CN112011740B - 一种高韧性高硬度模具钢及其制备方法 - Google Patents

一种高韧性高硬度模具钢及其制备方法 Download PDF

Info

Publication number
CN112011740B
CN112011740B CN202010896482.9A CN202010896482A CN112011740B CN 112011740 B CN112011740 B CN 112011740B CN 202010896482 A CN202010896482 A CN 202010896482A CN 112011740 B CN112011740 B CN 112011740B
Authority
CN
China
Prior art keywords
annealing
toughness
forging
die steel
heat preservation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010896482.9A
Other languages
English (en)
Other versions
CN112011740A (zh
Inventor
王飞
张明明
于新强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Cisri Harder Materials & Technology Co ltd
Original Assignee
Tianjin Cisri Harder Materials & Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Cisri Harder Materials & Technology Co ltd filed Critical Tianjin Cisri Harder Materials & Technology Co ltd
Priority to CN202010896482.9A priority Critical patent/CN112011740B/zh
Publication of CN112011740A publication Critical patent/CN112011740A/zh
Application granted granted Critical
Publication of CN112011740B publication Critical patent/CN112011740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium

Abstract

本发明提供了一种高韧性高硬度模具钢,按照质量百分比计,包括:C:0.70~0.85%,Si:0.10~0.40%,Mn:0.30~0.70%,Cr:4.85~5.30%,Mo:2.25~2.55%,V:0.40~0.70%,P<0.02%,S<0.003%和余量的Fe。本发明将C含量设定在热作与冷作模具钢的成分之间,能够提高材料淬透性和淬硬性同时还可以形成合金碳化物,改善耐磨性;降低Si含量,以提高材料的韧性;将Cr含量保持与热作模具钢H13中Cr含量相同,同时降低V含量,提高Mo含量能够减少含V共晶碳化物的生成,降低对韧性的影响,并保证材料具有较好的抗回火软化性。

Description

一种高韧性高硬度模具钢及其制备方法
技术领域
本发明属于模具钢制造技术领域,具体涉及一种高韧性高硬度模具钢及其制备方法。
背景技术
模具钢是用来制造冷冲模、热锻模、压铸模等模具的钢种,分为冷作模具钢、热作模具钢和塑料模具钢三类,用于锻造、冲压、挤压、压铸等。由于各种模具用途不同,工作条件复杂,因此需要模具钢具有高硬度和高韧性以满足不同工作条件的使用。
目前,通常采用调整模具钢的组分含量来提高模具钢的硬度和韧性,例如专利CN104561802A中记载了一种高硬度高韧性冷作模具钢,其化学成分重量百分比为:C:1.025~1.055%,Si:0.85~0.90%,Mn:0.20~0.40%,P<0.02%,S<0.02%,Cr:8.30~8.50%,Mo:1.95~2.05%,V:0.20~0.40%,其余为Fe和不可避免杂质;且上述元素同时需满足如下关系:C=0.1(Cr+Mo)。此工艺虽然得到了高韧性高硬度的模具钢,但是随着模具钢的工作条件越来越复杂,对模具钢的性能要求也越来越高,之前制备的模具钢的性能难以满足要求。因此,有必要对模具钢进行改进来进一步提高其硬度和韧性。
发明内容
本发明的目的在于提供一种高韧性高硬度模具钢及其制备方法。本发明提供的模具钢具有高硬度和高韧性的特点。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种高韧性高硬度模具钢,按照质量百分比计,包括:C:0.70~0.85%,Si:0.10~0.40%,Mn:0.30~0.70%,Cr:4.85~5.30%,Mo:2.25~2.55%,V:0.40~0.70%,P<0.02%,S<0.003%和余量的Fe。
优选地,按照质量百分比计,包括:C:0.72~0.80%,Si:0.20~0.35%,Mn:0.40~0.60%,Cr:4.90~5.20%,Mo:2.30~2.50%,V:0.50~0.60%,P<0.02%,S<0.002%和余量的Fe。
优选地,按照质量百分比计,包括:C:0.78%,Si:0.30%,Mn:0.50%,Cr:5.10%,Mo:2.40%,V:0.55%,P<0.02%,S<0.001%和余量的Fe。
优选地,按照质量百分比计,包括:C:0.75%,Si:0.25%,Mn:0.55%,Cr:5.15%,Mo:2.45%,V:0.50%,P<0.02%,S<0.002%和余量的Fe。
优选地,按照质量百分比计,包括:C:0.72%,Si:0.30%,Mn:0.50%,Cr:5.20%,Mo:2.50%,V:0.53%,P<0.02%,S<0.002%和余量的Fe。
本发明还提供了上述技术方案所述高韧性高硬度模具钢的制备方法,包括以下步骤:
(1)将合金原料混合后冶炼,得到钢锭;
(2)将所述步骤(1)得到的钢锭进行锻造,得到锻态合金;
(3)将所述步骤(2)得到的锻态合金进行热处理,得到高韧性高硬度模具钢。
优选地,所述步骤(1)中的冶炼依次包括电炉熔炼、LF炉精炼、VD脱气、浇注和电渣重熔。
优选地,所述步骤(2)中的锻造依次包括锻造开坯和锻造成型。
优选地,所述锻造开坯的加热温度为1150~1250℃;所述锻造开坯的开锻温度为1150~1230℃,终锻温度大于820℃。
优选地,所述锻造成型的始锻温度为1150~1200℃。
本发明提供了一种高韧性高硬度模具钢,按照质量百分比计,包括:C:0.70~0.85%,Si:0.10~0.40%,Mn:0.30~0.70%,Cr:4.85~5.30%,Mo:2.25~2.55%,V:0.40~0.70%,P<0.02%,S<0.003%和余量的Fe。本发明将C含量设定在热作与冷作模具钢的成分之间,能够提高材料淬透性和淬硬性同时还可以形成合金碳化物,改善耐磨性;降低Si含量,以提高材料的韧性;将Cr含量保持与热作模具钢H13中Cr含量相同,同时降低V含量,提高Mo含量能够减少含V共晶碳化物的生成,降低对韧性的影响,并保证材料具有较好的抗回火软化性。实施例的结果显示,本发明提供的高韧性高硬度模具钢与H13钢相比具有更高的硬度为58~64HRC,冲击韧性为50~140J。
附图说明
图1为实施例1制备的高韧性高硬度模具钢的光学显微镜图;
图2为实施例2制备的高韧性高硬度模具钢的光学显微镜图;
图3为实施例3制备的高韧性高硬度模具钢的光学显微镜图;
图4为实施例4制备的高韧性高硬度模具钢的光学显微镜图。
具体实施方式
本发明提供了一种高韧性高硬度模具钢,按照质量百分比计,包括:C:0.70~0.85%,Si:0.10~0.40%,Mn:0.30~0.70%,Cr:4.85~5.30%,Mo:2.25~2.55%,V:0.40~0.70%,P<0.02%,S<0.003%和余量的Fe。
按照质量百分比计,本发明提供的高韧性高硬度模具钢包括C0.70~0.85%,优选为0.72~0.80%,更优选为0.75~0.78%。在本发明中,所述C含量在上述范围内时能够提高材料淬透性和淬硬性,还可以形成合金碳化物,改善耐磨性,超过上述含量范围会导致材料韧性降低,在热处理时易开裂。
按照质量百分比计,本发明提供的高韧性高硬度模具钢包括Si0.10~0.40%,优选为0.20~0.35%,更优选为0.25~0.30%。在本发明中,所述Si含量在上述范围内时能够溶入基体起固溶强化作用,同时控制C原子在钢中的迁入和析出,使得钢的强度和回火稳定性增加,超过上述含量范围会导致偏析现象,材料脆性增加。
按照质量百分比计,本发明提供的高韧性高硬度模具钢包括Mn0.30~0.70%,优选为0.40~0.60%,更优选为0.50~0.55%。在本发明中,所述Mn的含量在上述范围内时能够提高钢的淬透性,为奥氏体稳定元素;超过上述含量范围会导致淬火组织中残留奥氏体过多,增加材料晶粒长大的倾向,降低耐磨性,并且增加材料开裂风险。
按照质量百分比计,本发明提供的高韧性高硬度模具钢包括Cr4.85~5.30%,优选为4.90~5.20%,更优选为5.10~5.15%。在本发明中,所述Cr含量在上述范围内时能够提高合金淬透性,与碳元素结合后形成碳化物可提高耐磨性;超过上述含量范围会导致共晶碳化物增加,脆性增加。
按照质量百分比计,本发明提供的高韧性高硬度模具钢包括Mo2.25~2.55%,优选为2.30~2.50%,更优选为2.40~2.45%。在本发明中,所述Mo含量在上述范围内时能够提高钢的抗回火稳定性,且与碳结合形成细小的碳化物,提高耐磨性;超过上述含量范围会导致材料韧性降低,成本增加。
按照质量百分比计,本发明提供的高韧性高硬度模具钢包括V0.40~0.70%,优选为0.50~0.60%,更优选为0.53~0.55%。在本发明中,所述V含量在上述范围内时能够形成碳化钒,可钉扎晶界、细化晶粒,且碳化钒性质稳定,起到显著的沉淀强化作用;超过上述含量范围会导致共晶碳化钒生成,其硬度高,容易导致锻造或使用时开裂现象的发生。
按照质量百分比计,本发明提供的高韧性高硬度模具钢包括P<0.02%,优选≤0.015%。在本发明中,所述P为有害元素,会增加钢的脆性,使焊接性能变坏,增加回火脆性,故将其含量控制在0.02%以下。
按照质量百分比计,本发明提供的高韧性高硬度模具钢包括S<0.003%,优选<0.002%,更优选<0.001%。在本发明中,所述S为有害元素,会降低钢的韧性,引起各项异性,故将其含量控制在0.003%以下。
在本发明中,所述高韧性高硬度模具钢的成分具体优选为C:0.78%,Si:0.30%,Mn:0.50%,Cr:5.10%,Mo:2.40%,V:0.55%,P<0.02%,S<0.001%和余量的Fe;或C:0.75%,Si:0.25%,Mn:0.55%,Cr:5.15%,Mo:2.45%,V:0.50%,P<0.02%,S<0.002%和余量的Fe,或C:0.72%,Si:0.30%,Mn:0.50%,Cr:5.20%,Mo:2.50%,V:0.53%,P<0.02%,S<0.002%和余量的Fe。
本发明将C含量设定在热作与冷作模具钢的成分之间,能够提高材料淬透性和淬硬性同时还可以形成合金碳化物,改善耐磨性;降低Si含量,以提高材料的韧性;将Cr含量保持与热作模具钢H13中Cr含量相同,同时降低V含量,提高Mo含量能够减少含V共晶碳化物的生成,降低对韧性的影响,并保证材料具有较好的抗回火软化性,是一种冷热兼具型模具钢材料。
本发明还提供了上述技术方案所述高韧性高硬度模具钢的制备方法,包括以下步骤:
(1)将合金原料混合后冶炼,得到钢锭;
(2)将所述步骤(1)得到的钢锭进行锻造,得到锻态合金;
(3)将所述步骤(2)得到的锻态合金进行热处理,得到高韧性高硬度模具钢。
本发明将合金原料混合后冶炼,得到钢锭。本发明对所述合金原料的种类和来源没有特殊的限定,采用本领域技术人员熟知的能够提供上述合金元素的原料即可。本发明对所述合金原料混合的操作没有特殊的限定,采用本领域技术人员熟知的制备混合物料的技术方案即可。
在本发明中,所述冶炼优选依次包括电炉熔炼、LF炉精炼、VD脱气、浇注和电渣重熔。本发明对所述电炉熔炼的操作没有特殊的限定,只要保证出钢时P的质量含量小于0.02%即可。本发明对所述LF炉精炼的操作没有特殊的限定,只要保证精炼完成后钢中S质量含量小于0.005%即可。本发明对所述VD脱气的操作没有特殊的限定,只要保证脱气完成后钢中氧的质量含量小于等于0.0025%,H的质量含量小于等于0.0002%。
在本发明中,所述浇注优选采用氩气保护浇注。本发明对所述浇注的操作没有特殊的限定,采用本领域技术人员熟知的操作即可。在本发明中,采用所述氩气保护浇注能够防止钢中溶入大气中的氧气和水蒸气。
在本发明中,所述电渣重熔优选在保护气氛中进行。本发明对所述保护气氛没有特殊的限定,采用本领域技术人员熟知的保护气氛即可。在本发明中,所述保护气氛优选为氩气氛。本发明对所述电渣重熔的操作没有特殊的限定,只要保证重熔完成后钢中的氧和硫的质量含量均小于0.003%即可。在本发明中,所述电渣重熔在保护气氛中进行,能够提高钢的纯净度,改善钢的凝固条件,从而降低元素偏析、减少疏松缩孔等缺陷,提高钢锭致密性。
得到钢锭后,本发明将所述钢锭进行锻造,得到锻态合金。在本发明中,所述锻造优选依次包括锻造开坯和锻造成型。在本发明中,所述锻造开坯的加热温度优选为1150~1250℃,更优选为1200~1230℃;所述锻造开坯的开锻温度优选为1150~1230℃,更优选为1200~1220℃;所述终锻温度优选大于820℃,进一步优选为850~1200℃,更优选为860~880℃。在本发明中,所述锻造开坯能够将钢锭加工至锻造成型前的规格。本发明对所述锻造开坯的变形量没有特殊的限定,根据实际所需的尺寸加工即可。
在本发明中,所述锻造成型的始锻温度优选为1150~1200℃,更优选为1160~1180℃。在本发明中,将所述钢锭进行锻造开坯后直接加热至锻造成型的始锻温度。本发明对所述加热的速率没有特殊的限定,只要保证达到所述始锻温度即可。在本发明中,所述锻造成型优选为锤锻成型或轧制成型。本发明对所述锤锻成型或轧制成型的具体操作没有特殊的限定,采用本领域技术人员熟知的操作即可。本发明对所述锻造成型的变形量没有特殊的限定,根据实际所需的尺寸加工即可。在本发明中,所述锻造成型能够将钢锭加工成所需的尺寸。
锻造成型完成后,本发明优选将所述锻造成型的产物冷却至250~350℃,得到锻态合金。在本发明中,所述冷却优选为空冷或风冷。本发明对所述冷却的速率没有特殊的限定,采用本领域技术人员熟知的冷却速率即可。
得到锻态合金后,本发明将所述锻态合金进行热处理,得到高韧性高硬度模具钢。在本发明中,所述热处理优选依次包括细晶热处理和球化退火。
在本发明中,所述细晶热处理的操作优选为将所述锻态合金加热至保温的温度进行保温,然后进行冷却。在本发明中,对所述锻态合金进行上述的细晶热处理,使得所述锻态合金在经过冷却和加热后达到细化晶粒、均匀组织的目的。
本发明对所述加热的速率没有特殊的限定,采用本领域技术人员熟知的加热速率即可。在本发明中,所述保温的温度优选为1010~1050℃,更优选为1020~1030℃;所述保温的时间优选按照每100mm有效加热厚度保温2.5~3h,更优选按照每100mm有效加热厚度保温2.7~2.9h。在本发明中,所述冷却优选为水冷、雾冷和风冷中的至少一种;所述冷却的终点温度优选为250~400℃,进一步优选为280~350℃,更优选为300~320℃。本发明对所述冷却的速率没有特殊的限定,采用本领域技术人员熟知的冷却速率即可。
在本发明中,所述球化退火优选为等温球化退火;所述等温球化退火优选依次包括第一退火和第二退火。在本发明中,通过上述球化退火的工艺,可使钢种的二次碳化物呈现球状,并且均匀分布在铁素体基体中,形成珠光体组织,有利于后续的切削加工。
本发明对所述第一退火的加热速率没有特殊的限定,采用本领域技术人员熟知的加热速率即可。在本发明中,所述第一退火的保温温度优选为820~880℃,更优选为840~850℃;所述第一退火的保温时间优选为10~20h,更优选为15~18h。在本发明中,所述第一退火的冷却速率优选小于20℃/h,更优选为15~17℃/h。在本发明中,所述第一退火的冷却终点温度优选为第二退火的保温温度。
在本发明中,所述第二退火的保温温度优选为650~750℃,更优选为720~740℃;所述第二退火的保温时间优选为10~20h,进一步优选为12~18h,更优选为15~17h。在本发明中,所述第二退火的冷却速率优选小于20℃/h,更优选为10~15℃/h。在本发明中,所述第二退火的冷却终点温度优选为450℃及以下,更优选为200~400℃。
本发明提供的制备方法更够进一步净化基体,且使二次碳化物呈细小弥散分布,无大块一次碳化物,进而提高模具钢的硬度和韧性。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
按照质量百分比计,所述高韧性高硬度模具钢的组成为:C:0.78%,Si:0.3%,Mn:0.5%,Cr:5.1%,Mo:2.4%,V:0.55%,P<0.02%,S<0.001%和余量的Fe;
所述高韧性高硬度模具钢的制备方法为:
(1)按照上述重量百分比进行配料混合后电炉熔炼,控制出钢P0.018wt%,然后通过LF炉精炼,控制S 0.004wt%;再进行通过VD炉脱气,控制钢中氧含量0.0025wt%,H含量0.0002wt%;之后在氩气保护下进行浇注;再通过气氛保护电渣重熔,将氧含量降低到0.002wt%、硫含量降低到0.0008wt%,得到钢锭;
(2)将所述步骤(1)得到的钢锭进行锻造,先进行锻造开坯,锻造开坯的加热温度为1230℃,开锻温度为1200℃,终锻温度850℃;再进行采用锤锻进行锻造成型,锻造成型的始锻温度为1180℃,得到锻态合金;
(3)将所述步骤(2)得到的锻态合金空冷至350℃后进行热处理,先进行细晶热处理:升温至1030℃,按照每100mm有效加热厚度保温3h,然后采用水冷和风冷冷却至280℃;再进行球化退火:升温至850℃保温15h,以15℃/h冷却至740℃保温15h,再以15℃/h的冷却至450℃出炉,得到高韧性高硬度模具钢。
实施例2
按照质量百分比计,所述高韧性高硬度模具钢的组成为:C:0.75%,Si:0.25%,Mn:0.55%,Cr:5.15%,Mo:2.45%,V:0.50%,P<0.02%,S<0.002%和余量的Fe;
所述高韧性高硬度模具钢的制备方法为:
(1)按照上述重量百分比进行配料混合后电炉熔炼,控制出钢P0.017wt%,然后通过LF炉精炼,控制S 0.0045wt%;再进行通过VD炉脱气,控制钢中氧含量0.0025wt%,H含量0.00012wt%;之后在氩气保护下进行浇注;再通过气氛保护电渣重熔,将氧、硫含量均降低到0.001wt%,得到钢锭;
(2)将所述步骤(1)得到的钢锭进行锻造,先进行锻造开坯,锻造开坯的加热温度为1250℃,开锻温度为1220℃,终锻温度850℃;再进行采用锤锻进行锻造成型,锻造成型的始锻温度为1180℃,得到锻态合金;
(3)将所述步骤(2)得到的锻态合金风冷至290℃后进行热处理,先进行细晶热处理:升温至1050℃,按照每100mm有效加热厚度保温2.5h,然后采用水冷和风冷冷却至350℃;再进行球化退火:升温至880℃保温18h,以17℃/h冷却至750℃保温18h,再以10℃/h的冷却至450℃出炉,得到高韧性高硬度模具钢。
实施例3
按照质量百分比计,所述高韧性高硬度模具钢的组成为:C:0.72%,Si:0.3%,Mn:0.5%,Cr:5.2%,Mo:2.5%,V:0.53%,P<0.02%,S<0.002%和余量的Fe;
所述高韧性高硬度模具钢的制备方法为:
(1)按照上述重量百分比进行配料混合后电炉熔炼,控制出钢P0.015wt%,然后通过LF炉精炼,控制S 0.004wt%;再进行通过VD炉脱气,控制钢中氧含量0.0018wt%,H含量0.0001wt%;之后在氩气保护下进行浇注;再通过气氛保护电渣重熔,将氧、硫含量均降低到0.0025wt%,得到钢锭;
(2)将所述步骤(1)得到的钢锭进行锻造,先进行锻造开坯,锻造开坯的加热温度为1220℃,开锻温度为1200℃,终锻温度880℃;再进行采用快锻机进行锻造成型,锻造成型的始锻温度为1160℃,得到锻态合金;
(3)将所述步骤(2)得到的锻态合金风冷至260℃后进行热处理,先进行细晶热处理:升温至1020℃,按照每100mm有效加热厚度保温2.7h,然后采用水冷和雾冷冷却至300℃;再进行球化退火:升温至840℃保温18h,以15℃/h冷却720℃保温12h,再以15℃/h的冷却至400℃出炉,得到高韧性高硬度模具钢。
实施例4
按照质量百分比计,所述高韧性高硬度模具钢的组成为:C:0.84%,Si:0.25%,Mn:0.5%,Cr:4.95%,Mo:2.35%,V:0.54%,P<0.02%,S<0.003%和余量的Fe;
所述高韧性高硬度模具钢的制备方法为:
(1)按照上述重量百分比进行配料混合后电炉熔炼,控制出钢P0.012wt%,然后通过LF炉精炼,控制S 0.003wt%;再进行通过VD炉脱气,控制钢中氧含量0.0019wt%,H含量0.0001wt%;之后在氩气保护下进行浇注;再通过气氛保护电渣重熔,将氧、硫含量均降低到0.002wt%,得到钢锭;
(2)将所述步骤(1)得到的钢锭进行锻造,先进行锻造开坯,锻造开坯的加热温度为1240℃,开锻温度为1210℃,终锻温度860℃;再进行采用锤锻进行锻造成型,锻造成型的始锻温度为1180℃,得到锻态合金;
(3)将所述步骤(2)得到的锻态合金风冷至280℃后进行热处理,先进行细晶热处理:升温至1030℃,按照每100mm有效加热厚度保温3h,然后采用水冷和风冷冷却至350℃;再进行球化退火:升温至850℃保温15h,以15℃/h冷却至720℃保温12h,再以10℃/h的冷却至200℃出炉,得到高韧性高硬度模具钢。
对实施例1~4制备的高韧性高硬度模具钢在500倍光学显微镜下进行组织观察如图1所示,图1为实施例1制备的高韧性高硬度模具钢的光学显微镜图;图2为实施例2制备的高韧性高硬度模具钢的光学显微镜图;图3为实施例3制备的高韧性高硬度模具钢的光学显微镜图;图4为实施例4制备的高韧性高硬度模具钢的光学显微镜图。从图1~4可以看出,本发明的高韧性高硬度模具钢的组织均匀。
对实施例1~4进行性能测试:测试结果如表1所示:
表1实施例1~4制备的模具钢的硬度和韧性测试数据
测试 实施例1 实施例2 实施例3 实施例4
硬度(HRC) 57 60 62 64
5*10*55无缺口冲击韧性(J) 140 100 60 50
由以上实施例可以看出,本发明提供的模具钢具有高硬度和高韧性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种高韧性高硬度模具钢,按照质量百分比计,包括:C:0.70~0.85%,Si:0.10~0.40%,Mn:0.30~0.50%,Cr:4.85~5.30%,Mo:2.25~2.55%,V:0.40~0.70%,P<0.02%,S<0.003%和余量的Fe;
所述高韧性高硬度模具钢的制备方法由以下步骤组成:
(1)将合金原料混合后冶炼,得到钢锭;
(2)将所述步骤(1)得到的钢锭进行锻造,冷却至250~350℃得到锻态合金;
(3)将所述步骤(2)得到的锻态合金进行热处理,得到高韧性高硬度模具钢;
所述热处理为细晶热处理和等温球化退火;
所述细晶热处理的操作为将所述锻态合金加热至保温的温度进行保温,然后进行冷却;所述保温的温度为1010~1050℃,保温的时间按照每100mm有效加热厚度保温2.5~3h;所述冷却的终点温度为250~400℃;
所述等温球化退为第一退火和第二退火;所述第一退火的保温温度为820~880℃,所述第一退火的保温时间为10~20h;所述第二退火的保温温度为650~750℃,所述第二退火的保温时间为10~20h。
2.根据权利要求1所述的高韧性高硬度模具钢,其特征在于,按照质量百分比计,包括:C:0.72~0.80%,Si:0.20~0.35%,Mn:0.40~0.50%,Cr:4.90~5.20%,Mo:2.30~2.50%,V:0.50~0.60%,P<0.02%,S<0.002%和余量的Fe。
3.根据权利要求1或2所述的高韧性高硬度模具钢,其特征在于,按照质量百分比计,包括:C:0.78%,Si:0.30%,Mn:0.50%,Cr:5.10%,Mo:2.40%,V:0.55%,P<0.02%,S<0.001%和余量的Fe。
4.根据权利要求1或2所述的高韧性高硬度模具钢,其特征在于,按照质量百分比计,包括:C:0.72%,Si:0.30%,Mn:0.50%,Cr:5.20%,Mo:2.50%,V:0.53%,P<0.02%,S<0.002%和余量的Fe。
5.权利要求1~4任意一项所述高韧性高硬度模具钢的制备方法,由以下步骤组成:
(1)将合金原料混合后冶炼,得到钢锭;
(2)将所述步骤(1)得到的钢锭进行锻造,冷却至250~350℃得到锻态合金;
(3)将所述步骤(2)得到的锻态合金进行热处理,得到高韧性高硬度模具钢;
所述热处理为细晶热处理和等温球化退火;
所述细晶热处理的操作为将所述锻态合金加热至保温的温度进行保温,然后进行冷却;所述保温的温度为1010~1050℃,保温的时间按照每100mm有效加热厚度保温2.5~3h;所述冷却的终点温度为250~400℃;
所述等温球化退为第一退火和第二退火;所述第一退火的保温温度为820~880℃,所述第一退火的保温时间为10~20h;所述第二退火的保温温度为650~750℃,所述第二退火的保温时间为10~20h。
6.根据权利要求5所述的制备方法,其特征在于,所述步骤(1)中的冶炼依次包括电炉熔炼、LF炉精炼、VD脱气、浇注和电渣重熔。
7.根据权利要求5所述的制备方法,其特征在于,所述步骤(2)中的锻造依次包括锻造开坯和锻造成型。
8.根据权利要求7所述的制备方法,其特征在于,所述锻造开坯的加热温度为1150~1250℃;所述锻造开坯的开锻温度为1150~1230℃,终锻温度大于820℃。
9.根据权利要求7所述的制备方法,其特征在于,所述锻造成型的始锻温度为1150~1200℃。
CN202010896482.9A 2020-08-31 2020-08-31 一种高韧性高硬度模具钢及其制备方法 Active CN112011740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010896482.9A CN112011740B (zh) 2020-08-31 2020-08-31 一种高韧性高硬度模具钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010896482.9A CN112011740B (zh) 2020-08-31 2020-08-31 一种高韧性高硬度模具钢及其制备方法

Publications (2)

Publication Number Publication Date
CN112011740A CN112011740A (zh) 2020-12-01
CN112011740B true CN112011740B (zh) 2021-11-02

Family

ID=73503049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010896482.9A Active CN112011740B (zh) 2020-08-31 2020-08-31 一种高韧性高硬度模具钢及其制备方法

Country Status (1)

Country Link
CN (1) CN112011740B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114934230A (zh) * 2022-05-27 2022-08-23 天津钢研海德科技有限公司 一种高抗回火软化性和高韧性的热作模具钢及其制作方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1092243C (zh) * 1999-01-26 2002-10-09 尹道乐 经济高速钢
KR100368540B1 (ko) * 2000-06-20 2003-01-24 기아특수강 주식회사 인성 및 강도가 우수한 열간·온간 겸용 저합금고속도공구강 및 그의 제조방법
JP2006193790A (ja) * 2005-01-14 2006-07-27 Daido Steel Co Ltd 冷間工具鋼
JP2008121032A (ja) * 2006-11-08 2008-05-29 Daido Steel Co Ltd 球状化焼鈍性及び焼入れ性に優れた金型用鋼
CN101250669A (zh) * 2008-04-10 2008-08-27 上海交通大学 低钴低合金高速工具钢
JP5515442B2 (ja) * 2009-06-16 2014-06-11 大同特殊鋼株式会社 熱間工具鋼及びこれを用いた鋼製品
JP6083014B2 (ja) * 2012-04-02 2017-02-22 山陽特殊製鋼株式会社 高強度マトリックスハイス
JP5988732B2 (ja) * 2012-07-02 2016-09-07 山陽特殊製鋼株式会社 高硬度高靭性の冷間工具鋼
CN102912236B (zh) * 2012-11-13 2014-05-07 北京科技大学 一种高性能耐磨热作模具钢及其制备工艺
CN103276298B (zh) * 2013-06-09 2015-08-05 河冶科技股份有限公司 高硬高韧冷热兼作模具钢及其生产方法
JP6645725B2 (ja) * 2014-04-30 2020-02-14 大同特殊鋼株式会社 金型用鋼及び金型
CN105274444B (zh) * 2014-06-19 2019-03-19 大同特殊钢株式会社 冷加工工具用钢
CN104561802A (zh) * 2015-01-23 2015-04-29 宝钢特钢有限公司 一种高硬度高韧性冷作模具钢及其制备方法
CN108070780A (zh) * 2016-11-17 2018-05-25 无锡市千柏材料科技有限责任公司 一种珠光体铬钼合金钢及其热处理方法
CN109306434A (zh) * 2018-09-28 2019-02-05 上大鑫仑材料科技(广东)有限公司 一种冷冲压成形模具用钢及其制备方法与应用
CN109280849A (zh) * 2018-10-26 2019-01-29 如皋市宏茂重型锻压有限公司 一种高性能热作模具钢及其制造工艺
CN110484812A (zh) * 2019-04-29 2019-11-22 如皋市宏茂重型锻压有限公司 一种高性能热冲压模具钢及其制造工艺
CN110306108A (zh) * 2019-07-05 2019-10-08 天津钢研海德科技有限公司 一种高韧性高抗裂性热作模具钢及其制造方法
CN111020382B (zh) * 2019-12-10 2022-04-15 上海始金新材料科技有限公司 一种高热稳定性压铸模具钢及其制备方法

Also Published As

Publication number Publication date
CN112011740A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN105886933B (zh) 一种高抗回火软化性和高韧性的热作模具钢及其制造方法
CN109252104B (zh) 一种高速钢及其生产方法
CN108220815B (zh) 热锻用高热强性、高冲击韧性热作模具钢及制备方法
JP2013213255A (ja) 熱間金型鋼
TW201840866A (zh) 熱功工具鋼
KR20180056965A (ko) 고온 열전도도가 뛰어난 장수명 다이 캐스팅용 열간 금형강 및 그 제조방법
JP6366326B2 (ja) 高靱性熱間工具鋼およびその製造方法
JP6410515B2 (ja) 耐摩耗性に優れた窒化粉末高速度工具鋼およびその製造方法
TWI447237B (zh) 韌性優異之熱作工具鋼及其製造方法
CN113699446A (zh) 一种超细化型高韧性模具钢及其制备方法
CN105177430A (zh) 一种合金工具钢及其生产方法
CN112011740B (zh) 一种高韧性高硬度模具钢及其制备方法
CN113737106B (zh) 1500MPa热冲压零件冷切边冲孔刀具用模具钢及其制备方法
CN112080704B (zh) 一种高韧性高硬度的冷热兼具型模具钢及其制备方法
JP6797465B2 (ja) 優れた靭性及び高温強度を有する高硬度マトリクスハイス
KR20190058049A (ko) 플라스틱 사출용 금형강 제조방법 및 이에 의해 제조된 플라스틱 사출용 금형강
JPS60159155A (ja) 耐粗粒化性にすぐれた温間鍛造用肌焼鋼
CN114959442B (zh) 一种冷挤压用万向节十字轴用钢及其制造方法
CN114214567B (zh) 一种Ni3Al金属间化合物沉淀强化的高温轴承钢及其制备方法
KR20200077041A (ko) 플라스틱 사출용 금형강 및 그 제조방법
JP6083014B2 (ja) 高強度マトリックスハイス
CN115821169B (zh) 一种高强钢及其制备方法与应用
KR101986187B1 (ko) 주조강
CN115505838A (zh) 一种高强韧低合金模具钢及其制备方法
JP3833379B2 (ja) 被削性に優れた冷間工具鋼

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant