CN112016734A - 基于lstm栈式自编码多模型荷预测方法及系统 - Google Patents

基于lstm栈式自编码多模型荷预测方法及系统 Download PDF

Info

Publication number
CN112016734A
CN112016734A CN202010571376.3A CN202010571376A CN112016734A CN 112016734 A CN112016734 A CN 112016734A CN 202010571376 A CN202010571376 A CN 202010571376A CN 112016734 A CN112016734 A CN 112016734A
Authority
CN
China
Prior art keywords
value
model
data
lstm
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010571376.3A
Other languages
English (en)
Other versions
CN112016734B (zh
Inventor
崔嘉
陈忠仪
杨俊友
李桐
周小明
刘扬
任帅
李欢
苑经纬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
State Grid Liaoning Electric Power Co Ltd
Electric Power Research Institute of State Grid Liaoning Electric Power Co Ltd
Original Assignee
Shenyang University of Technology
State Grid Liaoning Electric Power Co Ltd
Electric Power Research Institute of State Grid Liaoning Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology, State Grid Liaoning Electric Power Co Ltd, Electric Power Research Institute of State Grid Liaoning Electric Power Co Ltd filed Critical Shenyang University of Technology
Publication of CN112016734A publication Critical patent/CN112016734A/zh
Application granted granted Critical
Publication of CN112016734B publication Critical patent/CN112016734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Mathematical Physics (AREA)
  • Human Resources & Organizations (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Strategic Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Quality & Reliability (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明属于负荷预测技术领域,具体涉及基于LSTM栈式自编码多模型荷预测方法及系统。该方法包括获取数据集,对数据集进行预处理;建立电动汽车充电开始时间的概率模型并重构数据集;构建LSTM栈式自编码结构并训练;利用XGBoost模型预测短期负荷,并进行指标评价。该系统包括获取数据集模块,预处理模块,概率模型和重构模块,LSTM栈式自编码结构的构建和训练模块,预测模块,指标评价模块。本发明提出的方法能够考虑电动汽车充电负荷的影响,最大程度利用原始数据,深度学习其内部特征,有效提高短期负荷预测精度。

Description

基于LSTM栈式自编码多模型荷预测方法及系统
技术领域
本发明属于负荷预测技术领域,具体涉及基于LSTM栈式自编码多模型荷预测方法及系 统。
背景技术
随着智能电网的发展,智能化的终端测量装备已经普及,我国已经安装超过5亿个智能 电表。随之而来的是电力数据量和复杂度的指数性增长,有效利用庞大的数据集将获得极大 的价值,其中最具有代表性之一的就是利用历史数据对未来负荷进行预测。考虑到目前电动 汽车、储热等柔性负荷的增加,无论是在规模上还是复杂度上,都增大了对数据集分析处理 的难度,更是对电网的安全稳定运行带来了巨大的挑战。因此,可以说如今的负荷预测已经 成为根据多变量时序数据进行预测的问题,如何基于数据挖掘技术有效利用大数据库,提高 负荷预测精度是如今的研究热点。在负荷预测中,短期负荷预测受多种灵活变量影响,通过 对历史数据进行挖掘,可以有效提高短期负荷预测精度,为电网调度提供重要依据。
数据挖掘涉及人工智能与大数据领域。结合负荷预测而言,利用数据挖掘可以获取历史 负荷数据中的内部关系,寻找特征指标,并将这些特征指标构建为训练集,用训练集训练模 型,得到泛化的负荷预测模型。短期负荷预测算法主要分为传统统计法和机器学习法。传统 统计法有多元线性回归、自回归移动平均、傅里叶展开模型等,该类方法只能处理少量简单 且时序性强的数据,面对各种复杂的柔性负荷并不适用。现阶段短期负荷预测主要通过机器 学习法:人工神经网络、模糊控制、支持向量机、灰色预测等,此类方法具有很强的自学习 能力。BP神经网络算法具有很好的数据拟合能力,能够处理大量数据,但其易于陷入局部最 优且无法挖掘负荷内部特征,支持向量机虽然可以解决局部最小值等问题,但其处理大数据 性能较差。
随着电动汽车等柔性负荷的发展以及电网智能终端感测设备的进步,负荷预测问题已经 大数据化,呈现多变量、高维度、复杂化的特征,针对短期负荷预测影响尤为明显。随着电 动汽车的渗透率不断增加,电动汽车充电负荷对短期负荷预测影响愈发明显,常规考虑电动 汽车等柔性负荷的影响都是基于时空特性,通过元胞自动机等方法进行土地决策根据区域类 型进行预测或是基于出行链进行预测,无论何种方法都十分繁琐,且其预测的充电负荷只能 与系统负荷单一叠加,无法进行有效融合。
因此,面对庞大复杂的数据库,为了有效利用多变量时序性数据进行短期负荷预测,综 合考虑前人发明的预测方法的优缺点,构建一种新的负荷预测模型方法或系统。
发明内容
发明目的:
本发明在于克服常规预测方法中手动提取影响因子特征造成破坏数据内部隐藏价值的缺 陷,提出基于LSTM栈式自编码多模型荷预测方法及系统,其目的在于解决无法充分利用多 变量时序序列数据的问题,以及从数据挖掘的角度实现考虑电动汽车的短期负荷预测。
技术方案:
基于LSTM栈式自编码多模型荷预测方法,该方法包括:
步骤1:获取数据集,对数据集进行预处理;
步骤2:建立电动汽车充电开始时间的概率模型并重构数据集;
步骤3:构建LSTM栈式自编码结构并训练;
步骤4:利用XGBoost模型预测短期负荷,并进行指标评价。
进一步的,数据集的获取包括采集负荷数据、电价数据、温度、湿度、待测日一周前负 荷数据、星期类型、法定节日等,采样周期为15min,按时间序列排列,构建数据集;时间序列分为两列,第一列为年-月-日-小时-时刻,第二列为历史数据值。
进一步的,对数据集进行预处理,对于在时间上有连续性的变量历史负荷数据、温度、 湿度,基于格拉布斯准则法判断异常值并清理,采用Lagrange三次样条插值补全残缺数据, 最后对数据集归一化处理;
格拉布斯准则法如下:
Figure BDA0002549482170000021
Figure BDA0002549482170000022
其中,G1,G2分别为判断最小、最大值是否异常;
Figure BDA0002549482170000023
为均值,S为标准差;
若G1,G2分别大于对应的判据G则表示该最小、最大值为异常值;其中,判据G依据格拉布斯的临界值表选取;
考虑到是时序性变量在时间上的连续性,将异常值修正为其前后两值的均值,该方式在 数据集上迭代进行,直到无异常值为止;
Lagrange完备三次样条插值法如下:
已知函数y=f(x)在区间[a,b]上的值yi=f(xi)(i=0,1,2,…n),其中: a=x0<x1<…<xn-1<xn=b;
插值函数S(x)满足:
S(xi)=yi(i=0,1,2,…n);S(x)在每个小区间[xi,xi+1](i=0,1,2,…n)上均为三次多项 式,记作Si(x);S(x)在[a,b]上二阶连续可微;
因此,记为:
Figure BDA0002549482170000031
进而得:
Figure BDA0002549482170000032
选取的边界条件为:
S′(a)=y′0,S′(b)=y′n (5)
其中,y0′表示函数f(x)在x0处的导数,yn′表示函数f(x)在xn处的导数;
归一化流程:
对于具有时序性的连续变量,标准化公式为:
Figure BDA0002549482170000033
其中,X表示实际值,Xmin表示样本中最小值,Xmax表示样本中最大值,X′表示归一化处理后的值,应使归一化处理后的值在0~1间;
对于离散型变量,规定晴好天气影响因子为1,雾霾多云天气影响因子为0.5,雨雪天气 影响因子为0.1,极端天气影响因子为0,规定工作日影响因子为1,休息日影响因子为0。
进一步的,建立电动汽车充电开始时间的概率模型并重构数据集:
从数据时序性角度考虑电动汽车的充电负荷对短期负荷预测的影响;
从电动汽车用户行为角度建立概率模型,以日出行结束时刻作为充电需求开始时刻,拟 合电动汽车用户日出行结束时刻概率分布:
Figure BDA0002549482170000041
其中,t表示日出行结束时刻,σ和μ分别表示电动汽车日出行结束时刻统计数据的标 准差和均值;
通过蒙特卡洛法建立电动汽车充电需求的时间概率模型,并在处理后作为时序性输入插 入数据集。
进一步的,构建LSTM栈式自编码结构并训练:
采用LSTM栈式自编码提取数据特征,堆栈的LSTM编码层作为隐藏层,
自动编码器由三层组成,分别为输入层、隐藏层和输出层;训练过程包括编码阶段和译 码阶段;给定未标记的输入数据集,其中n=1,2,...,N且xn∈Rm,两个阶段表示为:
h(x)=f(W1x+b1) (8)
Figure BDA0002549482170000042
其中,h(x)表示从输入向量x计算得出的隐藏编码向量,
Figure BDA0002549482170000043
是输出层的译码器向量;f 为编码函数,g为解码函数,W1和W2分别为编码器和解码器的权矩阵,b1和b2分别为各 相位的偏置向量;输入与重构输入或输出之间的差异称为重构误差,在训练期间模型使
Figure BDA0002549482170000044
最小化;
LSTM网络模块具有三个门结构:遗忘门、输入门、输出门;采用sigmoid和tanh函数, 用σ表示sigmoid函数变化;
遗忘门:
ft=σ(Wfxxt+Wfhht-1+bf) (10)
当前时刻的输入xt与前一时刻状态记忆单元Ct-1、中间输出ht-1共同决定状态记忆单元 遗忘部分;
输入门:
it=σ(Wixxt+Wihht-1+bi) (11)
gt=tanh(Wgxxt+Wghht-1+bg) (12)
Figure BDA0002549482170000051
其中,Ct-1表示前一时刻状态记忆单元的保留向量;输入xt和中间输出ht-1分别经过 sigmoid和tanh函数变化后共同决定状态记忆单元中保留向量;
输出门:
ot=σ(Woxxt+Wohht-1+bo) (14)
Figure BDA0002549482170000052
输出ht由更新后的Ct与输出ot共同决定;
上式中,ft,it,gt,ot,ht和Ct分别为遗忘门、输入门、输入节点、输出门、中间输出和状 态记忆单元的状态;Wfx,Wfh,Wix,Wih,Wgx,Wgh,Wox和Woh分别为相应门与输入xt和中间输出ht-1相乘的矩阵权重;bf,bi,bg,bo分别为相应门的偏置项;
Figure BDA0002549482170000053
表示向量中元素按位相乘;
Figure BDA0002549482170000054
表示矩阵加法;
在Python3.7下通过Keras库搭建LSTM网络,利用Adam算法优化。
进一步的,利用XGBoost模型预测短期负荷和评价指标:
XGBoost模型将LSTM栈式自编码提取的特征作为输入序列,XGBoost模型采用贪心算 法,通过集合方式防止过拟合现象,且泛化能力强;
XGBoost模型作为一种提升树模型,实现了多种树模型的集成,这些树模型为CART回 归树模型;XGBoost模型如下所示:
Figure BDA0002549482170000055
Figure BDA0002549482170000056
为第i个样本的模型预测值;K为树的数量;F为树的集合空间;xi表示第i个数据点的特征向量;fk对应第k棵独立的树的结构q和叶子权重w相关状况;
损失函数L:
Figure BDA0002549482170000057
其中,
Figure BDA0002549482170000061
为预测值
Figure BDA0002549482170000062
和目标值yi之间的训练误差之和;
Figure BDA0002549482170000063
为树的复杂 度之和,用于控制模型复杂度的正则项:
Figure BDA0002549482170000064
其中γ和λ为模型的惩罚系数;w表示叶子权重,T表示叶子结点数量,
损失函数在序列最小化过程中,每一轮加入的增量函数ft(xi)尽可能使损失函数最大程 度减小;第t轮的目标函数表示为:
Figure BDA0002549482170000065
采用二阶泰勒展开的方式近似目标函数;设第j个叶子结点的样本集合为 Ij={i|q(xi=j)};其中
Figure BDA0002549482170000066
Figure BDA0002549482170000067
分别为损失函数的一、 二阶导数;得:
Figure BDA0002549482170000068
Figure BDA0002549482170000069
Gj表示叶子结点j所包含样本的一阶偏导数累加之和,是一 个常量;Hj表示叶子结点j所包含样本的二阶偏导数累加之和,是一个常量,
得:
Figure BDA00025494821700000610
wj表示叶子结点j的权重,L(t)表示第t轮损失函数,
对w求偏导得到:
Figure BDA0002549482170000071
将权值代入目标函数得到:
Figure BDA0002549482170000072
损失函数越小表示模型越好;采用贪心算法对子树划分,每次对已有的叶子增加新划分, 计算最大增益:
Figure BDA0002549482170000073
其中
Figure BDA0002549482170000074
Figure BDA0002549482170000075
分别表示左、右子树分裂后产生的增益,
Figure BDA0002549482170000076
为不进 行子树分裂的增益;
XGBoost的泛化能力较强,通过集合的方式防止过拟合,XGBoost模型输出预测结果后, 选择平均误差,平均相对误差和相对均方误差作为评价指标:
Figure BDA0002549482170000077
其中,n为预测点个数,x(t)表示t时刻实际观测的负荷值,y(t)表示t时刻负荷预测值; ME反映整体预测值平均偏差的情况,值越小偏差越小;MAPE能够反映相对平均偏离程度, 值越小表明模型预测精度越高;RMSE反映预测模型的可靠性,值越小则模型越可靠。
基于LSTM栈式自编码多模型荷预测系统,该系统包括获取数据集模块,预处理模块, 概率模型和重构模块,LSTM栈式自编码结构的构建和训练模块,预测模块,指标评价模块;
数据模块,用于获取数据,构建数据集;
预处理模块,用于对数据集进行预处理;
概率模型和重构模块,用于建立电动汽车充电开始时间的概率模型并重构数据集;
构建和训练模块,用于构建LSTM栈式自编码结构并训练;
预测模块,用于利用XGBoost模型预测短期负荷;
指标评价模块,用于对预测短期负荷进行指标评价。
进一步的,数据模块,获取包括采集负荷数据、电价数据、温度、湿度、待测日一周前 负荷数据、星期类型、法定节日等,采样周期为15min,按时间序列排列,构建数据集;时间序列分为两列,第一列为年-月-日-小时-时刻,第二列为历史数据值;
预处理模块,对于在时间上有连续性的变量历史负荷数据、温度、湿度,基于格拉布斯 准则法判断异常值并清理,采用Lagrange三次样条插值补全残缺数据,最后对数据集归一化 处理;
格拉布斯准则法如下:
Figure BDA0002549482170000081
Figure BDA0002549482170000082
其中,G1,G2分别为判断最小、最大值是否异常;
Figure BDA0002549482170000083
为均值,S为标准差;
若G1,G2分别大于对应的判据G则表示该最小、最大值为异常值;其中,判据G依据格拉布斯的临界值表选取;
考虑到是时序性变量在时间上的连续性,将异常值修正为其前后两值的均值,该方式在 数据集上迭代进行,直到无异常值为止;
Lagrange完备三次样条插值法如下:
已知函数y=f(x)在区间[a,b]上的值yi=f(xi)(i=0,1,2,…n),其中: a=x0<x1<…<xn-1<xn=b;
插值函数S(x)满足:
S(xi)=yi(i=0,1,2,…n);S(x)在每个小区间[xi,xi+1](i=0,1,2,…n)上均为三次多项 式,记作Si(x);S(x)在[a,b]上二阶连续可微;
因此,记为:
Figure BDA0002549482170000084
进而得:
Figure BDA0002549482170000091
选取的边界条件为:
S′(a)=y′0,S′(b)=y′n (5)
其中,y0′表示函数f(x)在x0处的导数,yn′表示函数f(x)在xn处的导数;
归一化流程:
对于具有时序性的连续变量,标准化公式为:
Figure BDA0002549482170000092
其中,X表示实际值,Xmin表示样本中最小值,Xmax表示样本中最大值,X′表示归一化处理后的值,应使归一化处理后的值在0~1间;
对于离散型变量,规定晴好天气影响因子为1,雾霾多云天气影响因子为0.5,雨雪天气 影响因子为0.1,极端天气影响因子为0,规定工作日影响因子为1,休息日影响因子为0。
进一步的,概率模型和重构模块,
从数据时序性角度考虑电动汽车的充电负荷对短期负荷预测的影响;
从电动汽车用户行为角度建立概率模型,以日出行结束时刻作为充电需求开始时刻,拟 合电动汽车用户日出行结束时刻概率分布:
Figure BDA0002549482170000093
其中,t表示日出行结束时刻,σ和μ分别表示电动汽车日出行结束时刻统计数据的标 准差和均值;
通过蒙特卡洛法建立电动汽车充电需求的时间概率模型,并在处理后作为时序性输入插 入数据集;
构建和训练模块,
采用LSTM栈式自编码提取数据特征,堆栈的LSTM编码层作为隐藏层,
自动编码器由三层组成,分别为输入层、隐藏层和输出层;训练过程包括编码阶段和译 码阶段;给定未标记的输入数据集,其中n=1,2,...,N且xn∈Rm,两个阶段表示为:
h(x)=f(W1x+b1) (8)
Figure BDA0002549482170000101
其中,h(x)表示从输入向量x计算得出的隐藏编码向量,
Figure BDA0002549482170000102
是输出层的译码器向量;f 为编码函数,g为解码函数,W1和W2分别为编码器和解码器的权矩阵,b1和b2分别为各 相位的偏置向量;输入与重构输入或输出之间的差异称为重构误差,在训练期间模型使
Figure BDA0002549482170000103
最小化;
LSTM网络模块具有三个门结构:遗忘门、输入门、输出门;采用sigmoid和tanh函数, 用σ表示sigmoid函数变化;
遗忘门:
ft=σ(Wfxxt+Wfhht-1+bf) (10)
当前时刻的输入xt与前一时刻状态记忆单元Ct-1、中间输出ht-1共同决定状态记忆单元 遗忘部分;
输入门:
it=σ(Wixxt+Wihht-1+bi) (11)
gt=tanh(Wgxxt+Wghht-1+bg) (12)
Figure BDA0002549482170000104
其中,Ct-1表示前一时刻状态记忆单元的保留向量;输入xt和中间输出ht-1分别经过 sigmoid和tanh函数变化后共同决定状态记忆单元中保留向量;
输出门:
ot=σ(Woxxt+Wohht-1+bo) (14)
Figure BDA0002549482170000105
输出ht由更新后的Ct与输出ot共同决定;
上式中,ft,it,gt,ot,ht和Ct分别为遗忘门、输入门、输入节点、输出门、中间输出和状 态记忆单元的状态;Wfx,Wfh,Wix,Wih,Wgx,Wgh,Wox和Woh分别为相应门与输入xt和中间输出ht-1相乘的矩阵权重;bf,bi,bg,bo分别为相应门的偏置项;
Figure BDA0002549482170000111
表示向量中元素按位相乘;
Figure BDA0002549482170000112
表示矩阵加法;
在Python3.7下通过Keras库搭建LSTM网络,利用Adam算法优化。
进一步的,预测模块,
XGBoost模型将LSTM栈式自编码提取的特征作为输入序列,XGBoost模型采用贪心算 法,通过集合方式防止过拟合现象,且泛化能力强;
XGBoost模型作为一种提升树模型,实现了多种树模型的集成,这些树模型为CART回 归树模型;XGBoost模型如下所示:
Figure BDA0002549482170000113
Figure BDA0002549482170000114
为第i个样本的模型预测值;K为树的数量;F为树的集合空间;xi表示第i个数据点的特征向量;fk对应第k棵独立的树的结构q和叶子权重w相关状况;
损失函数L:
Figure BDA0002549482170000115
其中,
Figure BDA0002549482170000116
为预测值
Figure BDA0002549482170000117
和目标值yi之间的训练误差之和;
Figure BDA0002549482170000118
为树的复杂 度之和,用于控制模型复杂度的正则项:
Figure BDA0002549482170000119
其中γ和λ为模型的惩罚系数;w表示叶子权重,T表示叶子结点数量,
损失函数在序列最小化过程中,每一轮加入的增量函数ft(xi)尽可能使损失函数最大程 度减小;第t轮的目标函数表示为:
Figure BDA00025494821700001110
采用二阶泰勒展开的方式近似目标函数;设第j个叶子结点的样本集合为Ij={i|q(xi=j)};其中
Figure BDA0002549482170000121
Figure BDA0002549482170000122
分别为损失函数的一、 二阶导数;得:
Figure BDA0002549482170000123
Figure BDA0002549482170000124
Gj表示叶子结点j所包含样本的一阶偏导数累加之和,是一 个常量;Hj表示叶子结点j所包含样本的二阶偏导数累加之和,是一个常量,
得:
Figure BDA0002549482170000125
wj表示叶子结点j的权重,L(t)表示第t轮损失函数,
对w求偏导得到:
Figure BDA0002549482170000126
将权值代入目标函数得到:
Figure BDA0002549482170000127
损失函数越小表示模型越好;采用贪心算法对子树划分,每次对已有的叶子增加新划分, 计算最大增益:
Figure BDA0002549482170000128
其中
Figure BDA0002549482170000129
Figure BDA00025494821700001210
分别表示左、右子树分裂后产生的增益,
Figure BDA00025494821700001211
为不进 行子树分裂的增益;
XGBoost的泛化能力较强,通过集合的方式防止过拟合,XGBoost模型输出预测结果后, 选择平均误差,平均相对误差和相对均方误差作为评价指标:
Figure BDA0002549482170000131
其中,n为预测点个数,x(t)表示t时刻实际观测的负荷值,y(t)表示t时刻负荷预测值; ME反映整体预测值平均偏差的情况,值越小偏差越小;MAPE能够反映相对平均偏离程度, 值越小表明模型预测精度越高;RMSE反映预测模型的可靠性,值越小则模型越可靠。
优点及效果:
本发明具有以下优点和有益效果:
(1)、基于格拉布斯准则和Lagrange完备三次样条插值处理数据集,最大程度保持数据完 整性与连续性,对于离散型变量基于人工经验归一化,在对结果不产生较大影响下简化预处 理步骤,提高运算速度。构成具有时序特点的数据集,便于LSTM网络训练。
(2)、首次从数据时序性角度考虑电动汽车的充电负荷对短期负荷预测的影响。由于电 动汽车的充电行为与电价、天气等因素在一定程度上有很强的相关性,本发明提出从电动汽 车用户行为角度建立概率模型,以日出行结束时刻作为充电需求开始时刻,通过蒙特卡洛法 建立电动汽车充电需求的时间概率模型,并在处理后作为时序性输入插入数据集,实现电动 汽车充电负荷与其他影响因子的结合,便于后续模型对包括电动汽车充电负荷在内的各种影 响因子深度挖掘,在不失预测精度的前提下,极大简化了预测模型。
(3)、采用LSTM栈式自编码提取数据特征,堆栈的LSTM层作为隐藏层,既可以充分在时间、变量与变量、变量大小中立体挖掘数据价值,又能深度学习,提取必要的输入特征,实现降维并重构输入序列。本发明所提算法与如今复杂而庞大的多变量时序性数据库十分契 合,能够最大程度挖掘并利用数据价值,避免手动提取特征对数据完整性的破坏,为后续 XGBoost负荷预测模型提高预测精度提供了重要保障。
(4)、采用XGBoost模型将LSTM栈式自编码提取的特征作为输入序列并预测短期负荷。 选择集合方式防止过拟合效应出现,且XGBoost泛化能力较强,可以使预测结果更为精确, 使预测模型具有很好的泛化性能。选择三种评价指标,能够全面评价模型,避免随机性。
综上所述,本发明首次从数据角度将电动汽车充电负荷转换为温度等具有时序特性的影 响因子,简化了考虑电动汽车充电负荷预测的模型。提出的LSTM栈式自编码结构能够充分 挖掘利用多变量时序性数据集,深度学习数据内部价值,避免手动提取特征破坏数据完整性。 XGBoost算法通过集合方式防止过拟合效应出现。因此本发明提出的一种基于LSTM栈式自 编码--XGBoost的多模型短期负荷预测方法,契合大数据时代特点,适合处理具有多变量时 序性且复杂而庞大的数据集,能有效提高短期负荷预测精度,且具有较好的泛化能力。
附图说明
图1是基于LSTM栈式自编码--XGBoost的多模型短期负荷预测方法总体流程图。
图2是LSTM栈式自编码结构图。
具体实施方式
下面结合附图对本发明做进一步的说明:
本发明提出基于LSTM栈式自编码多模型荷预测方法及系统。首先对数据集数据预处理, 实现降噪与归一化。其次构建电动汽车充电开始时间的概率模型,标准化处理使其成为具有 时序性的影响因子后,插入数据集。然后构建LSTM栈式编码器结构,实现对输入序列的特 征提取。最后将重构的输入序列输入XGBoost模型,得到预测结果。与常规的短期负荷预测 方法比较,本发明能够充分挖掘多变量时序性历史数据,泛化能力强且有效提高短期负荷预 测精度。
本发明针对传统短期负荷预测方法无法有效利用原始数据,考虑电动汽车充电负荷模型 复杂繁琐,不能准确挖掘多变量高维度数据内部价值等问题,提出一种基于LSTM栈式自编 码--XGBoost的多模型短期负荷预测方法。本发明适用于多维度多变量的电网历史数据样本, 兼顾了传统预测的优点与深度学习的特点,有效实现数据内部价值的挖掘,提高短期负荷预 测精度。
如图1所示,基于LSTM栈式自编码多模型荷预测方法,该方法包括:
步骤1:获取数据集,对数据集进行预处理;
数据集的获取包括采集负荷数据、电价数据、温度、湿度、待测日一周前负荷数据、星 期类型、法定节日等,采样周期为15min,按时间序列排列,构建数据集;时间序列分为两列,第一列为年-月-日-小时-时刻,第二列为历史数据值,便于输入序列的提取。
对数据集进行预处理。
对于在时间上有连续性的变量历史负荷数据、温度、湿度,基于格拉布斯准则法判断异 常值并清理,采用Lagrange三次样条插值补全残缺数据,最后对数据集归一化处理。
格拉布斯准则法如下:
Figure BDA0002549482170000151
Figure BDA0002549482170000152
其中,G1,G2分别为判断最小、最大值是否异常;
Figure BDA0002549482170000153
为均值,S为标准差;
若G1,G2分别大于对应的判据G则表示该最小、最大值为异常值;其中,判据G依据格拉布斯的临界值表选取;
考虑到是时序性变量在时间上的连续性,将异常值修正为其前后两值的均值,该方式在 数据集上迭代进行,直到无异常值为止;
Lagrange完备三次样条插值法如下:
已知函数y=f(x)在区间[a,b]上的值yi=f(xi)(i=0,1,2,…n),其中: a=x0<x1<…<xn-1<xn=b;
插值函数S(x)满足:
S(xi)=yi(i=0,1,2,…n);S(x)在每个小区间[xi,xi+1](i=0,1,2,…n)上均为三次多项 式,记作Si(x);S(x)在[a,b]上二阶连续可微;
因此,记为:
Figure BDA0002549482170000154
进而得:
Figure BDA0002549482170000155
选取的边界条件为:
S′(a)=y′0,S′(b)=y′n (5)
其中,y0′表示函数f(x)在x0处的导数,yn′表示函数f(x)在xn处的导数;
归一化流程:
对于具有时序性的连续变量,标准化公式为:
Figure BDA0002549482170000161
其中,X表示实际值,Xmin表示样本中最小值,Xmax表示样本中最大值,X′表示归一化处理后的值,应使归一化处理后的值在0~1间;
对于离散型变量,规定晴好天气影响因子为1,雾霾多云天气影响因子为0.5,雨雪天气 影响因子为0.1,极端天气影响因子为0,规定工作日影响因子为1,休息日影响因子为0。
步骤2:建立电动汽车充电开始时间的概率模型并重构数据集;
首次从数据时序性角度考虑电动汽车的充电负荷对短期负荷预测的影响。常规考虑电动 汽车等柔性负荷的影响都是基于时空特性,通过元胞自动机等方法进行土地决策根据区域类 型进行预测或是基于出行链进行预测,无论何种方法都十分繁琐,且其预测的充电负荷只能 与系统负荷单一叠加,无法进行有效融合。由于电动汽车的充电行为与电价、天气等因素在 一定程度上有很强的相关性,本发明提出从电动汽车用户行为角度建立概率模型,以日出行 结束时刻作为充电需求开始时刻。
利用2017年美国家用车辆调查的数据,拟合分析日出行结束时刻概率曲线,通过蒙特卡 洛仿真法,对随机变量构造数学期望,利用足够多的采样计算模拟结果。将得到的待预测日 某时刻电动汽车用户行为的概率量化,以简化用户行为与充电负荷间的非线性关系,使其形 成具有时序性的序列数据,插入上述数据集。
基于2017年美国家用车辆调查的数据,拟合电动汽车用户日出行结束时刻概率分布:
Figure BDA0002549482170000162
其中,t表示日出行结束时刻,σ和μ分别表示电动汽车日出行结束时刻统计数据的标 准差和均值;
利用蒙特卡洛法模拟得到电动汽车充电开始时间的概率模型。
量化过程则将概率大小作为影响因子,结合具体时刻将其整理为时序数据格式后插入数 据集。
通过蒙特卡洛法建立电动汽车充电需求的时间概率模型,并在处理后作为时序性输入插 入数据集。实现电动汽车充电负荷与其他影响因子的结合,便于后续模型对包括电动汽车充 电负荷在内的各种影响因子深度挖掘,在不失预测精度的前提下,极大简化了预测模型。
步骤3:构建LSTM栈式自编码结构并训练;
如图2所示,LSTM栈式自编码的结构是在自动编码器的传统结构上加以改进,将自动 编码器的隐藏层替换为LSTM层,目的是结合自动编码器的深度学习优势与LSTM网络解决 了梯度消失问题,能对时序性强的序列进行分析预测的特点。实现对训练集数据的深度挖掘, 特征提取并重构输入序列。
结合自动编码器的深度学习优势与LSTM网络解决了梯度消失问题,能对时序性强的序 列进行分析预测的特点,采用LSTM栈式自编码提取数据特征,堆栈的LSTM编码层作为隐 藏层。
自动编码器由三层组成,分别为输入层、隐藏层和输出层;训练过程包括编码阶段和译 码阶段;给定未标记的输入数据集,其中n=1,2,...,N且xn∈Rm,两个阶段表示为:
h(x)=f(W1x+b1) (8)
Figure BDA0002549482170000171
其中,h(x)表示从输入向量x计算得出的隐藏编码向量,
Figure BDA0002549482170000172
是输出层的译码器向量;f 为编码函数,g为解码函数,W1和W2分别为编码器和解码器的权矩阵,b1和b2分别为各 相位的偏置向量;输入与重构输入或输出之间的差异称为重构误差,在训练期间模型使
Figure BDA0002549482170000173
最小化;
LSTM网络模块具有三个门结构:遗忘门、输入门、输出门;采用sigmoid和tanh函数, 用σ表示sigmoid函数变化;
遗忘门:
ft=σ(Wfxxt+Wfhht-1+bf) (10)
当前时刻的输入xt与前一时刻状态记忆单元Ct-1、中间输出ht-1共同决定状态记忆单元 遗忘部分;
输入门:
it=σ(Wixxt+Wihht-1+bi) (11)
gt=tanh(Wgxxt+Wghht-1+bg) (12)
Figure BDA0002549482170000181
其中,Ct-1表示前一时刻状态记忆单元的保留向量;输入xt和中间输出ht-1分别经过 sigmoid和tanh函数变化后共同决定状态记忆单元中保留向量;
输出门:
ot=σ(Woxxt+Wohht-1+bo) (14)
Figure BDA0002549482170000182
输出ht由更新后的Ct与输出ot共同决定;
上式中,ft,it,gt,ot,ht和Ct分别为遗忘门、输入门、输入节点、输出门、中间输出和状 态记忆单元的状态;Wfx,Wfh,Wix,Wih,Wgx,Wgh,Wox和Woh分别为相应门与输入xt和中间输出ht-1相乘的矩阵权重;bf,bi,bg,bo分别为相应门的偏置项;
Figure BDA0002549482170000183
表示向量中元素按位相乘;
Figure BDA0002549482170000184
表示矩阵加法。
在Python3.7下通过Keras库搭建LSTM网络,利用Adam算法优化。
根据以上两种模型特点,设置LSTM层为自编码的隐藏层,即编码器和译码器为两层 LSTM,为进行深度学习,将这种结构进行堆栈,虽然增加层数可以增强学习能力,但层数过多又会使网络训练难以收敛,故采取2层堆栈。利用LSTM栈式自编码特征提取的结果重构输入序列。
该方法既可以充分在时间、变量与变量、变量大小中立体挖掘数据价值,又能深度学习, 提取必要的输入特征,实现降维并重构输入序列。本发明所提算法与如今复杂而庞大的多变 量时序性数据库十分契合,能够最大程度挖掘并利用数据价值,避免手动提取特征对数据完 整性的破坏,为后续XGBoost负荷预测模型提高预测精度提供了重要保障。
步骤4:利用XGBoost模型预测短期负荷,并进行指标评价。
利用XGBoost模型预测短期负荷和评价指标:
XGBoost模型采用贪心算法,通过集合方式防止过拟合现象,且泛化能力强;XGBoost 模型将LSTM栈式自编码提取的特征作为输入序列,可以有效提高短期负荷预测精度与模型 泛化性能。选择三种评价指标,能够全面评价模型,避免随机性。
将LSTM栈式自编码提取的特征重新构建输入序列,作为XGBoost模型的输入。XGBoost 模型作为一种提升树模型,实现了多种树模型的集成,这些树模型为CART回归树模型;XGBoost模型如下所示:
Figure BDA0002549482170000191
Figure BDA0002549482170000192
为第i个样本的模型预测值;K为树的数量;F为树的集合空间;xi表示第i个数据点的特征向量;fk对应第k棵独立的树的结构q和叶子权重w相关状况;
损失函数L:
Figure BDA0002549482170000193
其中,
Figure BDA0002549482170000194
为预测值
Figure BDA0002549482170000195
和目标值yi之间的训练误差之和;
Figure BDA0002549482170000196
为树的复杂 度之和,用于控制模型复杂度的正则项:
Figure BDA0002549482170000197
其中γ和λ为模型的惩罚系数;w表示叶子权重,T表示叶子结点数量,
损失函数在序列最小化过程中,每一轮加入的增量函数ft(xi)尽可能使损失函数最大程 度减小;第t轮的目标函数表示为:
Figure BDA0002549482170000198
采用二阶泰勒展开的方式近似目标函数;设第j个叶子结点的样本集合为 Ij={i|q(xi=j)};其中
Figure BDA0002549482170000199
Figure BDA00025494821700001910
分别为损失函数的一、 二阶导数;得:
Figure BDA00025494821700001911
Figure BDA0002549482170000201
Gj表示叶子结点j所包含样本的一阶偏导数累加之和,是一 个常量;Hj表示叶子结点j所包含样本的二阶偏导数累加之和,是一个常量,
得:
Figure BDA0002549482170000202
wj表示叶子结点j的权重,L(t)表示第t轮损失函数,
对w求偏导得到:
Figure BDA0002549482170000203
将权值代入目标函数得到:
Figure BDA0002549482170000204
损失函数越小表示模型越好;采用贪心算法对子树划分,每次对已有的叶子增加新划分, 计算最大增益:
Figure BDA0002549482170000205
其中
Figure BDA0002549482170000206
Figure BDA0002549482170000207
分别表示左、右子树分裂后产生的增益,
Figure BDA0002549482170000208
为不进 行子树分裂的增益;
XGBoost的泛化能力较强,通过集合的方式防止过拟合,XGBoost模型输出预测结果后, 选择平均误差,平均相对误差和相对均方误差作为评价指标:
Figure BDA0002549482170000209
其中,n为预测点个数,x(t)表示t时刻实际观测的负荷值,y(t)表示t时刻负荷预测值;ME反映整体预测值平均偏差的情况,值越小偏差越小;MAPE能够反映相对平均偏离程度, 值越小表明模型预测精度越高;RMSE反映预测模型的可靠性,值越小则模型越可靠。
如图1所示,基于LSTM栈式自编码多模型荷预测系统,该系统包括获取数据集模块, 预处理模块,概率模型和重构模块,LSTM栈式自编码结构的构建和训练模块,预测模块, 指标评价模块。
数据模块,用于获取数据,构建数据集。
预处理模块,用于对数据集进行预处理。
概率模型和重构模块,用于建立电动汽车充电开始时间的概率模型并重构数据集。
构建和训练模块,用于构建LSTM栈式自编码结构并训练。
预测模块,用于利用XGBoost模型预测短期负荷。
指标评价模块,用于对预测短期负荷进行指标评价。
数据模块,获取包括采集负荷数据、电价数据、温度、湿度、待测日一周前负荷数据、 星期类型、法定节日等,采样周期为15min,按时间序列排列,构建数据集;时间序列分为 两列,第一列为年-月-日-小时-时刻,第二列为历史数据值。
预处理模块,对于在时间上有连续性的变量历史负荷数据、温度、湿度,基于格拉布斯 准则法判断异常值并清理,采用Lagrange三次样条插值补全残缺数据,最后对数据集归一化 处理。
格拉布斯准则法如下:
Figure BDA0002549482170000211
Figure BDA0002549482170000212
其中,G1,G2分别为判断最小、最大值是否异常;
Figure BDA0002549482170000213
为均值,S为标准差;
若G1,G2分别大于对应的判据G则表示该最小、最大值为异常值;其中,判据G依据格拉布斯的临界值表选取;
考虑到是时序性变量在时间上的连续性,将异常值修正为其前后两值的均值,该方式在 数据集上迭代进行,直到无异常值为止;
Lagrange完备三次样条插值法如下:
已知函数y=f(x)在区间[a,b]上的值yi=f(xi)(i=0,1,2,…n),其中:a=x0<x1<…<xn-1<xn=b;
插值函数S(x)满足:
S(xi)=yi(i=0,1,2,…n);S(x)在每个小区间[xi,ht+1](i=0,1,2,…n)上均为三次多项 式,记作Si(x);S(x)在[a,b]上二阶连续可微;
因此,记为:
Figure BDA0002549482170000221
进而得:
Figure BDA0002549482170000222
选取的边界条件为:
S′(a)=y′0,S′(b)=y′n (5)
其中,y0′表示函数f(x)在x0处的导数,yn′表示函数f(x)在xn处的导数;
归一化流程:
对于具有时序性的连续变量,标准化公式为:
Figure BDA0002549482170000223
其中,X表示实际值,Xmin表示样本中最小值,Xmax表示样本中最大值,X′表示归一化处理后的值,应使归一化处理后的值在0~1间;
对于离散型变量,规定晴好天气影响因子为1,雾霾多云天气影响因子为0.5,雨雪天气 影响因子为0.1,极端天气影响因子为0,规定工作日影响因子为1,休息日影响因子为0。
概率模型和重构模块,
从数据时序性角度考虑电动汽车的充电负荷对短期负荷预测的影响;
从电动汽车用户行为角度建立概率模型,以日出行结束时刻作为充电需求开始时刻,拟 合电动汽车用户日出行结束时刻概率分布:
Figure BDA0002549482170000231
其中,t表示日出行结束时刻,σ和μ分别表示电动汽车日出行结束时刻统计数据的标 准差和均值;
通过蒙特卡洛法建立电动汽车充电需求的时间概率模型,并在处理后作为时序性输入插 入数据集。
构建和训练模块,
采用LSTM栈式自编码提取数据特征,堆栈的LSTM编码层作为隐藏层,
自动编码器由三层组成,分别为输入层、隐藏层和输出层;训练过程包括编码阶段和译 码阶段;给定未标记的输入数据集,其中n=1,2,...,N且xn∈Rm,两个阶段表示为:
h(x)=f(W1x+b1) (8)
Figure BDA0002549482170000232
其中,h(x)表示从输入向量x计算得出的隐藏编码向量,
Figure BDA0002549482170000233
是输出层的译码器向量;f 为编码函数,g为解码函数,W1和W2分别为编码器和解码器的权矩阵,b1和b2分别为各 相位的偏置向量;输入与重构输入或输出之间的差异称为重构误差,在训练期间模型使
Figure BDA0002549482170000234
最小化;
LSTM网络模块具有三个门结构:遗忘门、输入门、输出门;采用sigmoid和tanh函数, 用σ表示sigmoid函数变化;
遗忘门:
ft=σ(Wfxxt+Wfhht-1+bf) (10)
当前时刻的输入xt与前一时刻状态记忆单元Ct-1、中间输出ht-1共同决定状态记忆单元 遗忘部分;
输入门:
it=σ(Wixxt+Wihht-1+bi) (11)
gt=tanh(Wgxxt+Wghht-1+bg) (12)
Figure BDA0002549482170000241
其中,Ct-1表示前一时刻状态记忆单元的保留向量;输入xt和中间输出ht-1分别经过 sigmoid和tanh函数变化后共同决定状态记忆单元中保留向量;
输出门:
ot=σ(Woxxt+Wohht-1+bo) (14)
Figure BDA0002549482170000242
输出ht由更新后的Ct与输出ot共同决定;
上式中,ft,it,gt,ot,ht和Ct分别为遗忘门、输入门、输入节点、输出门、中间输出和状 态记忆单元的状态;Wfx,Wfh,Wix,Wih,Wgx,Wgh,Wox和Woh分别为相应门与输入xt和中间输出ht-1相乘的矩阵权重;bf,bi,bg,bo分别为相应门的偏置项;
Figure BDA0002549482170000243
表示向量中元素按位相乘;
Figure BDA0002549482170000244
表示矩阵加法。
在Python3.7下通过Keras库搭建LSTM网络,利用Adam算法优化。
预测模块,
XGBoost模型将LSTM栈式自编码提取的特征作为输入序列,XGBoost模型采用贪心算 法,通过集合方式防止过拟合现象,且泛化能力强;
XGBoost模型作为一种提升树模型,实现了多种树模型的集成,这些树模型为CART回 归树模型;XGBoost模型如下所示:
Figure BDA0002549482170000245
Figure BDA0002549482170000246
为第i个样本的模型预测值;K为树的数量;F为树的集合空间;xi表示第i个数据点的特征向量;fk对应第k棵独立的树的结构q和叶子权重w相关状况;
损失函数L:
Figure BDA0002549482170000247
其中,
Figure BDA0002549482170000251
为预测值
Figure BDA0002549482170000252
和目标值yi之间的训练误差之和;
Figure BDA0002549482170000253
为树的复杂 度之和,用于控制模型复杂度的正则项:
Figure BDA0002549482170000254
其中γ和λ为模型的惩罚系数;w表示叶子权重,T表示叶子结点数量,
损失函数在序列最小化过程中,每一轮加入的增量函数ft(xi)尽可能使损失函数最大程 度减小;第t轮的目标函数表示为:
Figure BDA0002549482170000255
采用二阶泰勒展开的方式近似目标函数;设第j个叶子结点的样本集合为 Ij={i|q(xi=j)};其中
Figure BDA0002549482170000256
Figure BDA0002549482170000257
分别为损失函数的一、 二阶导数;得:
Figure BDA0002549482170000258
Figure BDA0002549482170000259
Gj表示叶子结点j所包含样本的一阶偏导数累加之和,是一 个常量;Hj表示叶子结点j所包含样本的二阶偏导数累加之和,是一个常量,
得:
Figure BDA00025494821700002510
wj表示叶子结点j的权重,L(t)表示第t轮损失函数,
对w求偏导得到:
Figure BDA0002549482170000261
将权值代入目标函数得到:
Figure BDA0002549482170000262
损失函数越小表示模型越好;采用贪心算法对子树划分,每次对已有的叶子增加新划分, 计算最大增益:
Figure BDA0002549482170000263
其中
Figure BDA0002549482170000264
Figure BDA0002549482170000265
分别表示左、右子树分裂后产生的增益,
Figure BDA0002549482170000266
为不进 行子树分裂的增益;
XGBoost的泛化能力较强,通过集合的方式防止过拟合,XGBoost模型输出预测结果后, 选择平均误差,平均相对误差和相对均方误差作为评价指标:
Figure BDA0002549482170000267
其中,n为预测点个数,x(t)表示t时刻实际观测的负荷值,y(t)表示t时刻负荷预测值; ME反映整体预测值平均偏差的情况,值越小偏差越小;MAPE能够反映相对平均偏离程度, 值越小表明模型预测精度越高;RMSE反映预测模型的可靠性,值越小则模型越可靠。
如图1所示,要预测某区域一日内各时刻共96点负荷值,首先选取部分数据作训练集,并 进行预处理,基于格拉布斯准则判断并修正异常值,利用Lagrange完备三次样条插值补充缺 失值,最后进行连续性变量的公式法归一化、离散型变量的人工经验法归一化,构成具有时 序特点的数据集。与此同时基于蒙特卡洛法建立电动汽车充电开始时间的概率模型,并将其 结果量化为时序性序列数据,插入上述数据集。将处理好的训练集输入LSTM栈式自编码进 行特征提取,在Python3.7下通过Keras库搭建LSTM网络,利用Adam算法优化,重构输入序列 后输入XGBoost模型采用贪心算法,进行短期负荷预测并输出结果。为检验模型,选择平均 误差(ME),平均相对误差(MAPE)和相对均方误差(RMSE)作为评价指标。
如图2所示,该结构图详细展示了LSTM栈式自编码的结构,即LSTM栈式自编码是由多 个LSTM自编码块组成的,其隐藏层是每个LSTM自编码块的编码层。处理好的训练集是序列 数据矩阵,将多变量按时序顺序输入第一个LSTM自编码块,深度学习后将其编码层提出作 为下一个LSTM自编码块的输入,依次类推。将每个LSTM自编码块的编码层提出后按序堆叠, 构成LSTM栈式自编码器,实现对输入数据的深度挖掘,最后将提取的特征重构作为XGBoost 模型的输入。
应当理解的是,以上的描述与后文的结合附图描述均是示范性的,而非限制性的。本发 明的技术特征并不局限于此,任何本领域的技术人员在本发明的领域内,所作的变化或修饰 皆涵盖在本发明的专利范围之中。

Claims (10)

1.基于LSTM栈式自编码多模型荷预测方法,其特征在于:该方法包括:
步骤1:获取数据集,对数据集进行预处理;
步骤2:建立电动汽车充电开始时间的概率模型并重构数据集;
步骤3:构建LSTM栈式自编码结构并训练;
步骤4:利用XGBoost模型预测短期负荷,并进行指标评价。
2.根据权利要求1所述的基于LSTM栈式自编码多模型荷预测方法,其特征在于:数据集的获取包括采集负荷数据、电价数据、温度、湿度、待测日一周前负荷数据、星期类型、法定节日等,采样周期为15min,按时间序列排列,构建数据集;时间序列分为两列,第一列为年-月-日-小时-时刻,第二列为历史数据值。
3.根据权利要求1所述的基于LSTM栈式自编码多模型荷预测方法,其特征在于:对数据集进行预处理,对于在时间上有连续性的变量历史负荷数据、温度、湿度,基于格拉布斯准则法判断异常值并清理,采用Lagrange三次样条插值补全残缺数据,最后对数据集归一化处理;
格拉布斯准则法如下:
Figure FDA0002549482160000011
Figure FDA0002549482160000012
其中,G1,G2分别为判断最小、最大值是否异常;
Figure FDA0002549482160000013
为均值,S为标准差;
若G1,G2分别大于对应的判据G则表示该最小、最大值为异常值;其中,判据G依据格拉布斯的临界值表选取;
考虑到是时序性变量在时间上的连续性,将异常值修正为其前后两值的均值,该方式在数据集上迭代进行,直到无异常值为止;
Lagrange完备三次样条插值法如下:
已知函数y=f(x)在区间[a,b]上的值yi=f(xi)(i=0,1,2,…n),其中:a=x0<x1<…<xn-1<xn=b;
插值函数S(x)满足:
S(xi)=yi(i=0,1,2,…n);S(x)在每个小区间[xi,xi+1](i=0,1,2,…n)上均为三次多项式,记作Si(x);S(x)在[a,b]上二阶连续可微;
因此,记为:
Figure FDA0002549482160000021
进而得:
Figure FDA0002549482160000022
选取的边界条件为:
S′(a)=y′0,S′(b)=y′n (5)
其中,y0′表示函数f(x)在x0处的导数,yn′表示函数f(x)在xn处的导数;
归一化流程:
对于具有时序性的连续变量,标准化公式为:
Figure FDA0002549482160000023
其中,X表示实际值,Xmin表示样本中最小值,Xmax表示样本中最大值,X′表示归一化处理后的值,应使归一化处理后的值在0~1间;
对于离散型变量,规定晴好天气影响因子为1,雾霾多云天气影响因子为0.5,雨雪天气影响因子为0.1,极端天气影响因子为0,规定工作日影响因子为1,休息日影响因子为0。
4.根据权利要求1所述的基于LSTM栈式自编码多模型荷预测方法,其特征在于:建立电动汽车充电开始时间的概率模型并重构数据集:
从数据时序性角度考虑电动汽车的充电负荷对短期负荷预测的影响;
从电动汽车用户行为角度建立概率模型,以日出行结束时刻作为充电需求开始时刻,拟合电动汽车用户日出行结束时刻概率分布:
Figure FDA0002549482160000031
其中,t表示日出行结束时刻,σ和μ分别表示电动汽车日出行结束时刻统计数据的标准差和均值;
通过蒙特卡洛法建立电动汽车充电需求的时间概率模型,并在处理后作为时序性输入插入数据集。
5.根据权利要求1所述的基于LSTM栈式自编码多模型荷预测方法,其特征在于:构建LSTM栈式自编码结构并训练:
采用LSTM栈式自编码提取数据特征,堆栈的LSTM编码层作为隐藏层,
自动编码器由三层组成,分别为输入层、隐藏层和输出层;训练过程包括编码阶段和译码阶段;给定未标记的输入数据集,其中n=1,2,...,N且xn∈Rm,两个阶段表示为:
h(x)=f(W1x+b1) (8)
Figure FDA0002549482160000032
其中,h(x)表示从输入向量x计算得出的隐藏编码向量,
Figure FDA0002549482160000033
是输出层的译码器向量;f为编码函数,g为解码函数,W1和W2分别为编码器和解码器的权矩阵,b1和b2分别为各相位的偏置向量;输入与重构输入或输出之间的差异称为重构误差,在训练期间模型使
Figure FDA0002549482160000041
最小化;
LSTM网络模块具有三个门结构:遗忘门、输入门、输出门;采用sigmoid和tanh函数,用σ表示sigmoid函数变化;
遗忘门:
ft=σ(Wfxxt+Wfhht-1+bf) (10)
当前时刻的输入xt与前一时刻状态记忆单元Ct-1、中间输出ht-1共同决定状态记忆单元遗忘部分;
输入门:
it=σ(Wixxt+wihht-1+bi) (11)
gt=tanh(Wgxxt+Wghht-1+bg) (12)
Figure FDA0002549482160000042
其中,Ct-1表示前一时刻状态记忆单元的保留向量;输入xt和中间输出ht-1分别经过sigmoid和tanh函数变化后共同决定状态记忆单元中保留向量;
输出门:
ot=σ(Woxxt+Wohht-1+bo) (14)
Figure FDA0002549482160000043
输出ht由更新后的Ct与输出ot共同决定;
上式中,ft,it,gt,ot,ht和Ct分别为遗忘门、输入门、输入节点、输出门、中间输出和状态记忆单元的状态;Wfx,Wfh,Wix,Wih,Wgx,Wgh,Wox和Woh分别为相应门与输入xt和中间输出ht-1相乘的矩阵权重;bf,bi,bg,bo分别为相应门的偏置项;
Figure FDA0002549482160000044
表示向量中元素按位相乘;
Figure FDA0002549482160000045
表示矩阵加法;
在Python3.7下通过Keras库搭建LSTM网络,利用Adam算法优化。
6.根据权利要求1所述的基于LSTM栈式自编码多模型荷预测方法,其特征在于:利用XGBoost模型预测短期负荷和评价指标:
XGBoost模型将LSTM栈式自编码提取的特征作为输入序列,XGBoost模型采用贪心算法,通过集合方式防止过拟合现象,且泛化能力强;
XGBoost模型作为一种提升树模型,实现了多种树模型的集成,这些树模型为CART回归树模型;XGBoost模型如下所示:
Figure FDA0002549482160000051
Figure FDA0002549482160000052
为第i个样本的模型预测值;K为树的数量;F为树的集合空间;xi表示第i个数据点的特征向量;fk对应第k棵独立的树的结构q和叶子权重w相关状况;
损失函数L:
Figure FDA0002549482160000053
其中,
Figure FDA0002549482160000054
为预测值
Figure FDA0002549482160000055
和目标值yi之间的训练误差之和;
Figure FDA0002549482160000056
为树的复杂度之和,用于控制模型复杂度的正则项:
Figure FDA0002549482160000057
其中γ和λ为模型的惩罚系数;w表示叶子权重,T表示叶子结点数量,
损失函数在序列最小化过程中,每一轮加入的增量函数ft(xi)尽可能使损失函数最大程度减小;第t轮的目标函数表示为:
Figure FDA0002549482160000058
采用二阶泰勒展开的方式近似目标函数;设第j个叶子结点的样本集合为Ij={i|q(xi=j)};其中
Figure FDA0002549482160000061
Figure FDA0002549482160000062
分别为损失函数的一、二阶导数;得:
Figure FDA0002549482160000063
Figure FDA0002549482160000064
Gj表示叶子结点j所包含样本的一阶偏导数累加之和,是一个常量;Hj表示叶子结点j所包含样本的二阶偏导数累加之和,是一个常量,
得:
Figure FDA0002549482160000065
wj表示叶子结点j的权重,L(t)表示第t轮损失函数,
对w求偏导得到:
Figure FDA0002549482160000066
将权值代入目标函数得到:
Figure FDA0002549482160000067
损失函数越小表示模型越好;采用贪心算法对子树划分,每次对已有的叶子增加新划分,计算最大增益:
Figure FDA0002549482160000068
其中
Figure FDA0002549482160000071
Figure FDA0002549482160000072
分别表示左、右子树分裂后产生的增益,
Figure FDA0002549482160000073
为不进行子树分裂的增益;
XGBoost的泛化能力较强,通过集合的方式防止过拟合,XGBoost模型输出预测结果后,选择平均误差,平均相对误差和相对均方误差作为评价指标:
Figure FDA0002549482160000074
其中,n为预测点个数,x(t)表示t时刻实际观测的负荷值,y(t)表示t时刻负荷预测值;ME反映整体预测值平均偏差的情况,值越小偏差越小;MAPE能够反映相对平均偏离程度,值越小表明模型预测精度越高;RMSE反映预测模型的可靠性,值越小则模型越可靠。
7.基于LSTM栈式自编码多模型荷预测系统,其特征在于:该系统包括获取数据集模块,预处理模块,概率模型和重构模块,LSTM栈式自编码结构的构建和训练模块,预测模块,指标评价模块;
数据模块,用于获取数据,构建数据集;
预处理模块,用于对数据集进行预处理;
概率模型和重构模块,用于建立电动汽车充电开始时间的概率模型并重构数据集;
构建和训练模块,用于构建LSTM栈式自编码结构并训练;
预测模块,用于利用XGBoost模型预测短期负荷;
指标评价模块,用于对预测短期负荷进行指标评价。
8.根据权利要求7所述的基于LSTM栈式自编码多模型荷预测系统,其特征在于:数据模块,获取包括采集负荷数据、电价数据、温度、湿度、待测日一周前负荷数据、星期类型、法定节日等,采样周期为15min,按时间序列排列,构建数据集;时间序列分为两列,第一列为年-月-日-小时-时刻,第二列为历史数据值;
预处理模块,对于在时间上有连续性的变量历史负荷数据、温度、湿度,基于格拉布斯准则法判断异常值并清理,采用Lagrange三次样条插值补全残缺数据,最后对数据集归一化处理;
格拉布斯准则法如下:
Figure FDA0002549482160000081
Figure FDA0002549482160000082
其中,G1,G2分别为判断最小、最大值是否异常;
Figure FDA0002549482160000083
为均值,S为标准差;
若G1,G2分别大于对应的判据G则表示该最小、最大值为异常值;其中,判据G依据格拉布斯的临界值表选取;
考虑到是时序性变量在时间上的连续性,将异常值修正为其前后两值的均值,该方式在数据集上迭代进行,直到无异常值为止;
Lagrange完备三次样条插值法如下:
已知函数y=f(x)在区间[a,b]上的值yi=f(xi)(i=0,1,2,…n),其中:a=x0<x1<…<xn-1<xn=b;
插值函数S(x)满足:
S(xi)=yi(i=0,1,2,…n);S(x)在每个小区间[xi,xi+1](i=0,1,2,…n)上均为三次多项式,记作Si(x);S(x)在[a,b]上二阶连续可微;
因此,记为:
Figure FDA0002549482160000091
进而得:
Figure FDA0002549482160000092
选取的边界条件为:
S′(a)=y′0,S′(b)=y′n (5)
其中,y0′表示函数f(x)在x0处的导数,yn′表示函数f(x)在xn处的导数;
归一化流程:
对于具有时序性的连续变量,标准化公式为:
Figure FDA0002549482160000093
其中,X表示实际值,Xmin表示样本中最小值,Xmax表示样本中最大值,X′表示归一化处理后的值,应使归一化处理后的值在0~1间;
对于离散型变量,规定晴好天气影响因子为1,雾霾多云天气影响因子为0.5,雨雪天气影响因子为0.1,极端天气影响因子为0,规定工作日影响因子为1,休息日影响因子为0。
9.根据权利要求7所述的基于LSTM栈式自编码多模型荷预测系统,其特征在于:概率模型和重构模块,
从数据时序性角度考虑电动汽车的充电负荷对短期负荷预测的影响;
从电动汽车用户行为角度建立概率模型,以日出行结束时刻作为充电需求开始时刻,拟合电动汽车用户日出行结束时刻概率分布:
Figure FDA0002549482160000101
其中,t表示日出行结束时刻,σ和μ分别表示电动汽车日出行结束时刻统计数据的标准差和均值;
通过蒙特卡洛法建立电动汽车充电需求的时间概率模型,并在处理后作为时序性输入插入数据集;
构建和训练模块,
采用LSTM栈式自编码提取数据特征,堆栈的LSTM编码层作为隐藏层,
自动编码器由三层组成,分别为输入层、隐藏层和输出层;训练过程包括编码阶段和译码阶段;给定未标记的输入数据集,其中n=1,2,...,N且xn∈Rm,两个阶段表示为:
h(x)=f(W1x+b1) (8)
Figure FDA0002549482160000102
其中,h(x)表示从输入向量x计算得出的隐藏编码向量,
Figure FDA0002549482160000103
是输出层的译码器向量;f为编码函数,g为解码函数,W1和W2分别为编码器和解码器的权矩阵,b1和b2分别为各相位的偏置向量;输入与重构输入或输出之间的差异称为重构误差,在训练期间模型使
Figure FDA0002549482160000104
最小化;
LSTM网络模块具有三个门结构:遗忘门、输入门、输出门;采用sigmoid和tanh函数,用σ表示sigmoid函数变化;
遗忘门:
ft=σ(Wfxxt+Wfhht-1+bf) (10)
当前时刻的输入xt与前一时刻状态记忆单元Ct-1、中间输出ht-1共同决定状态记忆单元遗忘部分;
输入门:
it=σ(Wixxt+Wihht-1+bi) (11)
gt=tanh(Wgxxt+Wghht-1+bg) (12)
Figure FDA0002549482160000111
其中,Ct-1表示前一时刻状态记忆单元的保留向量;输入xt和中间输出ht-1分别经过sigmoid和tanh函数变化后共同决定状态记忆单元中保留向量;
输出门:
ot=σ(Woxxi+Wohht-1+bo) (14)
Figure FDA0002549482160000112
输出ht由更新后的Ct与输出ot共同决定;
上式中,ft,it,gt,ot,ht和Ct分别为遗忘门、输入门、输入节点、输出门、中间输出和状态记忆单元的状态;Wfx,Wfh,Wix,Wih,Wgx,Wgh,Wox和Woh分别为相应门与输入xt和中间输出ht-1相乘的矩阵权重;bf,bi,bg,bo分别为相应门的偏置项;
Figure FDA0002549482160000113
表示向量中元素按位相乘;
Figure FDA0002549482160000114
表示矩阵加法;
在Python3.7下通过Keras库搭建LSTM网络,利用Adam算法优化。
10.根据权利要求7所述的基于LSTM栈式自编码多模型荷预测系统,其特征在于:预测模块,
XGBoost模型将LSTM栈式自编码提取的特征作为输入序列,XGBoost模型采用贪心算法,通过集合方式防止过拟合现象,且泛化能力强;
XGBoost模型作为一种提升树模型,实现了多种树模型的集成,这些树模型为CART回归树模型;XGBoost模型如下所示:
Figure FDA0002549482160000115
Figure FDA0002549482160000121
为第i个样本的模型预测值;K为树的数量;F为树的集合空间;xi表示第i个数据点的特征向量;fk对应第k棵独立的树的结构q和叶子权重w相关状况;
损失函数L:
Figure FDA0002549482160000122
其中,
Figure FDA0002549482160000123
为预测值
Figure FDA0002549482160000124
和目标值yi之间的训练误差之和;
Figure FDA0002549482160000125
为树的复杂度之和,用于控制模型复杂度的正则项:
Figure FDA0002549482160000126
其中γ和λ为模型的惩罚系数;w表示叶子权重,T表示叶子结点数量,
损失函数在序列最小化过程中,每一轮加入的增量函数ft(xi)尽可能使损失函数最大程度减小;第t轮的目标函数表示为:
Figure FDA0002549482160000127
采用二阶泰勒展开的方式近似目标函数;设第j个叶子结点的样本集合为Ij={i|q(xi=j)};其中
Figure FDA0002549482160000128
Figure FDA0002549482160000129
分别为损失函数的一、二阶导数;得:
Figure FDA00025494821600001210
Figure FDA00025494821600001211
Gj表示叶子结点j所包含样本的一阶偏导数累加之和,是一个常量;Hj表示叶子结点j所包含样本的二阶偏导数累加之和,是一个常量,
得:
Figure FDA0002549482160000131
wj表示叶子结点j的权重,L(t)表示第t轮损失函数,
对w求偏导得到:
Figure FDA0002549482160000132
将权值代入目标函数得到:
Figure FDA0002549482160000133
损失函数越小表示模型越好;采用贪心算法对子树划分,每次对已有的叶子增加新划分,计算最大增益:
Figure FDA0002549482160000134
其中
Figure FDA0002549482160000135
Figure FDA0002549482160000136
分别表示左、右子树分裂后产生的增益,
Figure FDA0002549482160000137
为不进行子树分裂的增益;
XGBoost的泛化能力较强,通过集合的方式防止过拟合,XGBoost模型输出预测结果后,选择平均误差,平均相对误差和相对均方误差作为评价指标:
Figure FDA0002549482160000138
其中,n为预测点个数,x(t)表示t时刻实际观测的负荷值,y(t)表示t时刻负荷预测值;ME反映整体预测值平均偏差的情况,值越小偏差越小;MAPE能够反映相对平均偏离程度,值越小表明模型预测精度越高;RMSE反映预测模型的可靠性,值越小则模型越可靠。
CN202010571376.3A 2020-04-07 2020-06-22 基于lstm栈式自编码多模型荷预测方法及系统 Active CN112016734B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010265829 2020-04-07
CN202010265829X 2020-04-07

Publications (2)

Publication Number Publication Date
CN112016734A true CN112016734A (zh) 2020-12-01
CN112016734B CN112016734B (zh) 2024-03-22

Family

ID=73498366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010571376.3A Active CN112016734B (zh) 2020-04-07 2020-06-22 基于lstm栈式自编码多模型荷预测方法及系统

Country Status (1)

Country Link
CN (1) CN112016734B (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112613651A (zh) * 2020-12-16 2021-04-06 上海全应科技有限公司 一种工业蒸汽末端消费量预测模型建立、预测方法及系统
CN112669173A (zh) * 2021-01-07 2021-04-16 云南电网有限责任公司电力科学研究院 一种基于多粒度特征和XGBoost模型的短期负荷预测方法
CN112685900A (zh) * 2020-12-31 2021-04-20 国网浙江省电力有限公司营销服务中心 一种表征冲击负荷功率特性的电力负荷模拟方法
CN112687349A (zh) * 2020-12-25 2021-04-20 广东海洋大学 一种降低辛烷值损失模型的构建方法
CN112784491A (zh) * 2021-01-26 2021-05-11 浙江中新电力工程建设有限公司 一种基于lstm与iqpso面向高弹性电网的城市充电网点规划方法
CN112837739A (zh) * 2021-01-29 2021-05-25 西北大学 基于自编码器与蒙特卡洛树的层次化特征系统发育模型
CN113379153A (zh) * 2021-06-28 2021-09-10 北京百度网讯科技有限公司 用于预测电力负荷的方法、预测模型训练方法及装置
CN113435663A (zh) * 2021-07-15 2021-09-24 国网冀北电力有限公司唐山供电公司 一种考虑电动汽车充电负荷影响的cnn-lstm联合负荷预测方法
CN113486698A (zh) * 2021-04-30 2021-10-08 华中科技大学 一种氢燃料电池工作的识别预测方法、存储介质及系统
CN113627741A (zh) * 2021-07-20 2021-11-09 国网湖南省电力有限公司 一种充电桩电能计量系统运行状态综合评价方法及装置
CN113723717A (zh) * 2021-11-03 2021-11-30 北京清大科越股份有限公司 系统日前短期负荷预测方法、装置、设备和可读存储介质
CN113962431A (zh) * 2021-09-09 2022-01-21 哈尔滨工程大学 一种两阶段特征处理的母线负荷预测方法
CN114091782A (zh) * 2021-11-30 2022-02-25 国网湖南省电力有限公司 中长期电力负荷预测方法
CN114169603A (zh) * 2021-12-04 2022-03-11 湖北第二师范学院 一种基于XGBoost的区域小学入学学位预测方法及系统
CN114252706A (zh) * 2021-12-15 2022-03-29 华中科技大学 一种雷电预警方法和系统
CN114358362A (zh) * 2021-11-10 2022-04-15 贵州电网有限责任公司 一种数据缺乏下电动汽车负荷预测方法
CN114358422A (zh) * 2022-01-04 2022-04-15 中国工商银行股份有限公司 研发进度的异常预测方法及装置、存储介质和电子设备
CN114498634A (zh) * 2022-02-17 2022-05-13 四川大学 一种基于电表数据的电动汽车充电负荷预测方法
CN116089225A (zh) * 2023-04-12 2023-05-09 浙江大学 一种基于BiLSTM的公共数据采集动态感知系统及方法
CN116451034A (zh) * 2023-03-30 2023-07-18 重庆大学 基于xgboost算法的压力源与水质关系的分析方法及系统
CN117873477A (zh) * 2024-03-11 2024-04-12 厦门兰翊星航空设备有限公司 一种用于飞行模拟器的仪表数据交互控制管理系统
CN117674098B (zh) * 2023-11-29 2024-06-07 国网浙江省电力有限公司丽水供电公司 面向不同渗透率的多元负荷时空概率分布预测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108510113A (zh) * 2018-03-21 2018-09-07 中南大学 一种XGBoost在短期负荷预测中的应用
CN109376896A (zh) * 2018-08-29 2019-02-22 国网重庆市电力公司南岸供电分公司 一种基于多模融合的配电网短期负荷预测方法
CN110084424A (zh) * 2019-04-25 2019-08-02 国网浙江省电力有限公司 一种基于lstm与lgbm的电力负荷预测方法
CN110245801A (zh) * 2019-06-19 2019-09-17 中国电力科学研究院有限公司 一种基于组合挖掘模型的电力负荷预测方法及系统
KR20190134934A (ko) * 2018-05-18 2019-12-05 성균관대학교산학협력단 딥 러닝과 부스티드 디시즌 트리를 활용한 고객이탈 예측장치 및 이를 이용한 고객이탈 예측방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108510113A (zh) * 2018-03-21 2018-09-07 中南大学 一种XGBoost在短期负荷预测中的应用
KR20190134934A (ko) * 2018-05-18 2019-12-05 성균관대학교산학협력단 딥 러닝과 부스티드 디시즌 트리를 활용한 고객이탈 예측장치 및 이를 이용한 고객이탈 예측방법
CN109376896A (zh) * 2018-08-29 2019-02-22 国网重庆市电力公司南岸供电分公司 一种基于多模融合的配电网短期负荷预测方法
CN110084424A (zh) * 2019-04-25 2019-08-02 国网浙江省电力有限公司 一种基于lstm与lgbm的电力负荷预测方法
CN110245801A (zh) * 2019-06-19 2019-09-17 中国电力科学研究院有限公司 一种基于组合挖掘模型的电力负荷预测方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王晓霞;徐晓钟;张彤;高超伟;: "基于集成深度学习算法的燃气负荷预测方法", 计算机系统应用, no. 12 *
钱仲文;陈浩;纪德良;: "一种基于XGBoost算法的月度负荷预测方法", 浙江电力, no. 05 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112613651B (zh) * 2020-12-16 2024-05-03 上海全应科技有限公司 一种工业蒸汽末端消费量预测模型建立、预测方法及系统
CN112613651A (zh) * 2020-12-16 2021-04-06 上海全应科技有限公司 一种工业蒸汽末端消费量预测模型建立、预测方法及系统
CN112687349A (zh) * 2020-12-25 2021-04-20 广东海洋大学 一种降低辛烷值损失模型的构建方法
CN112685900B (zh) * 2020-12-31 2023-09-26 国网浙江省电力有限公司营销服务中心 一种表征冲击负荷功率特性的电力负荷模拟方法
CN112685900A (zh) * 2020-12-31 2021-04-20 国网浙江省电力有限公司营销服务中心 一种表征冲击负荷功率特性的电力负荷模拟方法
CN112669173A (zh) * 2021-01-07 2021-04-16 云南电网有限责任公司电力科学研究院 一种基于多粒度特征和XGBoost模型的短期负荷预测方法
CN112784491A (zh) * 2021-01-26 2021-05-11 浙江中新电力工程建设有限公司 一种基于lstm与iqpso面向高弹性电网的城市充电网点规划方法
CN112784491B (zh) * 2021-01-26 2024-04-16 浙江中新电力工程建设有限公司 一种基于lstm与iqpso面向高弹性电网的城市充电网点规划方法
CN112837739A (zh) * 2021-01-29 2021-05-25 西北大学 基于自编码器与蒙特卡洛树的层次化特征系统发育模型
CN112837739B (zh) * 2021-01-29 2022-12-02 西北大学 基于自编码器与蒙特卡洛树的层次化特征系统发育模型
CN113486698A (zh) * 2021-04-30 2021-10-08 华中科技大学 一种氢燃料电池工作的识别预测方法、存储介质及系统
CN113486698B (zh) * 2021-04-30 2023-09-26 华中科技大学 一种氢燃料电池工作的识别预测方法、存储介质及系统
CN113379153A (zh) * 2021-06-28 2021-09-10 北京百度网讯科技有限公司 用于预测电力负荷的方法、预测模型训练方法及装置
CN113435663A (zh) * 2021-07-15 2021-09-24 国网冀北电力有限公司唐山供电公司 一种考虑电动汽车充电负荷影响的cnn-lstm联合负荷预测方法
CN113627741A (zh) * 2021-07-20 2021-11-09 国网湖南省电力有限公司 一种充电桩电能计量系统运行状态综合评价方法及装置
CN113627741B (zh) * 2021-07-20 2023-12-12 国网湖南省电力有限公司 一种充电桩电能计量系统运行状态综合评价方法及装置
CN113962431A (zh) * 2021-09-09 2022-01-21 哈尔滨工程大学 一种两阶段特征处理的母线负荷预测方法
CN113723717A (zh) * 2021-11-03 2021-11-30 北京清大科越股份有限公司 系统日前短期负荷预测方法、装置、设备和可读存储介质
CN114358362A (zh) * 2021-11-10 2022-04-15 贵州电网有限责任公司 一种数据缺乏下电动汽车负荷预测方法
CN114091782B (zh) * 2021-11-30 2024-06-07 国网湖南省电力有限公司 中长期电力负荷预测方法
CN114091782A (zh) * 2021-11-30 2022-02-25 国网湖南省电力有限公司 中长期电力负荷预测方法
CN114169603A (zh) * 2021-12-04 2022-03-11 湖北第二师范学院 一种基于XGBoost的区域小学入学学位预测方法及系统
CN114252706A (zh) * 2021-12-15 2022-03-29 华中科技大学 一种雷电预警方法和系统
CN114358422A (zh) * 2022-01-04 2022-04-15 中国工商银行股份有限公司 研发进度的异常预测方法及装置、存储介质和电子设备
CN114498634B (zh) * 2022-02-17 2023-08-29 四川大学 一种基于电表数据的电动汽车充电负荷预测方法
CN114498634A (zh) * 2022-02-17 2022-05-13 四川大学 一种基于电表数据的电动汽车充电负荷预测方法
CN116451034A (zh) * 2023-03-30 2023-07-18 重庆大学 基于xgboost算法的压力源与水质关系的分析方法及系统
CN116089225A (zh) * 2023-04-12 2023-05-09 浙江大学 一种基于BiLSTM的公共数据采集动态感知系统及方法
CN117674098B (zh) * 2023-11-29 2024-06-07 国网浙江省电力有限公司丽水供电公司 面向不同渗透率的多元负荷时空概率分布预测方法及系统
CN117873477A (zh) * 2024-03-11 2024-04-12 厦门兰翊星航空设备有限公司 一种用于飞行模拟器的仪表数据交互控制管理系统
CN117873477B (zh) * 2024-03-11 2024-05-10 厦门兰翊星航空设备有限公司 一种用于飞行模拟器的仪表数据交互控制管理系统

Also Published As

Publication number Publication date
CN112016734B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN112016734B (zh) 基于lstm栈式自编码多模型荷预测方法及系统
CN113962364B (zh) 一种基于深度学习的多因素用电负荷预测方法
CN111191841B (zh) 一种电力负荷预测方法、装置、计算机设备及存储介质
CN112434848B (zh) 基于深度信念网络的非线性加权组合风电功率预测方法
CN113554466A (zh) 一种短期用电量预测模型构建方法、预测方法和装置
CN115860177A (zh) 基于组合式机器学习模型光伏发电功率预测方法及其应用
CN116090602A (zh) 一种用电负荷预测方法及系统
CN116842337A (zh) 基于LightGBM优选特征与COA-CNN模型的变压器故障诊断方法
CN115409292A (zh) 一种电力系统短期负荷预测方法及相关装置
CN116050621A (zh) 一种集成提升模式的多头自注意力海上风电超短时功率预测方法
CN115859792A (zh) 基于注意力机制的中期电力负荷预测方法及系统
CN115409369A (zh) 基于机理和数据混合驱动的综合能源系统可靠性评估方法
CN117407681B (zh) 一种基于向量聚类的时序数据预测模型建立方法
CN116885699A (zh) 基于双重注意力机制的电力负荷预测方法
CN117113202A (zh) 基于联合误差堆叠模型的电力回路能耗检测方法及设备
CN116819423A (zh) 关口电能计量装置运行状态异常检测方法及系统
CN115759343A (zh) 一种基于e-lstm的用户电量预测方法和装置
CN115481788B (zh) 相变储能系统负荷预测方法及系统
CN116402194A (zh) 一种基于混合神经网络的多时间尺度负荷预测方法
CN113537607B (zh) 停电预测方法
CN116090635A (zh) 一种气象驱动的新能源发电功率预测方法
CN115545319A (zh) 一种基于气象相似日集的电网短期负荷预测方法
CN115293406A (zh) 基于CatBoost和Radam-LSTM的光伏发电功率预测方法
CN115936185A (zh) 基于dcnn-lstm-ae-am的短期电力负荷和碳排放量预测方法及系统
CN114358362A (zh) 一种数据缺乏下电动汽车负荷预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant