气管及胸壁等传播媒介的声学特性。心脏杂音则属于心音的一种,具体指在心音与额外心音之外,在心脏收缩或舒张时血液在心脏或血管内产生湍流所致的室壁、瓣膜或血管振动所产生的异常声音,是具有不同频率、不同强度、持续时间较长的噪杂声。通过对生理声音的准确分析以及分类,可对相关疾病诊断起到重要的决定性作用。与其他检测生理声音设备相比,听诊器不仅可以直接、简便、快捷、准确有效地获取疾病信息,而且价格低廉,具有非侵入性、无放射性、可重复性等优点。因此,作为临床最常用的疾病诊断工具之一,听诊器被广泛用于辅助诊断心呼吸和血管系统等疾病。然而,目前临床普遍使用的机械听诊器存在诸多弊端,如听诊效果易受环境噪音、患者配合度以及听诊者的水平等诸多人为因素和环境因素的影响,从而使听诊结果造成偏差,甚至产生误诊,使得临床医生不能结合呼吸音和心脏杂音的变化来及时掌握和判断患者病情变化。
同时呼吸音及其他生理声音的频率范围约为50-3000Hz,而人耳的敏感频段约为1000-2000Hz,传统的机械听诊器的低频响应很差,所以在听诊过程中难以捕捉微弱声音。再加上不同医生存在临床经验和疾病诊断水平的差异,对同一病人的生理声音听诊往往有不同的判断结果,甚至大相径庭,更不要说通过生理声音判断感染的部位、程度和阶段以及其中的病理生理变化、演变过程,并预判其发展方向和预后。因此通过对生理声音进行定量分析,提取生理声音的典型特征进行分类识别,建立科学的、统一的、准确的以及可量化的生理声音诊断标准,从而提高疾病诊治的水平极具必要性。因此,上述缺陷需要得到解决。
发明内容
(一)要解决的技术问题
本发明要解决的问题是现有的听诊器因不同医生存在临床经验和疾病诊断水平的差异,对同一病人的生理声音听诊往往有不同的判断结果造成听诊标准不统一。
(二)技术方案
本发明一个实施例中提供的一种自动识别生理声音的系统,包括:
收集模块,用于生理声音的收集,并将采集的生理声音转化生成代表声学振动电子信号;
特征提取模块,用于从所述生理声音中提取时域特征值和频域特征值;
识别分类模块,用于分类所述的时域特征值与频域特征值并识别时域特征值与频域特征值所属的至少一个类别。
在一方面,所述收集模块是采用数字听诊器将生理声音收集,并将采集的生理声音转化生成代表声学振动电子信号。
在一方面,所述生理声音包括心音、肺音、肠鸣音、血管回音、气管呼吸音、支气管呼吸音以及手足呼吸音。
在一方面,所述时域特征值是通过将代表声学振动电子信号进行小波变换,从而把一个生理声音分解成若干不同频率的信号,计算不同频率信号的时域特征值而得到;而所述的频域特征值则是通过将代表声学振动电子信号进行小波变换,从而把一个生理声音分解成若干不同频率的信号,计算不同频率信号的频域特征值而得到。
在一方面,所述识别分类模块则是将计算出的时域特诊值和频域特诊值作为输入,通过向量机或神经网络算法训练好的模型进行分类,并识别其为正常生理声音或异常生理声音类别。
在一方面,所述生理声音为肺音,则所述识别分模块则是将计算出的时域特诊值和频域特诊值作为输入,通过向量机或神经网络算法训练好的模型进行分类,并识别其为正常肺音或水泡音类别,进而识别患者是否患有肺炎。
在另一方面,本发明提供一种使用所述系统的自动识别生理声音的方法,包括:
S1、使用收集模块收集并处理的生理声音;
S2、使用特征提取模块从生理声音中提取时域特征值和频域特征值;
S3、使用识别分类模块分类所述的时域特征值与频域特征值并识别所属的至少一个类别。
在一个方面,所述使用收集模块收集并处理的生理声音的方法,包括:
声音预处理,用于对生理声音去除重采样或弱信号;
带通滤波,对生理声音转化生成代表声学振动电子信号带通滤波。
在一方面,使用特征提取模块从生理声音中提取时域特征值和频域特征值的方法,包括
信号归一化,对生理声音转化生成代表声学振动电子信号进行小波变换并分解成若干不同频率的信号;
计算智能阈值,计算若干不同频率的信号的阈值。
在一个方面,使用识别分类模块分类所述的时域特征值与频域特征值并识别所属的至少一个类别的方法,包括:
构建识别分类参数,从生理中提取两个声音库,其中一个声音库为 Cracks(异常生理声音)组成,另外一个假Cracks(正常生理声音)组成,提取的每个声音文件为20ms并计算出Cracks和假Cracks的时域特征值及频域特诊值,然后利用向量机或神经网络算法进行训练,得出识别分类参数;
找出潜在Cracks,用20ms的窗沿着肺音信号移动,根据计算阈值找出所有潜在Cracks;
潜在Cracks特征提取,并将所有潜在Cracks的时域特征和频域特征计算出来,
分类模型参数识别,根据将所有潜在Cracks计算出来时域特征和频域特征与识别分类参数判断,得出潜在Cracks属于Cracks和假Cracks;
识别所属的类别,根据生理声音平均1秒钟所含Cracks的数量来判断所属的类别是正常生理声音类别还是何种异常生理声音类别。
在一方面,所述生理声音为肺音,带通滤波范围控制在100-2000Hz,所属的类别为正常肺音或水泡音,并根据所属的类别判断患者为健康状况或何种疾病状况。
(三)有益效果
首先,本发明提供的自动识别生理声音的系统采用数字听诊器进行生理声音收集并转化生成方便记录及分析电子信号形式,使得每次采集的电子信号进行统一存储及分析,为后续大数据分析模型的建立积累基础,同时其电子信号为可视化可量化的数据,便于标准化诊断,在生理声音收集过程中进行预处理及带通滤波来增加收集的有效性;
其次,本发明提供的自动识别生理声音的系统采用特征提取模块对生理声音信号归一化方便后续计算得出智能阈值来减少识别的数量,增加识别正确性;
最后,本发明提供自动识别生理声音的系统利用识别分类模块中预先构件的识别分类参数来对在潜在Cracks特征进行识别,并根据1秒钟所含 Cracks的数量来进行生理声音类别的识别,整个过程基于算法是一种可量化及标准化的系统,并且识别的准确率高。
附图说明
图1为本发明提供的实施例中患者肺音正面采集点示意图;
图2为本发明提供的实施例中患者肺音反面采集点示意图;
图3为本发明提供的实施例中含有水泡音的肺音信号及其时间轴放大后示意图;
图4为本发明提供的实施例中肺音的频率分布图;
图5为本发明提供的实施例中水泡音及正常肺音波峰幅值对照图;
图6为本发明提供的实施例中特征值提取流程示意图;
图7为本发明提供的实施例中Cracks的示意图;
图8为本发明提供的实施例中假Cracks的示意图;
图9为本发明提供的实施例中肺音信号处理流程示意图;
图10为本发明提供的实施例中向量机模型分类结果示意图;
图11为本发明提供的实施例中通过智能算法分析后的结果展示图。
图12为本发明提供的实施例中小波变换示意图;
图13为本发明提供的实施例中数学模型示意图;
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明一个实施例中提供的一种自动识别生理声音的系统,包括:
收集模块,用于生理声音的收集,并将采集的生理声音转化生成代表声学振动电子信号;特征提取模块,用于从生理声音中提取时域特征值和频域特征值;识别分类模块,用于分类的时域特征值与频域特征值并识别时域特征值与频域特征值所属的至少一个类别。
其中收集模块是采用数字听诊器将生理声音收集,并将采集的生理声音转化生成代表声学振动电子信号。生理声音包括心音、肺音、肠鸣音、血管回音、气管呼吸音、支气管呼吸音以及手足呼吸音。
置于时域特征值是通过将代表声学振动电子信号进行小波变换,从而把一个生理声音分解成若干不同频率的信号,计算不同频率信号的时域特征值而得到;而的频域特征值则是通过将代表声学振动电子信号进行小波变换,从而把一个生理声音分解成若干不同频率的信号,计算不同频率信号的频域特征值而得到。识别分类模块则是将计算出的时域特诊值和频域特诊值作为输入,通过向量机或神经网络算法训练好的模型进行分类,并识别其为正常生理声音或异常生理声音类别。
在另一方面,使用系统的自动识别生理声音的方法,包括:
S1、使用收集模块收集并处理的生理声音;
S2、使用特征提取模块从生理声音中提取时域特征值和频域特征值;
S3、使用识别分类模块分类的时域特征值与频域特征值并识别所属的至少一个类别。
其中使用收集模块收集并处理的生理声音的方法,包括:
声音预处理,用于对生理声音去除重采样或弱信号;
带通滤波,对生理声音转化生成代表声学振动电子信号带通滤波。
而使用特征提取模块从生理声音中提取时域特征值和频域特征值的方法,包括
信号归一化,对生理声音转化生成代表声学振动电子信号进行小波变换并分解成若干不同频率的信号;
计算智能阈值,计算若干不同频率的信号的阈值。
与此同时使用识别分类模块分类的时域特征值与频域特征值并识别所属的至少一个类别的方法,包括:
构建识别分类参数,从生理中提取两个声音库,其中一个声音库为 Cracks(异常生理声音)组成,另外一个假Cracks(正常生理声音)组成,提取的每个声音文件为20ms并计算出Cracks和假Cracks的时域特征值及频域特诊值,然后利用向量机或神经网络算法进行训练,得出识别分类参数;
找出潜在Cracks,用20ms的窗沿着肺音信号移动,根据计算阈值找出所有潜在Cracks;
潜在Cracks特征提取,并将所有潜在Cracks的时域特征和频域特征计算出来,
分类模型参数识别,根据将所有潜在Cracks计算出来时域特征和频域特征与识别分类参数判断,得出潜在Cracks属于Cracks和假Cracks;
识别所属的类别,根据生理声音平均1秒钟所含Cracks的数量来判断所属的类别是正常生理声音类别还是何种异常生理声音类别。
生理声音为肺音作为实施例,具体试验情况如下:
在上海交通大学附属儿童医学中心呼吸内科住院部的患儿为研究对象。小儿肺炎患病率为定性变量,定性变量的样本量计算公式为:
Figure RE-GDA0002723175430000071
其中:n代表样本量;U表示置信水平下,U统计量;α值通常取0.05,
Figure RE-GDA0002723175430000081
P0表示目标总体期望值;d表示置信区间的半宽,即调查误差。
在该实施例中采用9个采集点如图1和2所示,分别为后背左肩2个点,后背右肩2个点,左侧腋下1个点,右侧腋下1个点,前胸左侧1个点,前胸右侧1个点,面颊一个点。每个点采集9秒肺音,9个点每个点采集9秒数据。
采集对象主要面向住院的0-15岁患儿,采集过程中确保患儿保持安静,对于4岁以下患儿,尽量在睡眠之后采集。采集结束后,记录好患者ID与采集时间。
采集过程中将两类数据文件采用随机数命名的方式,并记录文件归属。邀请4位临床专家,分为2组,人工判别同一类肺音,分为正常肺音、哮鸣音、湿罗音及无法辨别,如果两位专家辨别相同,则按判断结果标注;如果判断不同,则邀请另外一组专家辨别,如判断结果仍不同,则该数据标记为无法辨别。
根据采集结果显示,水泡音是偶发性的非连续信号,其持续时间一般小于20ms(如图3所示),其频率一般在100到2000Hz范围(如图4所示)。通过对超过15000个水泡音进行统计,发现水泡音的波峰幅值是水泡音平均幅值的1.5倍以上(如图5所示)。
将肺音信号进行小波变换,从而把一个肺音分解成若干不同频率的信号。计算不同频率信号的时域特征值和频域特征值。再把计算出的时域特诊值和频域特诊值作为输入,通过向量机或神经网络算法训练好的数学模型进行分类,可以比较准确的识别肺泡音和正常肺音。
小波变换如图12所示,其中Dn是高频信号,An是低频信号;
而构建数学模型如图13所示:
具体过程分为两步:
(1)通过算法及半人工参与,从肺音中提取两个声音库,过程如图6 所示,其中一个声音库由图7所示的Cracks(水泡音)组成,另外一个库图8 所示的假Cracks组成。由于Cracks基本小于20ms,所以我们提取的每个声音文件为20ms。提出Cracks和假Cracks的时域特征值及频域特诊值,然后利用向量机进行训练,得出向量机参数。利用该向量机参数可以很好的分辨Cracks和假Cracks。
(2)先进行信号预处理,比如重采样或识别弱信号,然后对肺音信号进行带通滤波(肺音信号主要在100-2000Hz),然后计算智能阈值(每段肺音信号都有自己的阈值,根据该阈值找出潜在Cracks),然后用20ms的窗沿着肺音信号移动,找出所有潜在Cracks,如中黑色圆圈及红色圆圈所标出的位置,过程如图9所示。提取潜在Cracks的时域特征和频域特征,并用向量机进一步判断该潜在Cracks是真Cracks还是假Cracks,最后根据该肺音平均1秒钟所含Cracks的数量来判断该肺音是否是湿啰音,其中向量机模型分类结果参考图10所示,而过智能算法分析后的结果展示可参考图 11。
最后,对上述试验过程进行验证,采用IBM SPSS Statistics 22.0和SAS 9.3统计软件对临床数据进行分析。P<0.05认为具有统计学意义, 0.05<P<0.1认为有可疑的统计学意义。
肺音分数根据4s检测到的最多水泡音进行判断。当前打分公式如下:
水泡音数量<=6得分100,分数通过字段“nData”返回。
7<=水泡音数量<=20得分在80到100之间,分数通过字段“nData”返回。
水泡音数量>20得分小于60,分数通过字段“nData”返回。
阈值设置及正确率结果如下:
Figure RE-GDA0002723175430000101
综上所述,上述实施方式并非是本发明的限制性实施方式,凡本领域的技术人员在本发明的实质内容的基础上所进行的修饰或者等效变形,均在本发明的技术范畴。

Claims (10)

1.一种自动识别生理声音的系统,其特征在于,包括:
收集模块,用于生理声音的收集,并将采集的生理声音转化生成代表声学振动电子信号;
特征提取模块,用于从所述生理声音中提取时域特征值和频域特征值;
识别分类模块,用于分类所述的时域特征值与频域特征值并识别时域特征值与频域特征值所属的至少一个类别。
2.根据权利要求1所述的一种自动识别生理声音的系统,其特征在于,所述收集模块是采用数字听诊器将生理声音收集,并将采集的生理声音转化生成代表声学振动电子信号。
3.根据权利要求2所述的一种自动识别生理声音的系统,其特征在于,所述生理声音包括心音、肺音、肠鸣音、血管回音、气管呼吸音、支气管呼吸音以及手足呼吸音。
4.根据权利要求3所述的一种自动识别生理声音的系统,其特征在于,所述时域特征值是通过将代表声学振动电子信号进行小波变换,从而把一个生理声音分解成若干不同频率的信号,计算不同频率信号的时域特征值而得到;而所述的频域特征值则是通过将代表声学振动电子信号进行小波变换,从而把一个生理声音分解成若干不同频率的信号,计算不同频率信号的频域特征值而得到。
5.根据权利要求4所述的一种自动识别生理声音的系统,其特征在于,所述识别分类模块则是将计算出的时域特诊值和频域特诊值作为输入,通过向量机或神经网络算法训练好的模型进行分类,并识别其为正常生理声音或异常生理声音类别。
6.根据权利要求5所述的一种自动识别生理声音的系统,其特征在于,所述生理声音为肺音,则所述识别分模块则是将计算出的时域特诊值和频域特诊值作为输入,通过向量机或神经网络算法训练好的模型进行分类,并识别其为正常肺音或水泡音类别,进而识别患者是否患有肺炎。
7.一种使用根据权利要求1至6所述系统的自动识别生理声音的方法,其特征在于,包括:
S1、使用收集模块收集并处理的生理声音;
S2、使用特征提取模块从生理声音中提取时域特征值和频域特征值;
S3、使用识别分类模块分类所述的时域特征值与频域特征值并识别所属的至少一个类别。
8.根据权利要求7所述的自动识别生理声音的方法,其特征在于,收集模块收集并处理的生理声音的方法,包括:
声音预处理,用于对生理声音去除重采样或弱信号;
带通滤波,对生理声音转化生成代表声学振动电子信号带通滤波。
9.根据权利要求8所述的自动识别生理声音的方法,其特征在于,使用特征提取模块从生理声音中提取时域特征值和频域特征值的方法,包括信号归一化,对生理声音转化生成代表声学振动电子信号进行小波变换并分解成若干不同频率的信号;
计算智能阈值,计算若干不同频率的信号的阈值。
10.根据权利要求9所述的自动识别生理声音的方法,其特征在于,使用识别分类模块分类所述的时域特征值与频域特征值并识别所属的至少一个类别的方法,包括:
构建识别分类参数,从生理中提取两个声音库,其中一个声音库为Cracks组成,另外一个假Cracks组成,提取的每个声音文件为20ms并计算出Cracks和假Cracks的时域特征值及频域特诊值,然后利用向量机或神经网络算法进行训练,得出识别分类参数;
找出潜在Cracks,用20ms的窗沿着肺音信号移动,根据计算阈值找出所有潜在Cracks;
潜在Cracks特征提取,并将所有潜在Cracks的时域特征和频域特征计算出来,
分类模型参数识别,根据将所有潜在Cracks计算出来时域特征和频域特征与识别分类参数判断,得出潜在Cracks属于Cracks和假Cracks;
识别所属的类别,根据生理声音平均1秒钟所含Cracks的数量来判断所属的类别是正常生理声音类别还是何种异常生理声音类别。
CN202010142913.2A 2020-03-04 2020-03-04 一种自动识别生理声音的系统及方法 Pending CN112017695A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010142913.2A CN112017695A (zh) 2020-03-04 2020-03-04 一种自动识别生理声音的系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010142913.2A CN112017695A (zh) 2020-03-04 2020-03-04 一种自动识别生理声音的系统及方法

Publications (1)

Publication Number Publication Date
CN112017695A true CN112017695A (zh) 2020-12-01

Family

ID=73506496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010142913.2A Pending CN112017695A (zh) 2020-03-04 2020-03-04 一种自动识别生理声音的系统及方法

Country Status (1)

Country Link
CN (1) CN112017695A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112690823A (zh) * 2020-12-22 2021-04-23 海南力维科贸有限公司 一种识别肺部生理声音的方法以及系统
CN113948108A (zh) * 2021-10-09 2022-01-18 广州蓝仕威克软件开发有限公司 一种自动识别生理声音的方法及系统
CN116185165A (zh) * 2022-06-17 2023-05-30 武汉市聚芯微电子有限责任公司 一种触觉生成方法、系统、设备以及计算机存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060167385A1 (en) * 2005-01-24 2006-07-27 3M Innovative Properties Company Analysis of auscultatory sounds using voice recognition
CN102342858A (zh) * 2010-08-06 2012-02-08 上海中医药大学 中医声诊采集与分析系统
CN102697520A (zh) * 2012-05-08 2012-10-03 天津沃康科技有限公司 基于智能识别功能的电子听诊器
CN106251880A (zh) * 2015-06-03 2016-12-21 创心医电股份有限公司 识别生理声音的方法以及系统
CN107316653A (zh) * 2016-04-27 2017-11-03 南京理工大学 一种基于改进的经验小波变换的基频检测方法
US20180153419A1 (en) * 2016-12-02 2018-06-07 Tata Consultancy Services Limited System and method for physiological monitoring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060167385A1 (en) * 2005-01-24 2006-07-27 3M Innovative Properties Company Analysis of auscultatory sounds using voice recognition
CN102342858A (zh) * 2010-08-06 2012-02-08 上海中医药大学 中医声诊采集与分析系统
CN102697520A (zh) * 2012-05-08 2012-10-03 天津沃康科技有限公司 基于智能识别功能的电子听诊器
CN106251880A (zh) * 2015-06-03 2016-12-21 创心医电股份有限公司 识别生理声音的方法以及系统
CN107316653A (zh) * 2016-04-27 2017-11-03 南京理工大学 一种基于改进的经验小波变换的基频检测方法
US20180153419A1 (en) * 2016-12-02 2018-06-07 Tata Consultancy Services Limited System and method for physiological monitoring

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
沈小静 等: "中医声诊研究及基于小波包的客观化研究", 中华中医药学会中医诊断学分会第十次学术研讨会论文集, pages 316 - 319 *
马天才 等: "基于小波包声音信号分析技术的中医虚实证声诊特征分析", 中华中医药学会中医诊断学分会第十次学术研讨会论文集, pages 310 - 315 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112690823A (zh) * 2020-12-22 2021-04-23 海南力维科贸有限公司 一种识别肺部生理声音的方法以及系统
CN113948108A (zh) * 2021-10-09 2022-01-18 广州蓝仕威克软件开发有限公司 一种自动识别生理声音的方法及系统
CN116185165A (zh) * 2022-06-17 2023-05-30 武汉市聚芯微电子有限责任公司 一种触觉生成方法、系统、设备以及计算机存储介质
CN116185165B (zh) * 2022-06-17 2024-04-02 武汉市聚芯微电子有限责任公司 一种触觉生成方法、系统、设备以及计算机存储介质

Similar Documents

Publication Publication Date Title
US11033221B2 (en) Method and device for swallowing impairment detection
Schmidt et al. Acoustic features for the identification of coronary artery disease
US9198634B2 (en) Medical decision support system
Palaniappan et al. Computer-based respiratory sound analysis: a systematic review
CN112017695A (zh) 一种自动识别生理声音的系统及方法
US9168018B2 (en) System and method for classifying a heart sound
CN102458259A (zh) 利用超声识别移动的解剖结构的方法和装置
CN112971839B (zh) 一种基于前馈卷积神经网络的心音分类方法
Omarov et al. Artificial Intelligence in Medicine: Real Time Electronic Stethoscope for Heart Diseases Detection.
CN112971795B (zh) 心电信号质量评估方法
CN105877739A (zh) 一种心电智能分析系统的临床检验方法
CN110772279A (zh) 一种肺音信号采集装置与分析方法
CN110811673A (zh) 基于概率神经网络模型的心音分析系统
Golpaygani et al. Detection and identification of S1 and S2 heart sounds using wavelet decomposition method
Abid et al. Localization of phonocardiogram signals using multi-level threshold and support vector machine
CN215349053U (zh) 一种先天性心脏病智能筛查机器人
Sh-Hussain et al. Application of multipoint auscultation for heart sound diagnostic system (MAHDS)
Huang et al. Augmented detection of septal defects using advanced optical coherence tomography network-processed phonocardiogram
Rajeshwari et al. Detection of phonocardiogram event patterns in mitral valve prolapse: An automated clinically relevant explainable diagnostic framework
CN111523487A (zh) 一种生理音的预处理及自动标注方法
Jiao et al. Heart sound signal quality assessment based on multi-domain features
Das et al. Automated fundamental heart sound detection using spectral clustering technique
Phettom et al. Automatic Identification of Abnormal Lung Sounds Using Time-Frequency Analysis and Convolutional Neural Network
CN116108345B (zh) 一种基于参数估计的第二心音宽分裂检测方法
CN111524563A (zh) 一种生理音数据库的建立方法及其数据库

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201201