CN112014199B - Rock variable-angle shearing device and test method thereof - Google Patents
Rock variable-angle shearing device and test method thereof Download PDFInfo
- Publication number
- CN112014199B CN112014199B CN202010867810.2A CN202010867810A CN112014199B CN 112014199 B CN112014199 B CN 112014199B CN 202010867810 A CN202010867810 A CN 202010867810A CN 112014199 B CN112014199 B CN 112014199B
- Authority
- CN
- China
- Prior art keywords
- shearing
- rock
- cushion block
- rod
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010008 shearing Methods 0.000 title claims abstract description 148
- 239000011435 rock Substances 0.000 title claims abstract description 97
- 238000010998 test method Methods 0.000 title claims abstract description 11
- 238000012360 testing method Methods 0.000 claims abstract description 86
- 230000007246 mechanism Effects 0.000 claims abstract description 43
- 238000005096 rolling process Methods 0.000 claims abstract description 12
- 239000000523 sample Substances 0.000 claims abstract description 12
- 238000002474 experimental method Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 3
- 206010050031 Muscle strain Diseases 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 230000009471 action Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- CCEKAJIANROZEO-UHFFFAOYSA-N sulfluramid Chemical group CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CCEKAJIANROZEO-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/06—Special adaptations of indicating or recording means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/24—Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0025—Shearing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0658—Indicating or recording means; Sensing means using acoustic or ultrasonic detectors
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
A rock angle-variable shearing device and a test method thereof belong to the technical field of rock mechanical shearing tests, and comprise a rod piece control actuating mechanism, a rock angle-variable shearing clamp and a press machine; the rod piece control executing mechanism is connected with the rock variable-angle shearing clamp, the rock variable-angle shearing clamp is connected with the press machine, and the rod piece control executing mechanism and the press machine are connected with the computer; the rock variable-angle shearing clamp comprises an upper clamping plate, an upper shearing cushion block, a lower clamping plate, a lower shearing cushion block, a strain gauge, a test piece box, a rolling shaft and a rolling shaft frame. The device is simple, the set angle can meet the general experimental requirements, and the application and popularization of the test method are facilitated. The device provided by the invention has wide application field, can be used for dynamic shear loading experiments, and is provided with the strain gauge and the acoustic emission probe, so that the experimental data can be conveniently acquired and analyzed. The device has high automation degree, can effectively improve the experimental efficiency and is suitable for more experimental conditions and requirements.
Description
Technical Field
The invention relates to the technical field of rock mechanical shear tests, in particular to a rock variable-angle shearing device and a test method thereof.
Background
The shear strength of the rock is one of important mechanical properties of the rock, and the research on the shear strength of the rock is the basis of the research on rock engineering such as highways, railways, water conservancy, mines and the like. The research on the rock shear strength is developed to obtain shear-resistant related parameters and constitutive equations, and a theoretical basis is provided for the construction and development of rock engineering.
In fact, in rock engineering practice, uncertainty exists in the acting force on rock mass, such as natural force earthquake, volcano and geological structure, manual excavation and blasting, and the like, and the engineering structure not only bears the action of static shear load, but also is often subjected to the action of dynamic shear load (such as explosive wave and seismic wave) to generate dynamic shear instability damage. For example, dynamic shear instability damage of a common rock slope under the action of an earthquake can cause landslide, debris flow and other disasters. Therefore, it is necessary to understand and master the dynamic shear mechanics characteristics and failure rule of rock materials under the action of a certain range of strain rate.
Rock shear failure, rock shear creep failure and the like are often involved in rock mechanics tests. At present, a plurality of test methods for measuring the shear strength of the rock are provided, mainly comprising the following steps: direct shear test, variable angle shear test and triaxial compression test. The angle-variable shear test is the simplest method, and has the advantages of simple equipment, simplicity and convenience in operation, low cost and the like. In the variable-angle shearing test, a pressure testing machine is used for applying vertical load, a rock sample is sheared along a shearing surface through a special clamp, a series of combinations of normal stress and shearing stress during shearing failure of the rock can be obtained by changing the inclination angle of the shearing surface, a relation curve (namely a strength envelope curve) between the two stresses is drawn, and the mechanical parameters such as the internal friction angle, the cohesive force and the like of the rock can be obtained. But present rock angle-changing shearing mechanism, the volume is great, and the structure is complicated, and the cost is too high, and current rock angle-changing shearing mechanism angle control range is big and more nimble moreover, but the rotation angle part easily takes place to slide under the condition that the press applyed great pressure, and influences the precision of shear test.
Disclosure of Invention
The invention provides a rock angle-variable shearing device and a test method thereof, the device is simple, convenient and strong in practicability, and the upper shearing cushion block and the lower shearing cushion block are fixed at a specified angle through the opening and closing rod, so that the test precision of a shearing test is more accurate.
In order to achieve the purpose, the technical scheme of the invention is as follows:
a rock angle-variable shearing device comprises a rod piece control actuating mechanism, a press machine and a rock angle-variable shearing clamp; the rod piece control executing mechanism is connected with the rock variable-angle shearing clamp, the rock variable-angle shearing clamp is connected with the press machine, and the rod piece control executing mechanism and the press machine are connected with the computer.
The rock variable-angle shearing clamp comprises an upper clamping plate, an upper shearing cushion block, a lower clamping plate, a lower shearing cushion block, a strain gauge, a test piece box, a rolling shaft and a rolling shaft frame; the upper clamping plate is connected with a pressing shaft of a press machine, the upper clamping plate and the lower clamping plate are identical in shape and are all processed with a groove I, an upper shearing cushion block is arranged at the groove I of the upper clamping plate in a sliding mode, a lower shearing cushion block is arranged at the groove I of the lower clamping plate in a sliding mode, the upper shearing cushion block and the lower shearing cushion block are identical in shape, positioning blind holes are uniformly processed at one end along the arc surface direction, safety positioning blind holes are processed at the other end of the upper clamping plate, positioning holes communicated with the positioning blind holes and safety positioning holes communicated with the safety positioning blind holes are formed in the upper clamping plate and the lower clamping plate, grooves II are processed at the right-angled ends of the upper shearing cushion block and the lower shearing cushion block, test piece boxes are arranged at the grooves II, strain gauges connected with a computer are respectively mounted on the upper shearing cushion block and the lower shearing cushion block, the lower clamping plate is arranged in a rolling shaft frame located at a platform of the press machine, and a plurality of rollers are arranged between the upper surface of the roller frame and the lower clamping plate.
The range of the rotation angle of the upper shearing cushion block and the lower shearing cushion block is 30-70 degrees.
The two rod piece control executing mechanisms are two, wherein two positioning magnetic blocks on a plurality of opening and closing rods of one rod piece control executing mechanism are positioned above the two rod piece control executing mechanisms are respectively inserted into a plurality of corresponding positioning holes at the front end and the rear end of the upper clamping block and extend into the positioning blind holes of the upper shearing cushion block, and two positioning magnetic blocks of the opening and closing rod below the two rod piece control executing mechanisms are inserted into the safety positioning holes at the front end and the rear end of the lower clamping block and extend into the safety positioning blind holes of the lower shearing cushion block; the other rod piece controls two positioning magnetic blocks on an opening and closing rod of the actuating mechanism positioned above to be inserted into the safety positioning holes at the front end and the rear end of the upper clamping block and extend into the safety positioning blind holes of the upper shearing cushion block, and two positioning magnetic blocks of a plurality of opening and closing rods below the rod piece control actuating mechanism are respectively inserted into the corresponding positioning holes at the front end and the rear end of the lower clamping block and extend into the positioning blind holes of the lower shearing cushion block; the electric telescopic rod at the upper end on the rod piece control executing mechanism abuts against the end face of the upper shearing cushion block through the magnetic block at the end part of the electric telescopic rod, and the electric telescopic rod at the lower end on the rod piece control executing mechanism abuts against the end face of the lower shearing cushion block through the magnetic block at the end part of the electric telescopic rod.
And the side wall of the test piece box is provided with an acoustic emission probe storage hole for installing an acoustic emission probe connected with a computer.
A test method of a rock variable-angle shearing device comprises the following steps:
And 4, at least 3 rock test pieces in the same group are obtained.
The invention has the beneficial effects that:
the device is simple and portable, the set angle can meet the general experiment requirements, and the application and popularization of the test method are facilitated.
The device provided by the invention has wide application field, can be used for dynamic shear loading experiments, and is provided with the strain gauge and the acoustic emission probe, so that the experimental data can be conveniently acquired and analyzed.
The device is simple to operate, can stably control experimental conditions by utilizing real-time monitoring of a computer, is not easy to slide by changing and controlling angles by the positioning holes and the positioning magnetic blocks at the ends of the opening and closing rods, and effectively reduces unnecessary experimental errors.
The device has high automation degree, can effectively improve the experimental efficiency and is suitable for more experimental conditions and requirements.
Drawings
FIG. 1 is a front view of a rock variable angle shearing apparatus of the present invention;
FIG. 2 is a schematic diagram of an upper shearing cushion block and a lower shearing cushion block of the rock variable-angle shearing device of the invention at a shearing included angle of forty degrees;
FIG. 3 is a cross-sectional view of the rock angle-changing shearing apparatus of the present invention;
FIG. 4 is a schematic view of the open-close rod of the rock angle-changing shearing device of the present invention;
FIG. 5 is a schematic diagram of a test piece box of the rock angle-changing shearing device of the present invention, wherein FIG. 5 (a) is a horizontal cylinder test piece box, FIG. 5 (b) is a cubic test piece box, and FIG. 5 (c) is a longitudinal cylinder test piece box;
FIG. 6 is a test chart of the rod control actuator of the rock angle-changing shearing device of the present invention;
1-upper clamping plate, 2-press, 3-rod control actuator, 4-opening and closing rod, 401-sector block, 402-rod body, 403-spring, 404-positioning magnetic block, 5-electric telescopic rod, 6-safety positioning hole, 7-roller, 8-roller frame, 9-lower clamping plate, 10-upper shearing cushion block, 11-lower shearing cushion block, 12-test piece box, 13-positioning hole, 14-strain gauge, 15-external frame, 16-vertical shaft and 17-clutch.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings and examples.
As shown in fig. 1 to 6, the rock angle-changing shearing device comprises a rod control actuator 3, a press machine 2 and a rock angle-changing shearing clamp; the rod piece control executing mechanism 3 is connected with the rock variable-angle shearing clamp, the rock variable-angle shearing clamp is connected with the press machine 2, and the rod piece control executing mechanism 3 and the press machine 2 are both connected with the computer.
The rock variable-angle shearing clamp comprises an upper clamping plate 1, an upper shearing cushion block 10, a lower clamping plate 9, a lower shearing cushion block 11, a strain gauge 14, a test piece box 12, a rolling shaft 7 and a rolling shaft frame 8; the upper clamping plate 1 is connected with a pressure applying shaft of a press machine 2, the upper clamping plate 1 and the lower clamping plate 9 are same in shape and made of high-quality steel, the fact that the center of a shearing device and a rock test piece cannot change along with an angle is guaranteed, equipment is stable, the center of gravity does not deviate, a groove I is machined, an upper shearing cushion block 10 is slidably mounted at the groove I of the upper clamping plate 1, a lower shearing cushion block 11 is slidably mounted at the groove I of the lower clamping plate 9, the upper shearing cushion block 10 and the lower shearing cushion block 11 are same in shape, the fact that the center of the shearing device and the rock test piece cannot change along with the angle is guaranteed, the equipment is stable, the center of gravity does not deviate, positioning blind holes are evenly machined at one end in the arc surface direction, safety positioning blind holes are machined at the other end of the shearing device, positioning holes 13 communicated with the positioning blind holes and safety positioning holes 6 communicated with the safety positioning blind holes are arranged on the upper clamping plate 1 and the lower clamping plate 9, the right angle end of the upper shearing cushion block 10 and the lower shearing cushion block 11 is processed with a groove II, a test piece box 12 is arranged at the position of the groove II, strain gauges 14 connected with a computer are respectively installed on the upper shearing cushion block 10 and the lower shearing cushion block 11, the lower clamping plate 9 is arranged in a roller frame 8 located at the platform of the press machine 2, a plurality of rollers 7 are arranged between the upper surface of the roller frame 8 and the lower clamping plate 9, and the horizontal displacement balance of the shearing device can be kept.
The range of the rotation angle of the upper shearing cushion block 10 and the lower shearing cushion block 11 is 30-70 degrees, and the included angle between the adjacent positioning holes 13 is 5 degrees.
The number of the rod piece control executing mechanisms 3 is two, two positioning magnetic blocks 404 on a plurality of opening and closing rods 4 positioned above one rod piece control executing mechanism 3 are respectively inserted into a plurality of corresponding positioning holes 13 at the front end and the rear end of the upper clamping block and extend into the positioning blind holes of the upper shearing cushion block 10, and two positioning magnetic blocks 404 of the opening and closing rod 4 below the rod piece control executing mechanism are inserted into the safety positioning holes 6 at the front end and the rear end of the lower clamping block and extend into the safety positioning blind holes of the lower shearing cushion block 11; two positioning magnetic blocks 404 on the upper opening and closing rod 4 of the other rod piece control actuating mechanism 3 are inserted into the safety positioning holes 6 at the front end and the rear end of the upper clamping block and extend into the safety positioning blind holes of the upper shearing cushion block 10, and two positioning magnetic blocks 404 of a plurality of opening and closing rods 4 below the rod piece control actuating mechanism are respectively inserted into a plurality of corresponding positioning holes 13 at the front end and the rear end of the lower clamping block and extend into the positioning blind holes of the lower shearing cushion block 11; the electric telescopic rod 5 at the upper end of the rod piece control executing mechanism 3 abuts against the end face of the upper shearing cushion block 10 through the magnetic block at the end part of the electric telescopic rod, and the electric telescopic rod 5 at the lower end of the rod piece control executing mechanism 3 abuts against the end face of the lower shearing cushion block 11 through the magnetic block at the end part of the electric telescopic rod.
The opening and closing rod 4 comprises a spring 403, rod bodies 402 and positioning magnetic blocks 404, one end of each of the two rod bodies 402 is connected with the positioning magnetic blocks 404, the other end of each of the two rod bodies 402 is sleeved on a vertical shaft of the rod control executing mechanism 3 through a ring body connected with the segment 401, and the end faces of the segments 401 of the two rod bodies 402 are connected through the spring 403.
The rod piece control executing mechanism 3 comprises an external support 15, a vertical shaft 16, an opening and closing rod 4, an electric telescopic rod 5 and a clutch 17, wherein the vertical shaft 16 is arranged right at one end of the rock variable-angle shearing clamp by the external support 15, the electric telescopic rod 17 installed along the horizontal direction is arranged on the vertical shaft 16, the clutches 17 corresponding to the 4 opening and closing rods located above are fixedly installed at the middle upper part of the other end, the clutches 17 corresponding to the opening and closing rods 4 located below are fixedly installed at the middle lower part of the other end, the opening and closing rods 4 are sleeved on the vertical shaft 16 through annular bodies on the opening and closing rods 4, and two fan-shaped blocks 401 on the opening and closing rods 4 are connected with diaphragm springs on the clutches 17.
And the side wall of the test piece box 12 is provided with an acoustic emission probe storage hole for installing an acoustic emission probe connected with a computer.
A test method of a rock variable-angle shearing device comprises the following steps:
Claims (4)
1. The rock angle-changing shearing device is characterized by comprising a rod piece control actuating mechanism, a press machine and a rock angle-changing shearing clamp; the rod piece control executing mechanism is connected with the rock variable-angle shearing clamp, the rock variable-angle shearing clamp is connected with the press machine, and the rod piece control executing mechanism and the press machine are connected with the computer;
the rock variable-angle shearing clamp comprises an upper clamping plate, an upper shearing cushion block, a lower clamping plate, a lower shearing cushion block, a strain gauge, a test piece box, a rolling shaft and a rolling shaft frame; the upper clamping plate is connected with a pressing shaft of a press machine, the upper clamping plate and the lower clamping plate are identical in shape and are all processed with a groove I, an upper shearing cushion block is arranged at the groove I of the upper clamping plate in a sliding mode, a lower shearing cushion block is arranged at the groove I of the lower clamping plate in a sliding mode, the upper shearing cushion block and the lower shearing cushion block are identical in shape, positioning blind holes are uniformly processed at one end along the arc surface direction, safety positioning blind holes are processed at the other end of the upper clamping plate, positioning holes communicated with the positioning blind holes and safety positioning holes communicated with the safety positioning blind holes are formed in the upper clamping plate and the lower clamping plate, grooves II are processed at the right-angled ends of the upper shearing cushion block and the lower shearing cushion block, test piece boxes are arranged at the grooves II, strain gauges connected with a computer are respectively mounted on the upper shearing cushion block and the lower shearing cushion block, the lower clamping plate is arranged in a rolling shaft frame located at a platform of the press machine, a plurality of rolling shafts are arranged between the upper surface of the rolling shaft frame and the lower clamping plate;
the two rod piece control executing mechanisms are two, wherein two positioning magnetic blocks on a plurality of opening and closing rods of one rod piece control executing mechanism are positioned above the two rod piece control executing mechanisms are respectively inserted into a plurality of corresponding positioning holes at the front end and the rear end of the upper clamping block and extend into the positioning blind holes of the upper shearing cushion block, and two positioning magnetic blocks of the opening and closing rod below the two rod piece control executing mechanisms are inserted into the safety positioning holes at the front end and the rear end of the lower clamping block and extend into the safety positioning blind holes of the lower shearing cushion block; the other rod piece controls two positioning magnetic blocks on an opening and closing rod of the actuating mechanism positioned above to be inserted into the safety positioning holes at the front end and the rear end of the upper clamping block and extend into the safety positioning blind holes of the upper shearing cushion block, and two positioning magnetic blocks of a plurality of opening and closing rods below the rod piece control actuating mechanism are respectively inserted into the corresponding positioning holes at the front end and the rear end of the lower clamping block and extend into the positioning blind holes of the lower shearing cushion block; the electric telescopic rod at the upper end on the rod piece control actuating mechanism abuts against the end face of the upper shearing cushion block through the magnetic block at the end part of the electric telescopic rod, and the electric telescopic rod at the lower end on the rod piece control actuating mechanism abuts against the end face of the lower shearing cushion block through the magnetic block at the end part of the electric telescopic rod;
the rod piece control executing mechanism comprises an external support, a vertical shaft, an opening and closing rod, an electric telescopic rod and a clutch, wherein the vertical shaft is arranged at one end, facing the rock variable-angle shearing clamp, of the external support, the electric telescopic rod is arranged on the vertical shaft in the horizontal direction, the number of the clutches corresponding to the number of the opening and closing rods positioned above the opening and closing rod is fixedly arranged at the middle upper part of the other end, the clutches corresponding to the opening and closing rods positioned below the opening and closing rod are fixedly arranged at the middle lower part of the other end, the opening and closing rod is sleeved on the vertical shaft through an annular body on the opening and closing rod, and two fan-shaped blocks on the opening and closing rod are connected with a diaphragm spring on each clutch;
the opening and closing rod comprises a spring, rod bodies and positioning magnetic blocks, one ends of the two rod bodies are connected with the positioning magnetic blocks, the other ends of the two rod bodies are sleeved on a vertical shaft of the rod control actuating mechanism through an annular body connected with the fan-shaped blocks, and the end faces of the fan-shaped blocks of the two rod bodies are connected through the spring;
the range of the rotation angle of the upper shearing cushion block and the lower shearing cushion block is 30-70 degrees.
2. The variable angle rock shearing device of claim 1, wherein: the test piece box is a transverse cylinder test piece box, a longitudinal cylinder test piece box or a cubic test piece box, and the side wall of the test piece box is provided with an acoustic emission probe storage hole for installing an acoustic emission probe connected with a computer.
3. The method for testing the variable-angle rock shearing device as claimed in claim 1, wherein the method comprises the following steps:
step 1, preparing a rock test piece required by an experiment, selecting a corresponding test piece box according to the shape of the rock test piece, respectively installing two parts of the test piece box at the positions of grooves II of an upper shearing cushion block and a lower shearing cushion block, and placing the rock test piece in a shearing box;
step 2, writing the required shearing angle alpha of the test in a computer, starting two rod piece control executing mechanisms, controlling the electric telescopic rod positioned above and the electric telescopic rod positioned below to extend to push the upper shearing cushion block and the lower shearing cushion block to rotate to a set angle, and stopping the extension of the electric telescopic rod positioned above and the electric telescopic rod positioned below; controlling the opening and closing rod positioned above and the positioning magnetic block on the opening and closing rod positioned below to be inserted into the corresponding positioning hole, fixing the upper shearing cushion block and the lower shearing cushion block, and withdrawing the electric telescopic rod;
step 3, starting a press machine to apply axial pressure to the upper clamping plate and the lower clamping plate; in the loading process, strain generated in the shearing process of the rock is monitored in real time through strain gauges arranged on an upper shearing cushion block and a lower shearing cushion block, monitored strain signals are transmitted to a computer, and the computer adjusts the load applying rate of the press according to the fed-back strain values; collecting parameters and waveforms of the acoustic emission events through an acoustic emission probe arranged on the test piece box, and transmitting the parameters and the waveforms to a computer; continuously applying axial pressure until the rock test piece is sheared and broken, collecting a breaking load P when the rock test piece is sheared and broken through a computer, and ending the test; resetting the press machine, unloading the rock test, and measuring the area S of the fracture surface of the rock test piece;
step 4, replacing the new rock test piece, and repeating the steps 1 to 3 until all the rock test pieces in the same group are sheared and broken;
step 5, collating test data, and calculating the cohesive force c/(MPa) and the internal friction angle phi/(°) of the shear strength index; calculating a positive stress sigma through a formula positive stress sigma = P × sin α/S, and calculating a shear stress τ through a shear stress formula τ = P × cos α/S; drawing an intensity envelope graph according to the calculated positive stress sigma and the shearing stress tau; calculating values of cohesive force c/(MPa) and internal friction angle phi/(°) of the shear strength index through a formula tau = c + sigma tan phi; and (4) summarizing the acoustic emission ringing times and energy changes at different stages in the shearing process of the rock test piece through the parameters and waveforms of the acoustic emission events collected in the step (3).
4. A method of testing a rock angle-changing shearing device according to claim 3, wherein: and 4, at least 3 rock test pieces in the same group are obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010867810.2A CN112014199B (en) | 2020-08-26 | 2020-08-26 | Rock variable-angle shearing device and test method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010867810.2A CN112014199B (en) | 2020-08-26 | 2020-08-26 | Rock variable-angle shearing device and test method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112014199A CN112014199A (en) | 2020-12-01 |
CN112014199B true CN112014199B (en) | 2021-09-28 |
Family
ID=73502278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010867810.2A Active CN112014199B (en) | 2020-08-26 | 2020-08-26 | Rock variable-angle shearing device and test method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112014199B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112710564B (en) * | 2020-12-16 | 2022-04-19 | 中国科学院地质与地球物理研究所 | Fracture surface variable-angle shear test system |
CN113176202A (en) * | 2021-03-29 | 2021-07-27 | 河北瑞志交通技术咨询有限公司 | Interlayer bonding strength test system based on oblique shear force |
CN116718488B (en) * | 2023-06-13 | 2023-12-29 | 中国空气动力研究与发展中心设备设计与测试技术研究所 | Method for measuring shear modulus of surface shear stress sensitive film |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2020453C1 (en) * | 1991-07-06 | 1994-09-30 | Всероссийский научно-исследовательский институт экспериментальной физики | Device for testing of material specimens |
CN101315320A (en) * | 2008-06-24 | 2008-12-03 | 中国科学院武汉岩土力学研究所 | Compression shear test device |
CN102830023A (en) * | 2012-09-03 | 2012-12-19 | 桂林理工大学 | Variable-angle plate testing method of cylinder rock sample |
CN205080350U (en) * | 2015-11-11 | 2016-03-09 | 莆田市多容光学电子有限公司 | Flash lamp's spin control structure |
CN108169010A (en) * | 2018-03-15 | 2018-06-15 | 四川大学 | The shear rheology test fixture of standard cylinder sample and the test method based on it |
CN207502278U (en) * | 2017-11-18 | 2018-06-15 | 长江大学 | Rock test block multi-angle shear |
CN207570873U (en) * | 2017-12-15 | 2018-07-03 | 天津市水利勘测设计院 | A kind of positioning slide formula rock angle shearing die |
CN209673570U (en) * | 2019-03-30 | 2019-11-22 | 济南纳克试验设备有限公司 | A kind of rock different angle shearing testing fixture |
CN210893903U (en) * | 2017-10-28 | 2020-06-30 | 内蒙古工业大学 | Shear strength test fixture |
-
2020
- 2020-08-26 CN CN202010867810.2A patent/CN112014199B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2020453C1 (en) * | 1991-07-06 | 1994-09-30 | Всероссийский научно-исследовательский институт экспериментальной физики | Device for testing of material specimens |
CN101315320A (en) * | 2008-06-24 | 2008-12-03 | 中国科学院武汉岩土力学研究所 | Compression shear test device |
CN102830023A (en) * | 2012-09-03 | 2012-12-19 | 桂林理工大学 | Variable-angle plate testing method of cylinder rock sample |
CN205080350U (en) * | 2015-11-11 | 2016-03-09 | 莆田市多容光学电子有限公司 | Flash lamp's spin control structure |
CN210893903U (en) * | 2017-10-28 | 2020-06-30 | 内蒙古工业大学 | Shear strength test fixture |
CN207502278U (en) * | 2017-11-18 | 2018-06-15 | 长江大学 | Rock test block multi-angle shear |
CN207570873U (en) * | 2017-12-15 | 2018-07-03 | 天津市水利勘测设计院 | A kind of positioning slide formula rock angle shearing die |
CN108169010A (en) * | 2018-03-15 | 2018-06-15 | 四川大学 | The shear rheology test fixture of standard cylinder sample and the test method based on it |
CN209673570U (en) * | 2019-03-30 | 2019-11-22 | 济南纳克试验设备有限公司 | A kind of rock different angle shearing testing fixture |
Non-Patent Citations (2)
Title |
---|
变角剪切下煤样力学特征及声发射特性;肖福坤,侯志远,何君,刘刚;《中国矿业大学学报》;20180731;全文 * |
变角度空间块体滑落平台研制及在岩体力学实验教学中的应用;王述红,梁成,李诺,汪江,穆檄江;《实验技术与管理》;20130531;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112014199A (en) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112014199B (en) | Rock variable-angle shearing device and test method thereof | |
Cai et al. | Post-peak stress–strain curves of brittle hard rocks under axial-strain-controlled loading | |
US10969314B2 (en) | Device and method for anchor bolt (cable) supporting structure test and anchoring system performance comprehensive experiment | |
Du et al. | Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance | |
Jacobsz et al. | Centrifuge modelling of tunnelling near driven piles | |
Stavrogin et al. | Experimental physics and rock mechanics | |
Wang et al. | Anisotropic fatigue behaviour of interbeded marble subjected to uniaxial cyclic compressive loads | |
Liu et al. | Research on the cutting force of a pick | |
Dai et al. | Experimental and numerical study on the damage evolution behaviour of granitic rock during loading and unloading | |
CN102353592A (en) | On-site servo controlled actual triaxial testing apparatus for rock mass | |
CN205910055U (en) | A true triaxial test anchor clamps that is used for energetic disturbance type rock template explosion to plan | |
Gao et al. | Perturbation effect of rock rheology under uniaxial compression | |
He et al. | Experiments on rock burst and its control | |
Chen et al. | Influences of the height to diameter ratio on the failure characteristics of marble under unloading conditions | |
Tian et al. | Effects of confining pressure on mechanical properties and damage evolution of granite under cyclic impact loading | |
CN111413086A (en) | Hob rock breaking test device based on vertical press machine and working method thereof | |
Wang et al. | Development and application of a multifunction true triaxial rock drilling test system | |
CN111678809B (en) | Coal rock internal friction angle and cohesive force testing device and testing method | |
Feng et al. | A Novel Large-Scale Three-Dimensional Physical Model Experimental System for Deep Underground Engineering | |
He et al. | Mechanical properties and stability analysis of surrounding rock of underground cavern under various stress loading paths | |
CN112665995A (en) | Parallel Hopkinson bar simulation instant unloading test device and method | |
Sun et al. | Loading rate-dependent frictional resistance of a sawcut fracture in granite for prediction of thermoshearing | |
Arora et al. | Experimental setup for studying tunnels in squeezing ground conditions | |
CN116499879B (en) | Underground engineering surrounding rock energy test and rock burst energy absorption control method | |
Verma | An experimental investigation of the creep behavior of an underground coalmine roof with shale formation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20201201 Assignee: Jilin Sanwei Geotechnical Engineering Co.,Ltd. Assignor: Northeastern University Contract record no.: X2023210000300 Denomination of invention: A rock variable angle shear device and its experimental method Granted publication date: 20210928 License type: Common License Record date: 20231213 |