CN112013874B - Satellite-borne laser altimeter on-orbit calibration method based on laser footprint prior coordinate - Google Patents
Satellite-borne laser altimeter on-orbit calibration method based on laser footprint prior coordinate Download PDFInfo
- Publication number
- CN112013874B CN112013874B CN202010862834.9A CN202010862834A CN112013874B CN 112013874 B CN112013874 B CN 112013874B CN 202010862834 A CN202010862834 A CN 202010862834A CN 112013874 B CN112013874 B CN 112013874B
- Authority
- CN
- China
- Prior art keywords
- laser
- altimeter
- footprint
- coordinates
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 239000013598 vector Substances 0.000 claims abstract description 72
- 230000009897 systematic effect Effects 0.000 claims abstract description 31
- 239000011159 matrix material Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000002790 cross-validation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 108010014691 Lithostathine Proteins 0.000 description 1
- 102100027361 Lithostathine-1-alpha Human genes 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明涉及一种基于激光足印先验坐标的星载激光测高仪在轨标定方法,以星载激光测高仪和卫星平台的观测参数及激光足印的先验坐标为输入,以激光指向矢量的天顶角和方位角以及激光测距值的系统误差为变量,构建激光足印的距离偏移量模型,并以多个距离偏移量的平方和最小化为原则,将距离偏移量平方和对各系统误差变量求一阶偏导数以建立误差方程组,通过对误差方程组的联立解算,实现激光指向天顶角和方位角以及激光测距值的系统误差的在轨标定。本方法不仅适用于不具备姿态机动能力的星载激光测高仪的在轨标定,而且能够同时实现激光指向和激光测距的系统误差的标定。
The invention relates to an on-orbit calibration method of a spaceborne laser altimeter based on a priori coordinates of laser footprints. The zenith angle and azimuth angle of the pointing vector and the systematic error of the laser ranging value are used as variables, and the distance offset model of the laser footprint is constructed. The squared sum of the shifts calculates the first-order partial derivatives of each systematic error variable to establish the error equation system. Through the simultaneous solution of the error equation system, the system error of the laser pointing zenith angle and azimuth angle and the laser ranging value can be calculated. Orbit calibration. The method is not only suitable for the on-orbit calibration of the spaceborne laser altimeter without attitude maneuvering ability, but also can realize the calibration of the system error of laser pointing and laser ranging at the same time.
Description
技术领域technical field
本发明属于激光遥感领域,具体涉及一种星载激光测高仪在轨标定方法,适用于在激光足印几何坐标已知的情况下,星载激光测高仪激光指向和距离的在轨标定。The invention belongs to the field of laser remote sensing, and in particular relates to an on-orbit calibration method of a spaceborne laser altimeter, which is suitable for the on-orbit calibration of the laser pointing and distance of a spaceborne laser altimeter when the geometric coordinates of the laser footprint are known. .
背景技术Background technique
星载激光测高仪是一种搭载在卫星平台上的新型对地观测设备,它可以准确获取卫星与地面目标之间的距离。结合卫星平台的位置、姿态和激光指向等信息,能够实现激光足印几何定位坐标的高精度解算。星载激光测高仪激光足印几何定位原理如图1所示,它是星载激光测高仪、卫星定位系统和卫星定姿系统三种传感器所采集数据的融合结果。根据矢量叠加原理,激光足印在国际地球坐标下的坐标矢量可以表示为:The spaceborne laser altimeter is a new type of earth observation equipment mounted on the satellite platform, which can accurately obtain the distance between the satellite and the ground target. Combined with the position, attitude and laser pointing information of the satellite platform, the high-precision solution of the geometric positioning coordinates of the laser footprint can be realized. The geometric positioning principle of the laser footprint of the spaceborne laser altimeter is shown in Figure 1. It is the fusion result of the data collected by the three sensors of the spaceborne laser altimeter, the satellite positioning system and the satellite attitude determination system. According to the principle of vector superposition, the coordinate vector of the laser footprint in the international earth coordinates It can be expressed as:
式中,代表卫星定位系统所获取的卫星平台位置矢量,代表卫星定位系统到激光测高仪的偏移矢量,代表由激光测高仪测距值和激光指向矢量确定的激光测距矢量,其中的激光指向矢量可以采用国际地球坐标系下的天顶角和方位角来表示。In the formula, represents the position vector of the satellite platform obtained by the satellite positioning system, represents the offset vector from the satellite positioning system to the laser altimeter, Represents the laser ranging vector determined by the ranging value of the laser altimeter and the laser pointing vector, where the laser pointing vector can be represented by the zenith angle and azimuth angle in the international earth coordinate system.
激光足印几何定位坐标的解算涉及多种坐标框架:1)激光测高仪载体坐标系是以激光发射参考点为原点,z轴朝下指向光学平台法线方向,x轴指向卫星飞行方向,y轴满足右手法则;2)卫星平台坐标系是以GPS或BDS的天线相位中心为原点,z轴指向地球质心(地心),x轴指向卫星飞行方向,y轴满足右手法则;3)姿态平台坐标系是以其平台参考中心为原点,z轴朝下指向惯性平台法线方向,x轴指向卫星飞行方向,y轴满足右手法则;4)国际天球坐标系(ICRF)以地心为原点,z轴垂直于J2000.0历元的平均赤道面朝上,x轴指向J2000.0历元的动力学春分点,y轴满足右手法则;5)国际地球坐标系(ITRF)以地心为原点,z轴指向协议地球极(CTP)方向,x轴指向格林威治平均子午面与CTP赤道的交点,y轴满足右手法则。The calculation of the geometric positioning coordinates of the laser footprint involves a variety of coordinate frames: 1) The laser altimeter carrier coordinate system is based on the laser emission reference point as the origin, the z-axis points down to the normal direction of the optical platform, and the x-axis points to the satellite flight direction , the y-axis satisfies the right-hand rule; 2) The satellite platform coordinate system is based on the GPS or BDS antenna phase center as the origin, the z-axis points to the earth's center of mass (geocenter), the x-axis points to the satellite flight direction, and the y-axis satisfies the right-hand rule; 3) The attitude platform coordinate system is based on the platform reference center as the origin, the z-axis points down to the normal direction of the inertial platform, the x-axis points to the satellite flight direction, and the y-axis satisfies the right-hand rule; 4) The international celestial coordinate system (ICRF) is based on the center of the earth The origin, the z-axis is perpendicular to the mean equator of the J2000.0 epoch, and the x-axis points to the dynamic equinox at the J2000.0 epoch, and the y-axis satisfies the right-hand rule; 5) The International Earth Coordinate System (ITRF) takes the center of the earth as the The origin, the z-axis points in the direction of the Protocol Earth Pole (CTP), the x-axis points to the intersection of the Greenwich mean meridian plane and the CTP equator, and the y-axis satisfies the right-hand rule.
激光足印几何定位精度主要取决于卫星平台的定位精度、卫星定位系统到激光测高仪偏移量的测量精度以及激光测距矢量的测量精度。其中,采用高精度的卫星定轨技术可以提升卫星平台的定位精度,将卫星定位系统和激光测高仪安置进行刚性连接,能够减小卫星振动和温度变化所引起的偏移量误差,因此,影响激光足印几何定位精度的核心因素是激光测距矢量的测量精度,而激光测距矢量是由激光测距值和激光指向矢量综合确定的。星载激光测高仪在轨标定的目的就是消除激光测距和激光指向的系统误差,提高激光足印的几何定位精度。常见的星载激光测高仪在轨标定方式包括卫星姿态机动法、自然地表匹配法和地面足印探测器法。其中,地面足印探测器法是通过在地面布设若干足印探测器捕获激光足印中心坐标,并基于这些激光足印的先验坐标来反算激光测距值和激光指向信息。这种标定方法的成本较贵,但是其标定精度最高。The geometric positioning accuracy of the laser footprint mainly depends on the positioning accuracy of the satellite platform, the measurement accuracy of the offset from the satellite positioning system to the laser altimeter and the measurement accuracy of the laser ranging vector. Among them, the use of high-precision satellite orbit determination technology can improve the positioning accuracy of the satellite platform, and the rigid connection between the satellite positioning system and the laser altimeter can reduce the offset error caused by satellite vibration and temperature changes. Therefore, The core factor affecting the geometrical positioning accuracy of the laser footprint is the measurement accuracy of the laser ranging vector, and the laser ranging vector is determined comprehensively by the laser ranging value and the laser pointing vector. The purpose of the on-orbit calibration of the spaceborne laser altimeter is to eliminate the systematic errors of laser ranging and laser pointing, and to improve the geometric positioning accuracy of the laser footprint. Common on-orbit calibration methods of spaceborne laser altimeter include satellite attitude maneuver method, natural surface matching method and ground footprint detector method. Among them, the ground footprint detector method captures the center coordinates of laser footprints by arranging several footprint detectors on the ground, and calculates the laser ranging value and laser pointing information based on the prior coordinates of these laser footprints. This calibration method is more expensive, but its calibration accuracy is the highest.
截止目前,关于基于激光足印先验坐标的星载激光测高仪在轨标定方法的公开报道很少,已知的报道包括:1.基于地面探测器捕获的“真实激光足印坐标”和激光测高仪测得的“实际激光足印坐标”之间的差值实现激光指向角误差的在轨检校方法(Magruder,L.A.,Webb,C.E.,Urban,T.J.,et al.ICESat altimetry data product verification atWhite Sands Space Harbor[J].IEEE Transactions on Geoscience and RemoteSensing,2007,45(1),147-155),这种方法能够对激光指向角的在轨标定结果进行检校而无法提供激光指向矢量在特定空间坐标系下的角度系统误差;2.基于地面探测器获取的激光指向矢量和指向角残差模型实现激光指向角误差的在轨标定方法(易洪,李松,马跃,黄科等.基于足印探测的激光测高仪在轨标定[J].物理学报,2017,66(13),134206-134206),这种方法能够获取激光指向矢量在特定空间坐标系下的方向余弦角的系统误差,但是要求卫星具有姿态机动能力,使得激光测高仪发射的激光在地面探测器的入射角能够持续改变。因而,对于没有姿态机动能力的卫星而言,该在轨标定方法不能适用。Up to now, there are few public reports on the on-orbit calibration method of the spaceborne laser altimeter based on the prior coordinates of the laser footprint. The known reports include: 1. Based on the "true laser footprint coordinates" captured by the ground detector and The difference between the "actual laser footprint coordinates" measured by the laser altimeter realizes the on-orbit calibration method of the laser pointing angle error (Magruder, L.A., Webb, C.E., Urban, T.J., et al.ICES at altimetry data product verification at White Sands Space Harbor[J].IEEE Transactions on Geoscience and RemoteSensing,2007,45(1),147-155), this method can check the on-orbit calibration results of the laser pointing angle but cannot provide the laser pointing vector Angle system error in a specific space coordinate system; 2. On-orbit calibration method of laser pointing angle error based on laser pointing vector and pointing angle residual model obtained by ground detectors (Yi Hong, Li Song, Ma Yue, Huang Ke et al. On-orbit calibration of laser altimeter based on footprint detection [J]. Acta Physica Sinica, 2017, 66(13), 134206-134206), this method can obtain the direction cosine of the laser pointing vector in a specific space coordinate system However, it requires the satellite to have attitude maneuverability, so that the incident angle of the laser emitted by the laser altimeter on the ground detector can be continuously changed. Therefore, for satellites without attitude maneuverability, this on-orbit calibration method cannot be applied.
发明内容SUMMARY OF THE INVENTION
本发明主要是解决现有基于激光足印先验坐标的星载激光测高仪在轨标定方法所存在的问题:提出一种以星载激光测高仪和卫星平台的观测参数及激光足印的先验坐标为输入,以激光指向矢量的天顶角和方位角以及激光测距值的系统误差为变量,构建激光足印的距离偏移量模型,并以多个距离偏移量的平方和最小化为原则,将距离偏移量平方和对各系统误差变量求一阶偏导数以建立误差方程组,通过对误差方程组的联立解算,实现激光指向天顶角和方位角以及激光测距值的系统误差的在轨标定。The invention mainly solves the problems existing in the existing on-orbit calibration method of the spaceborne laser altimeter based on the prior coordinates of the laser footprint: proposes an observation parameter and laser footprint based on the spaceborne laser altimeter and the satellite platform. The a priori coordinates of , as input, take the zenith angle and azimuth angle of the laser pointing vector and the systematic error of the laser ranging value as the variables to construct the distance offset model of the laser footprint, and use the square of the multiple distance offsets as variables. According to the principle of minimizing the sum of the distance and the offset, the first-order partial derivative of each system error variable is calculated to establish the error equation system, and the laser pointing zenith angle and azimuth angle and On-orbit calibration of systematic errors of laser ranging values.
本发明的上述技术问题主要是通过下述技术方案得以解决的:The above-mentioned technical problems of the present invention are mainly solved by the following technical solutions:
一种基于激光足印先验坐标的星载激光测高仪在轨标定方法,包括以下过程:(1)首先根据星载激光测高仪在轨标定的初始参数,(2)计算激光指向矢量在国际天球坐标系下的天顶角和方位角;(3)然后解算星载激光测高仪测得的激光足印坐标与激光足印先验坐标之间的坐标偏差;(4)其次构建激光足印的距离偏移量方程;(5)再将距离偏移量平方和分别对系统误差变量求一阶偏导数以建立误差方程组;(6)最后解算误差方程组,获取激光指向矢量的天顶角和方位角以及激光测距值的系统误差。A method for on-orbit calibration of a spaceborne laser altimeter based on a priori coordinates of laser footprints, including the following processes: (1) first, according to the initial parameters of the on-orbit calibration of the spaceborne laser altimeter, (2) calculating a laser pointing vector The zenith angle and azimuth angle in the international celestial coordinate system; (3) Then calculate the coordinate deviation between the coordinates of the laser footprint measured by the spaceborne laser altimeter and the prior coordinates of the laser footprint; (4) Second Construct the distance offset equation of the laser footprint; (5) calculate the first-order partial derivatives of the system error variables by summing the squares of the distance offsets to establish the error equation system; (6) finally solve the error equation system to obtain the laser The zenith and azimuth angles of the pointing vector and the systematic error of the laser ranging values.
在上述的一种基于激光足印先验坐标的星载激光测高仪在轨标定方法,所述的星载激光测高仪在轨标定的初始参数包括:In the above-mentioned on-orbit calibration method of a spaceborne laser altimeter based on the prior coordinates of laser footprints, the initial parameters of the on-orbit calibration of the spaceborne laser altimeter include:
星载激光测高仪观测参数:激光测距值、激光指向矢量在激光测高仪载体坐标系下的天顶角和方位角。Observation parameters of the spaceborne laser altimeter: laser ranging value, zenith angle and azimuth angle of the laser pointing vector in the laser altimeter carrier coordinate system.
卫星平台传感器观测参数:卫星姿态系统的三个姿态角(侧滚角、俯仰角和航向角)和卫星定位系统在国际地球坐标系下的定位坐标。Satellite platform sensor observation parameters: three attitude angles (roll angle, pitch angle and heading angle) of the satellite attitude system and the positioning coordinates of the satellite positioning system in the international earth coordinate system.
其他参数:在国际地球坐标系下的卫星定位系统到激光测高仪的偏移矢量、激光足印的先验坐标、国际天球和国际地球坐标系之间的转换矩阵。Other parameters: the offset vector from the satellite positioning system to the laser altimeter in the international earth coordinate system, the a priori coordinates of the laser footprint, the conversion matrix between the international celestial sphere and the international earth coordinate system.
在上述的一种基于激光足印先验坐标的星载激光测高仪在轨标定方法,计算激光指向矢量在国际天球坐标系下的天顶角和方位角,包括以下子步骤:In the above-mentioned on-orbit calibration method of a spaceborne laser altimeter based on the prior coordinates of laser footprints, calculating the zenith angle and azimuth angle of the laser pointing vector in the international celestial coordinate system includes the following sub-steps:
步骤2.1计算在国际天球坐标系下的激光指向矢量 Step 2.1 Calculate the laser pointing vector in the international celestial coordinate system
其中,表示测高仪载体坐标系下的激光指向,in, Indicates the laser pointing in the coordinate system of the altimeter carrier,
表示姿态转换矩阵。φk和εk分别表示激光矢量在测高仪载体坐标系下的天顶角和方位角,ωk、和θk分别表示三个姿态角,即侧滚角、俯仰角和航向角,下标k=1,2,3,…N,N为测量的总次数。Represents the pose transformation matrix. φ k and ε k represent the zenith angle and azimuth angle of the laser vector in the altimeter carrier coordinate system, respectively, ω k , and θ k represent three attitude angles, namely roll angle, pitch angle and heading angle, respectively, and the subscript k=1, 2, 3, ... N, where N is the total number of measurements.
步骤2.2将激光指向矢量进行归一化处理得到激光指向矢量其中,表示激光指向矢量的模。Step 2.2 Point the laser at the vector Perform normalization to get the laser pointing vector in, Represents the laser pointing vector 's model.
步骤2.3计算激光指向矢量在国际天球坐标系下的天顶角αk和方位角βk:Step 2.3 Calculate the laser pointing vector Zenith angle α k and azimuth angle β k in the international celestial coordinate system:
式中,和分别为矢量的第1和第3个元素。In the formula, and respectively as vectors The 1st and 3rd elements of .
在上述的一种基于激光足印先验坐标的星载激光测高仪在轨标定方法,解算星载激光测高仪测得的激光足印坐标与激光足印先验坐标之间的坐标偏差,包括以下子步骤:In the above-mentioned on-orbit calibration method of the spaceborne laser altimeter based on the prior coordinates of the laser footprint, the coordinates between the coordinates of the laser footprint measured by the spaceborne laser altimeter and the prior coordinates of the laser footprint are calculated. Deviation, including the following sub-steps:
3.1计算在国际地球坐标系下星载激光测高仪测得的激光足印坐标(xk,yk,zk):3.1 Calculate the coordinates of the laser footprint (x k , y k , z k ) measured by the spaceborne laser altimeter in the international earth coordinate system:
式中,(xgk,ygk,zgk)是卫星定位系统在国际地球坐标系下的定位坐标,是在国际地球坐标系下的卫星定位系统到激光测高仪的偏移矢量,ρk是激光测高仪测得的激光测距值,Tt是国际天球坐标系到国际地球坐标系的转换矩阵,它可以通过输入在轨标定时间从国际地球自转服务网站查询得到。In the formula, (xg k , yg k , zg k ) are the positioning coordinates of the satellite positioning system in the international earth coordinate system, is the offset vector from the satellite positioning system to the laser altimeter in the international earth coordinate system, ρ k is the laser ranging value measured by the laser altimeter, and T t is the conversion from the international celestial coordinate system to the international earth coordinate system matrix, which can be obtained from the International Earth Rotation Service website by entering the on-orbit calibration time.
3.2计算星载激光测高仪测得的激光足印坐标与激光足印先验坐标之间的坐标偏差(Δxk,Δyk,Δzk):3.2 Calculate the coordinate deviation (Δx k , Δy k , Δz k ) between the coordinates of the laser footprint measured by the spaceborne laser altimeter and the prior coordinates of the laser footprint:
式中,是Tt的逆矩阵,(Xk,Yk,Zk)是国际地球坐标系下的激光足印先验坐标。In the formula, is the inverse matrix of T t , and (X k , Y k , Z k ) are the prior coordinates of the laser footprint in the international earth coordinate system.
在上述的一种基于激光足印先验坐标的星载激光测高仪在轨标定方法,构建激光足印的距离偏移量方程,包括以下子步骤:In the above-mentioned on-orbit calibration method of a spaceborne laser altimeter based on the prior coordinates of laser footprints, the distance offset equation of laser footprints is constructed, including the following sub-steps:
4.1以激光指向矢量的天顶角和方位角以及激光测距值的系统误差,构建在国际天球坐标系下激光足印几何坐标的误差模型(Δuk,Δvk,Δwk):4.1 Based on the zenith angle and azimuth angle of the laser pointing vector and the systematic error of the laser ranging value, the error model of the geometric coordinates of the laser footprint in the international celestial coordinate system is constructed (Δu k , Δv k , Δw k ):
式中,Δα、Δβ和Δρ分别激光指向矢量的天顶角和方位角以及激光测距值的系统误差。In the formula, Δα, Δβ and Δρ are the zenith angle and azimuth angle of the laser pointing vector and the systematic error of the laser ranging value, respectively.
4.2构建激光足印的距离偏移量Δdk模型:4.2 Build the distance offset Δd k model of the laser footprint:
在上述的一种基于激光足印先验坐标的星载激光测高仪在轨标定方法,将距离偏移量平方和分别对系统误差变量求一阶偏导数以建立误差方程组:In the above-mentioned on-orbit calibration method of the spaceborne laser altimeter based on the prior coordinates of the laser footprint, the first-order partial derivatives of the system error variables are calculated by the sum of the squares of the distance offsets to establish the error equation system:
在上述的一种基于激光足印先验坐标的星载激光测高仪在轨标定方法,解算误差方程组,获取激光指向矢量的天顶角和方位角以及激光测距值的系统误差,包括以下子步骤:In the above-mentioned on-orbit calibration method of a spaceborne laser altimeter based on the prior coordinates of laser footprints, the error equations are solved to obtain the zenith angle and azimuth angle of the laser pointing vector and the systematic error of the laser ranging value, Includes the following sub-steps:
6.1忽略激光测距系统误差,联立解算误差方程组的方程一和方程二,得到激光指向矢量的天顶角和方位角系统误差。6.1 Ignoring the laser ranging system error, solve
6.2将激光指向矢量的天顶角和方位角系统误差结果代入到误差方程组的方程三,解算该方程得到激光测距的系统误差。6.2 Substitute the systematic error results of the zenith angle and azimuth angle of the laser pointing vector into Equation 3 of the error equation system, and solve the equation to obtain the systematic error of the laser ranging.
本发明具有如下优点:以激光测高仪测得的激光足印和先验激光足印之间的坐标偏差作为输入量,构建激光足印的距离偏移量模型,并将多个激光足印距离偏移量平方和分别对激光指向和激光测距的系统误差进行一阶求导,建立以系统误差为变量的误差方程组,通过对误差方程组的联立解算,得到激光指向矢量的天顶角和方位角以及激光测距值的系统误差。这种在轨标定方法(具体实现流程见图2所示)不仅适用于不具备姿态机动能力的星载激光测高仪的在轨标定,而且能够同时实现激光指向和激光测距的系统误差的标定。The invention has the following advantages: using the coordinate deviation between the laser footprint measured by the laser altimeter and the a priori laser footprint as the input, the distance offset model of the laser footprint is constructed, and a plurality of laser footprints are combined The first-order derivation of the system error of laser pointing and laser ranging is carried out by the sum of the squares of the distance offsets, and an error equation system with the system error as a variable is established. By solving the error equation system simultaneously, the laser pointing vector is obtained. Systematic errors in zenith and azimuth and laser ranging values. This on-orbit calibration method (the specific implementation process is shown in Figure 2) is not only suitable for the on-orbit calibration of the spaceborne laser altimeter without attitude maneuverability, but also can realize the system error of laser pointing and laser ranging at the same time. Calibration.
附图说明Description of drawings
图1是星载激光测高仪激光足印几何定位原理。Figure 1 shows the geometric positioning principle of the laser footprint of the spaceborne laser altimeter.
图2基于激光足印先验坐标的星载激光测高仪在轨标定方法的实现流程。Figure 2 The realization flow of the on-orbit calibration method of the spaceborne laser altimeter based on the prior coordinates of the laser footprint.
图3是实施例中标定前星载激光测高仪测得的激光足印坐标与激光足印的先验坐标之间的坐标偏差。3 is the coordinate deviation between the coordinates of the laser footprint measured by the spaceborne laser altimeter before calibration in the embodiment and the prior coordinates of the laser footprint.
图4是实施例中标定后星载激光测高仪测得的激光足印坐标与激光足印的先验坐标之间的坐标偏差。FIG. 4 is the coordinate deviation between the coordinates of the laser footprint measured by the spaceborne laser altimeter after calibration in the embodiment and the prior coordinates of the laser footprint.
图5是实施例中采用交叉验证方法的20组激光足印在标定前后的距离偏移量分布。FIG. 5 is the distance offset distribution of 20 groups of laser footprints before and after calibration using the cross-validation method in the embodiment.
具体实施方式Detailed ways
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。The technical solutions of the present invention will be further described in detail below through embodiments and in conjunction with the accompanying drawings.
实施例:Example:
一、首先介绍一下本发明的具体方法流程,主要包括以下步骤:1. First introduce the specific method flow of the present invention, which mainly includes the following steps:
1.输入星载激光测高仪在轨标定的初始参数,包括下述过程:1. Input the initial parameters of the on-orbit calibration of the spaceborne laser altimeter, including the following process:
(1.1)星载激光测高仪观测参数:激光测距值、激光指向矢量在激光测高仪载体坐标系下的天顶角和方位角。(1.1) Observation parameters of spaceborne laser altimeter: laser ranging value, zenith angle and azimuth angle of laser pointing vector in the laser altimeter carrier coordinate system.
(1.2)卫星平台传感器观测参数:卫星姿态系统的三个姿态角(侧滚角、俯仰角和航向角)和卫星定位系统在国际地球坐标系下的定位坐标。(1.2) Observation parameters of satellite platform sensors: three attitude angles (roll angle, pitch angle and heading angle) of the satellite attitude system and the positioning coordinates of the satellite positioning system in the international earth coordinate system.
(1.3)其他参数:在国际地球坐标系下的卫星定位系统到激光测高仪的偏移矢量、激光足印的先验坐标、国际天球和国际地球坐标系之间的转换矩阵。(1.3) Other parameters: the offset vector from the satellite positioning system to the laser altimeter in the international earth coordinate system, the prior coordinates of the laser footprint, and the conversion matrix between the international celestial sphere and the international earth coordinate system.
2.计算激光指向矢量在国际天球坐标系下的天顶角和方位角,包括下述过程:2. Calculate the zenith angle and azimuth angle of the laser pointing vector in the international celestial coordinate system, including the following process:
(2.1)计算在国际天球坐标系下的激光指向矢量 (2.1) Calculate the laser pointing vector in the international celestial coordinate system
其中,表示测高仪载体坐标系下的激光指向,in, Indicates the laser pointing in the coordinate system of the altimeter carrier,
表示姿态转换矩阵。φk和εk分别表示激光矢量在测高仪载体坐标系下的天顶角和方位角,ωk、和θk分别表示三个姿态角,即侧滚角、俯仰角和航向角,下标k=1,2,3,…20。Represents the pose transformation matrix. φ k and ε k represent the zenith angle and azimuth angle of the laser vector in the altimeter carrier coordinate system, respectively, ω k , and θ k respectively represent three attitude angles, namely roll angle, pitch angle and heading angle, and the subscript k=1, 2, 3, . . . 20.
(2.2)将激光指向矢量进行归一化处理得到激光指向矢量其中,表示激光指向矢量的模。(2.2) Point the laser to the vector Perform normalization to get the laser pointing vector in, Represents the laser pointing vector 's model.
(2.3)计算激光指向矢量在国际天球坐标系下的天顶角αk和方位角βk:其中,和分别为矢量的第1和第3个元素。(2.3) Calculate the laser pointing vector Zenith angle α k and azimuth angle β k in the international celestial coordinate system: in, and respectively as vectors The 1st and 3rd elements of .
3.解算星载激光测高仪测得的激光足印坐标与激光足印先验坐标之间的坐标偏差,包括下述过程:3. Calculate the coordinate deviation between the laser footprint coordinates measured by the spaceborne laser altimeter and the prior coordinates of the laser footprint, including the following process:
(3.1)计算在国际地球坐标系下星载激光测高仪测得的激光足印坐标其中,(xgk,ygk,zgk)是卫星定位系统在国际地球坐标系下的定位坐标,是在国际地球坐标系下的卫星定位系统到激光测高仪的偏移矢量,ρk是激光测高仪测得的激光测距值,Tt是国际天球坐标系到国际地球坐标系的转换矩阵。(3.1) Calculate the coordinates of the laser footprints measured by the spaceborne laser altimeter in the international earth coordinate system Among them, (xg k , yg k , zg k ) are the positioning coordinates of the satellite positioning system in the international earth coordinate system, is the offset vector from the satellite positioning system to the laser altimeter in the international earth coordinate system, ρ k is the laser ranging value measured by the laser altimeter, and T t is the conversion from the international celestial coordinate system to the international earth coordinate system matrix.
(3.2)计算星载激光测高仪测得的激光足印坐标与激光足印先验坐标之间的坐标偏差其中,是Tt的逆矩阵,(Xk,Yk,Zk)是国际地球坐标系下的激光足印先验坐标。(3.2) Calculate the coordinate deviation between the coordinates of the laser footprint measured by the spaceborne laser altimeter and the prior coordinates of the laser footprint in, is the inverse matrix of T t , and (X k , Y k , Z k ) are the prior coordinates of the laser footprint in the international earth coordinate system.
4.构建激光足印的距离偏移量方程,包括下述过程:4. Construct the distance offset equation of the laser footprint, including the following process:
(4.1)构建在国际天球坐标系下激光足印几何坐标的误差模型:其中,Δα、Δβ和Δρ分别激光指向矢量的天顶角和方位角以及激光测距值的系统误差。(4.1) Construct the error model of the geometric coordinates of the laser footprint in the international celestial coordinate system: Among them, Δα, Δβ and Δρ are the zenith angle and azimuth angle of the laser pointing vector and the systematic error of the laser ranging value, respectively.
(4.2)构建激光足印的距离偏移量Δdk模型:(4.2) Construct the distance offset Δd k model of the laser footprint:
5.将距离偏移量平方和分别对系统误差变量求一阶偏导数以建立误差方程组:5. Calculate the first-order partial derivatives of the system error variables by summing the squares of the distance offsets to establish a system of error equations:
6.解算误差方程组,获取激光指向矢量的天顶角和方位角以及激光测距值的系统误差,包括下述过程:6. Solve the error equation system to obtain the zenith angle and azimuth angle of the laser pointing vector and the systematic error of the laser ranging value, including the following processes:
(6.1)忽略激光测距系统误差,联立解算误差方程组的方程一和方程二,得到激光指向矢量的天顶角和方位角系统误差。(6.1) Neglecting the laser ranging system error, solve
(6.2)将激光指向矢量的天顶角和方位角系统误差代入到误差方程组的方程三,解算该方程得到激光测距的系统误差。(6.2) Substitute the systematic error of the zenith angle and azimuth angle of the laser pointing vector into Equation 3 of the error equation system, and solve the equation to obtain the systematic error of the laser ranging.
二、下面是采用本发明方法的一个具体实施例:Two, the following is a specific embodiment of the method of the present invention:
1.输入星载激光测高仪在轨标定的初始参数,包括星载激光测高仪的激光测距值、激光测高仪载体坐标系下的激光天顶角和方位角、卫星平台的姿态角和定位坐标、国际地球坐标系下的卫星定位系统到激光测高仪的偏移矢量、激光足印的先验坐标、国际天球与国际地球坐标系之间的转换矩阵等,其参数名称、符号与数值见表1所示;1. Input the initial parameters of the on-orbit calibration of the spaceborne laser altimeter, including the laser ranging value of the spaceborne laser altimeter, the laser zenith angle and azimuth in the carrier coordinate system of the laser altimeter, and the attitude of the satellite platform Angle and positioning coordinates, the offset vector from the satellite positioning system under the international earth coordinate system to the laser altimeter, the a priori coordinates of the laser footprint, the conversion matrix between the international celestial sphere and the international earth coordinate system, etc. The parameter names, The symbols and values are shown in Table 1;
表1星载激光测高仪在轨标定的初始参数Table 1 Initial parameters of on-orbit calibration of spaceborne laser altimeter
本实施例中,假定激光指向天顶角和方位角的误差分别为Δφk=20+rand(″)和Δεk=30+2rand(″),激光测距误差Δρk=2+0.2rand(m),其中,rand表示0~1的随机数,则国际地球坐标系下激光足印先验坐标可以表示为:In this embodiment, it is assumed that the errors of the zenith angle and azimuth angle of the laser pointing are Δφ k =20+rand(") and Δε k =30+2rand(") respectively, and the laser ranging error Δρ k =2+0.2rand( m), where rand represents a random number from 0 to 1, then the prior coordinates of the laser footprint in the international earth coordinate system can be expressed as:
式中,表示激光足印先验坐标的误差。In the formula, Represents the error in the prior coordinates of the laser footprint.
2.计算得到国际天球坐标系下的激光指向天顶角αk和方位角β分别等于激光测高仪载体坐标系下的天顶角φk和方位角εk;2. The zenith angle α k and azimuth angle β of laser pointing in the international celestial coordinate system are calculated to be equal to the zenith angle φ k and the azimuth angle ε k in the carrier coordinate system of the laser altimeter, respectively;
3.首先计算在国际地球坐标系下星载激光测高仪测得的激光足印坐标(xk,yk,zk),再结合激光足印的先验坐标(Xk,Yk,Zk),解算得到两者之间的坐标偏差(Δxk,Δyk,Δzk),其分布如图3所示。3. First calculate the laser footprint coordinates (x k , y k , z k ) measured by the spaceborne laser altimeter in the international earth coordinate system, and then combine the prior coordinates of the laser footprint (X k , Y k , Z k ), the coordinate deviation (Δx k , Δy k , Δz k ) between the two is obtained by solving, and its distribution is shown in Figure 3.
4.以激光指向矢量的天顶角和方位角以及激光测距值的系统误差为变量,构建在国际天球坐标系下激光足印的距离偏移量模型。4. Taking the zenith angle and azimuth angle of the laser pointing vector and the systematic error of the laser ranging value as variables, the distance offset model of the laser footprint in the international celestial coordinate system is constructed.
5.将距离偏移量平方和分别对系统误差变量求一阶偏导数以建立误差方程组。5. Calculate the first-order partial derivatives of the system error variables by summing the squares of the distance offsets to establish a system of error equations.
6.首先忽略激光测距系统误差,联立解算误差方程组的方程一和方程二,得到激光指向矢量的天顶角和方位角系统误差分别为20.48″和48.12″;然后将激光指向矢量的天顶角和方位角系统误差代入到误差方程组的方程三,解算该方程得到激光测距的系统误差为2.08m。6. First ignore the laser ranging system error, solve
三、验证分析:3. Verification Analysis:
将激光测距值与激光指向矢量的天顶角和方位角的系统误差分别与激光足印先验坐标的初始系统误差进行比较,得到激光测距系统误差的残余量仅为0.08m,激光指向天顶角系统误差的残余量仅为0.48″,而激光指向方位角系统误差的残余量达到18.12″。实际上,激光足印的定位误差与激光指向方位角系统误差不存在严格的约束关系。将激光指向矢量的天顶角和方位角以及激光测距值的系统误差分别代入到激光足印几何定位模型中,解算得到在轨标定后的激光足印几何定位坐标与激光足印先验坐标之间的坐标偏差,如图4所示。对比在轨标定前的坐标偏差结果(如图3所示)可知,坐标偏差绝对值的最大值从(11.13,48.99,1.05)m减小为(1.45,1.47,0.19)m。The laser ranging value and the systematic errors of the zenith and azimuth angles of the laser pointing vector are compared with the initial systematic errors of the prior coordinates of the laser footprint. The residual amount of zenith angle systematic error is only 0.48", while the residual amount of laser pointing azimuth systematic error reaches 18.12". In fact, there is no strict constraint between the positioning error of the laser footprint and the systematic error of the laser pointing azimuth. The zenith angle and azimuth angle of the laser pointing vector and the systematic error of the laser ranging value are respectively substituted into the geometric positioning model of the laser footprint, and the geometric positioning coordinates of the laser footprint and the laser footprint prior are obtained after the orbit calibration. The coordinate deviation between the coordinates is shown in Figure 4. Comparing the coordinate deviation results before the orbit calibration (as shown in Figure 3), it can be seen that the maximum absolute value of the coordinate deviation decreases from (11.13, 48.99, 1.05) m to (1.45, 1.47, 0.19) m.
同时,采用交叉验证方式来评估本专利中的标定方法。首先输入40组星载激光测高仪在轨标定的初始参数(如表1所示),其中前20组数据用于激光指向角和激光测距系统误差的解算,后20组数据用于评估激光足印几何定位的标定精度。基于本专利的标定方法解算得到后20组激光足印在标定前后的距离偏移量分布,见图5所示。从图5中的结果可以看出,后20组激光足印在标定前后的距离偏移量平均值分别为49.55m和1.34m,其距离偏移量迅速降低,这表明本专利的方法可以很好地消除激光指向角和激光测距的系统误差,极大程度地提高激光足印几何定位精度。At the same time, a cross-validation method is used to evaluate the calibration method in this patent. First,
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010862834.9A CN112013874B (en) | 2020-08-25 | 2020-08-25 | Satellite-borne laser altimeter on-orbit calibration method based on laser footprint prior coordinate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010862834.9A CN112013874B (en) | 2020-08-25 | 2020-08-25 | Satellite-borne laser altimeter on-orbit calibration method based on laser footprint prior coordinate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112013874A CN112013874A (en) | 2020-12-01 |
CN112013874B true CN112013874B (en) | 2022-04-01 |
Family
ID=73504645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010862834.9A Expired - Fee Related CN112013874B (en) | 2020-08-25 | 2020-08-25 | Satellite-borne laser altimeter on-orbit calibration method based on laser footprint prior coordinate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112013874B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113538595B (en) * | 2021-07-14 | 2021-12-21 | 自然资源部国土卫星遥感应用中心 | Method for improving geometric precision of remote sensing stereo image by using laser height measurement data in auxiliary manner |
CN115290118B (en) * | 2022-06-29 | 2024-08-30 | 西安空间无线电技术研究所 | A pointing error correction method for satellite laser communication system based on star sensor |
CN116208252B (en) * | 2023-02-16 | 2024-07-02 | 西安空间无线电技术研究所 | Calibration method and device for rough pointing mechanism and detector of Kuder laser terminal |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5621415A (en) * | 1994-11-15 | 1997-04-15 | Teledesic Corporation | Linear cell satellite system |
CN104931022A (en) * | 2015-04-21 | 2015-09-23 | 国家测绘地理信息局卫星测绘应用中心 | Satellite image three-dimensional area network adjustment method based on satellite-borne laser height measurement data |
CN105068065A (en) * | 2015-07-29 | 2015-11-18 | 武汉大学 | Method and system for on-orbit calibration of spaceborne laser altimeter |
CN105571598A (en) * | 2015-12-01 | 2016-05-11 | 中国科学院上海技术物理研究所 | Satellite laser altimeter footprint camera pose measuring method |
CN111366913A (en) * | 2020-03-24 | 2020-07-03 | 上海卫星工程研究所 | Calibration method for optical axis pointing measurement error of satellite-borne laser radar |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8872912B2 (en) * | 2009-09-22 | 2014-10-28 | Cyberoptics Corporation | High speed distributed optical sensor inspection system |
CN110231089B (en) * | 2019-05-24 | 2020-10-30 | 武汉大学 | Active light spot energy detector and array of satellite-borne laser altimeter |
-
2020
- 2020-08-25 CN CN202010862834.9A patent/CN112013874B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5621415A (en) * | 1994-11-15 | 1997-04-15 | Teledesic Corporation | Linear cell satellite system |
CN104931022A (en) * | 2015-04-21 | 2015-09-23 | 国家测绘地理信息局卫星测绘应用中心 | Satellite image three-dimensional area network adjustment method based on satellite-borne laser height measurement data |
CN105068065A (en) * | 2015-07-29 | 2015-11-18 | 武汉大学 | Method and system for on-orbit calibration of spaceborne laser altimeter |
CN105571598A (en) * | 2015-12-01 | 2016-05-11 | 中国科学院上海技术物理研究所 | Satellite laser altimeter footprint camera pose measuring method |
CN111366913A (en) * | 2020-03-24 | 2020-07-03 | 上海卫星工程研究所 | Calibration method for optical axis pointing measurement error of satellite-borne laser radar |
Non-Patent Citations (4)
Title |
---|
Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction;Felix Morsdorf 等;《Remote Sensing of Environment》;20061115;第104卷(第01期);第50-61页 * |
Land-Ocean Differences in the Warm Rain Formation Process;Hanii Takahashi等;《Quarterly Journal of the Royal Meteorological Society》;20171231;第143卷(第705期);第1804-1815页 * |
基于曲线匹配的星载激光测高仪无场在轨几何定标方法;陈林生 等;《中国科学院大学学报》;20200130;第37卷(第01期);第113-119页 * |
资源三号02星激光测高误差分析与指向角粗标定;唐新明 等;《武汉大学学报(信息科学版)》;20181130;第43卷(第11期);第1611-1619页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112013874A (en) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112013874B (en) | Satellite-borne laser altimeter on-orbit calibration method based on laser footprint prior coordinate | |
CN101788296B (en) | SINS/CNS deep integrated navigation system and realization method thereof | |
Wu et al. | Integration of Chang'E-2 imagery and LRO laser altimeter data with a combined block adjustment for precision lunar topographic modeling | |
CN102654576B (en) | Image Registration Method Based on SAR Image and DEM Data | |
CN107014399B (en) | Combined calibration method for satellite-borne optical camera-laser range finder combined system | |
CN106646564B (en) | One kind being based on low orbit satellite enhanced navigation method | |
CN111798523B (en) | Satellite camera on-orbit calibration attitude determination and remote sensing image geometric positioning method and system | |
CN105929398A (en) | InSAR high precision and high resolution DEM acquisition method combined with external control point | |
CN102519436B (en) | Chang'e-1 (CE-1) stereo camera and laser altimeter data combined adjustment method | |
CN102323571B (en) | Distribution method of satellite-borne dual-antenna SAR (Synthetic Aperture Radar) interferometric calibrator with comprehensive overall parameter | |
CN106885571B (en) | A Rapid Positioning Method for Lunar Surface Rover Combined with IMU and Navigation Image | |
Liu et al. | Accurate mapping method for UAV photogrammetry without ground control points in the map projection frame | |
CN107728182A (en) | Flexible more base line measurement method and apparatus based on camera auxiliary | |
CN110006448B (en) | Method for evaluating error on-orbit calibration precision of pointing angle system of satellite-borne laser altimeter | |
CN102607533A (en) | Block adjustment locating method of linear array CCD (Charge Coupled Device) optical and SAR (Specific Absorption Rate) image integrated local area network | |
Li et al. | MER Spirit rover localization: Comparison of ground image–and orbital image–based methods and science applications | |
CN106885585A (en) | A kind of satellite borne photography measuring system integration calibration method based on bundle adjustment | |
CN103344946A (en) | Foundation radar and aerial mobile platform radar real-time error registering method | |
CN101893712B (en) | A Fitting Method for Precise Orbit Determination of Geostationary Satellites | |
Li et al. | Targetless extrinsic calibration of LiDAR–IMU system using raw GNSS observations for vehicle applications | |
CN109855652B (en) | On-orbit calibration method when pointing angle error of spaceborne laser altimeter is non-constant | |
Zhang et al. | Bundle block adjustment of weakly connected aerial imagery | |
CN105628052B (en) | Optical satellite sensor in-orbit geometric calibration method and system based on control straight line | |
CN113203981B (en) | A method of satellite attitude determination using radiation source positioning payload | |
Yun et al. | On-the-fly ambiguity resolution method for pseudolite/INS integration based on double-difference square observations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220401 |
|
CF01 | Termination of patent right due to non-payment of annual fee |