CN112001490A - Method and system for determining confidence capacity of grid-connected photovoltaic system - Google Patents
Method and system for determining confidence capacity of grid-connected photovoltaic system Download PDFInfo
- Publication number
- CN112001490A CN112001490A CN202010654225.4A CN202010654225A CN112001490A CN 112001490 A CN112001490 A CN 112001490A CN 202010654225 A CN202010654225 A CN 202010654225A CN 112001490 A CN112001490 A CN 112001490A
- Authority
- CN
- China
- Prior art keywords
- photovoltaic
- time step
- load
- capacity
- permeability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Strategic Management (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- General Business, Economics & Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Educational Administration (AREA)
- Development Economics (AREA)
- Computational Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Mathematical Optimization (AREA)
- Operations Research (AREA)
- Tourism & Hospitality (AREA)
- Public Health (AREA)
- Game Theory and Decision Science (AREA)
- Probability & Statistics with Applications (AREA)
- Databases & Information Systems (AREA)
- Water Supply & Treatment (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Primary Health Care (AREA)
- Algebra (AREA)
- Quality & Reliability (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
Abstract
Description
技术领域technical field
本发明涉及发电技术领域,具体涉及一种并网光伏系统置信容量的确定方法及系统。The invention relates to the technical field of power generation, in particular to a method and system for determining the confidence capacity of a grid-connected photovoltaic system.
背景技术Background technique
近年来,为了满足日益增长的能源消耗和实现可持续的环境,大规模并网光伏电站迅速崛起。随着光伏渗透率的增加,光伏电站不仅对电力系统或配电网络有功率价值贡献,而且对容量价值也有贡献,因此提出了置信容量的定义。目前,光伏发电已被广泛应用,置信容量评估是光伏发电规划和调度中的一个重要问题。In recent years, in order to meet the increasing energy consumption and achieve a sustainable environment, large-scale grid-connected photovoltaic power plants have risen rapidly. With the increase of photovoltaic penetration, photovoltaic power plants not only contribute power value to the power system or distribution network, but also contribute to capacity value, so the definition of confidence capacity is proposed. At present, photovoltaic power generation has been widely used, and confidence capacity assessment is an important issue in photovoltaic power generation planning and scheduling.
目前有基于可靠性的方法和近似法对光伏置信容量进行评估。基于电力不足概率、电力不足期望值和电量不足期望值等可靠性指标进行置信容量评估的方法,是从光伏电站对电力系统的可靠性贡献角度出发,对光伏电站的置信容量进行评估。基于可靠性的方法主要有效承载能力法、等效常规功率法和等效企业功率法,其中有效承载能力法即采用有效载负荷容量(effective load carrying capability,ELCC)来衡量光伏系统的置信容量。ELCC表征在保持间歇式发电接入系统前后可靠性不变的情况下,系统负荷可以增加的容量。该指标能够直观表示系统新增发电机组后可以新增加的负荷容量。实际通常以接入的间歇式能源可以使规划的常规发电减少的容量来衡量其置信容量,在衡量置信容量的过程中采用逆向蒙特卡罗SMC方法计算可靠性时的过程复杂且耗时,导致计算效率低。There are currently reliability-based methods and approximations to assess PV confidence capacity. The method of confidence capacity evaluation based on reliability indicators such as power shortage probability, power shortage expectation value and power shortage expectation value is to evaluate the confidence capacity of photovoltaic power plants from the perspective of the reliability contribution of photovoltaic power plants to the power system. The reliability-based methods mainly include the effective carrying capacity method, the equivalent conventional power method and the equivalent enterprise power method. The effective carrying capacity method uses the effective load carrying capability (ELCC) to measure the confidence capacity of the photovoltaic system. The ELCC characterizes the capacity that the system load can increase while maintaining the reliability before and after the intermittent power generation is connected to the system. This indicator can intuitively represent the new load capacity that can be added after the system adds a generator set. In practice, the confidence capacity is usually measured by the capacity that the connected intermittent energy can reduce the planned conventional power generation. In the process of measuring the confidence capacity, the process of calculating the reliability using the reverse Monte Carlo SMC method is complex and time-consuming, resulting in Computational efficiency is low.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中所存在的上述不足,本发明提供一种并网光伏系统置信容量的确定方法,包括:In order to solve the above deficiencies in the prior art, the present invention provides a method for determining the confidence capacity of a grid-connected photovoltaic system, including:
获取光伏渗透率、时间步长和光伏负荷相关相似指数;Obtain PV penetration rate, time step and PV load related similarity index;
将所述光伏渗透率、时间步长和光伏负荷相关相似指数带入预先训练的经验模型确定光伏系统的置信容量;Bringing the photovoltaic penetration rate, time step and photovoltaic load-related similarity index into a pre-trained empirical model to determine the confidence capacity of the photovoltaic system;
其中,所述经验模型为利用人工神经网络对置信容量与光伏渗透率、时间步长和光伏负荷相关相似指数之间的映射关系进行训练得到。Wherein, the empirical model is obtained by using artificial neural network to train the mapping relationship between confidence capacity and photovoltaic permeability, time step and photovoltaic load related similarity index.
优选的,所述经验模型的训练包括:Preferably, the training of the empirical model includes:
设置多个光伏容量;Set multiple photovoltaic capacities;
对每一个光伏容量,在不同时间步长下进行仿真得到对应的光伏输出功率分布;For each photovoltaic capacity, simulate under different time steps to obtain the corresponding photovoltaic output power distribution;
基于所有与各光伏容量对应的时间步长和光伏输出功率分布组成样本集;A sample set is formed based on all the time steps corresponding to each photovoltaic capacity and the photovoltaic output power distribution;
基于不同的光伏渗透率,时间步长和光伏负荷相关相似值建立人工神经网络;Build artificial neural networks based on different PV penetration rates, time steps and PV load-related similarity values;
基于所述样本集对所述人工神经网络进行训练,得到置信容量与光伏渗透率、时间步长和光伏负荷相关相似指数之间的映射关系。The artificial neural network is trained based on the sample set, and the mapping relationship between confidence capacity and photovoltaic permeability, time step and photovoltaic load related similarity index is obtained.
优选的,所述经验模型中置信容量与光伏渗透率、时间步长和光伏负荷相关相似指数之间的映射关系,如下式所示:Preferably, the mapping relationship between the confidence capacity and the photovoltaic penetration rate, the time step and the photovoltaic load-related similarity index in the empirical model is shown in the following formula:
κCC=g(r,Δt,η)κ CC =g(r,Δt,η)
式中:κCC为光伏系统的置信容量;r为光伏渗透率;Δt为时间步长;η为按时间顺序的光伏-负荷相关相似指数。In the formula: κ CC is the confidence capacity of the photovoltaic system; r is the photovoltaic penetration rate; Δt is the time step; η is the photovoltaic-load correlation similarity index in time order.
优选的,所述光伏-负荷相关相似指数η,如下式所示:Preferably, the photovoltaic-load related similarity index η is shown in the following formula:
η=v×γC η=v× γC
式中:v为光伏输出的功率按时间变化的斜坡速率指标,γC为光伏输出功率与负荷分布的相关性。In the formula: v is the ramp rate index of photovoltaic output power according to time change, γ C is the correlation between photovoltaic output power and load distribution.
优选的,所述光伏输出的功率按时间变化的斜坡速率指标v,如下式所示:Preferably, the time-varying ramp rate index v of the photovoltaic output power is shown in the following formula:
式中:n表示光伏输出单元数;为负荷时间序列;为在时间步长Δt中光伏输出和负荷的绝对最大波动;表示光伏输出功率时间序列的归一化斜坡率;表示第i+1个光伏输出单元在时间步长Δt时对应的光伏容量;表示第i个光伏输出单元在时间步长Δt时对应的光伏容量;表示T时间内的归一化负荷斜坡率;L(i+1)Δt表示第i+1个光伏输出单元在时间步长Δt时光伏输出和负荷的波动;LiΔt表示第i个光伏输出单元在时间步长Δt时光伏输出和负荷的波动。In the formula: n represents the number of photovoltaic output units; is the load time series; is the absolute maximum fluctuation of PV output and load in time step Δt; Represents the normalized ramp rate of the photovoltaic output power time series; Represents the photovoltaic capacity corresponding to the i+1th photovoltaic output unit at the time step Δt; represents the photovoltaic capacity corresponding to the i-th photovoltaic output unit at the time step Δt; Represents the normalized load ramp rate within T time; L (i+1)Δt represents the fluctuation of PV output and load of the i+1th PV output unit at time step Δt; L iΔt represents the i-th PV output unit Fluctuations in PV output and load at time step Δt.
优选的,所述人工神经网络为反向传播神经网络。Preferably, the artificial neural network is a back-propagation neural network.
基于同一发明构思,本发明还提供了一种并网光伏系统置信容量的确定系统,包括:Based on the same inventive concept, the present invention also provides a system for determining the confidence capacity of a grid-connected photovoltaic system, including:
获取模块,用于获取光伏渗透率、时间步长和光伏负荷相关相似指数;The acquisition module is used to obtain the PV penetration rate, time step and PV load related similarity index;
确定模块,用于将所述光伏渗透率、时间步长和光伏负荷相关相似指数带入预先训练的经验模型确定光伏系统的置信容量;a determination module, used for bringing the photovoltaic penetration rate, time step and photovoltaic load related similarity index into a pre-trained empirical model to determine the confidence capacity of the photovoltaic system;
其中,所述经验模型为利用人工神经网络对置信容量与光伏渗透率、时间步长和光伏负荷相关相似指数之间的映射关系进行训练得到。Wherein, the empirical model is obtained by using artificial neural network to train the mapping relationship between confidence capacity and photovoltaic permeability, time step and photovoltaic load related similarity index.
优选的,所述系统还包括训练模块;所述训练模块具体用于:Preferably, the system further includes a training module; the training module is specifically used for:
设置多个光伏容量;Set multiple photovoltaic capacities;
对每一个光伏容量,在不同时间步长下进行仿真得到对应的光伏输出功率分布;For each photovoltaic capacity, simulate under different time steps to obtain the corresponding photovoltaic output power distribution;
基于所有与各光伏容量对应的时间步长和光伏输出功率分布组成样本集;A sample set is formed based on all the time steps corresponding to each photovoltaic capacity and the photovoltaic output power distribution;
基于不同的光伏渗透率,时间步长和光伏负荷相关相似值建立人工神经网络;Build artificial neural networks based on different PV penetration rates, time steps and PV load-related similarity values;
基于所述样本集对所述人工神经网络进行训练,得到置信容量与光伏渗透率、时间步长和光伏负荷相关相似指数之间的映射关系。The artificial neural network is trained based on the sample set, and the mapping relationship between confidence capacity and photovoltaic permeability, time step and photovoltaic load related similarity index is obtained.
优选的,所述经验模型中置信容量与光伏渗透率、时间步长和光伏负荷相关相似指数之间的映射关系,如下式所示:Preferably, the mapping relationship between the confidence capacity and the photovoltaic penetration rate, the time step and the photovoltaic load-related similarity index in the empirical model is shown in the following formula:
κCC=g(r,Δt,η)κ CC =g(r,Δt,η)
式中:κCC为光伏系统的置信容量;r为光伏渗透率;Δt为时间步长;η为按时间顺序的光伏负荷相关相似指数。In the formula: κ CC is the confidence capacity of the photovoltaic system; r is the photovoltaic penetration rate; Δt is the time step; η is the photovoltaic load correlation similarity index in time order.
优选的,所述光伏负荷相关相似指数η,如下式所示:Preferably, the photovoltaic load related similarity index η is shown in the following formula:
η=v×γC η=v× γC
式中:v为光伏输出的功率按时间变化的斜坡速率指标,γC为光伏输出功率与负荷分布的相关性。In the formula: v is the ramp rate index of photovoltaic output power according to time change, γ C is the correlation between photovoltaic output power and load distribution.
与最接近的现有技术相比,本发明提供的技术方案具有以下有益效果:Compared with the closest prior art, the technical solution provided by the present invention has the following beneficial effects:
本发明提供的技术方案,在获取光伏渗透率、时间步长和光伏负荷相关相似指数后;将所述光伏渗透率、时间步长和光伏负荷相关相似指数带入预先训练的经验模型确定光伏系统的置信容量;该技术方案中的所述经验模型为利用人工神经网络对置信容量与光伏渗透率、时间步长和光伏负荷相关相似指数之间的映射关系进行训练得到。本发明可以在不需要使用复杂、耗时的逆向蒙特卡罗SMC计算的情况下,估计出任何给定光伏渗透率、时间步长和光伏负荷相关相似指数的置信容量。In the technical solution provided by the present invention, after the photovoltaic permeability, time step and photovoltaic load related similarity index are obtained; the photovoltaic permeability, time step and photovoltaic load related similarity index are brought into a pre-trained empirical model to determine the photovoltaic system The confidence capacity of ; the empirical model in this technical solution is obtained by using artificial neural network to train the mapping relationship between confidence capacity and photovoltaic permeability, time step and photovoltaic load related similarity index. The present invention can estimate the confidence capacity for any given PV penetration, time step, and PV load-related similarity index without the need to use complex, time-consuming inverse Monte Carlo SMC calculations.
附图说明Description of drawings
图1为本发明提供的一种并网光伏系统置信容量的确定方法流程图;1 is a flowchart of a method for determining the confidence capacity of a grid-connected photovoltaic system provided by the present invention;
图2为本发明提供的ELCC评价的割线法示意图;Fig. 2 is the secant method schematic diagram of ELCC evaluation provided by the present invention;
图3为本发明提供的光伏置信容量评估的人工神经网络体系结构示意图;3 is a schematic diagram of an artificial neural network architecture for photovoltaic confidence capacity evaluation provided by the present invention;
图4为本发明实施例中ELCC迭代模拟示意图;Fig. 4 is the schematic diagram of ELCC iterative simulation in the embodiment of the present invention;
图5为本发明实施例中光伏置信容量与η指数的拟合曲线示意图;5 is a schematic diagram of a fitting curve between photovoltaic confidence capacity and η index in an embodiment of the present invention;
图6为本发明实施例中PV-负荷相关-相似指数在不同的PV渗透率下的时间步长示意图;6 is a schematic diagram of the time step of PV-load correlation-similarity index under different PV permeability in an embodiment of the present invention;
图7为本发明实施例中光伏渗透率对置信容量的影响示意图;7 is a schematic diagram of the influence of photovoltaic permeability on confidence capacity in an embodiment of the present invention;
图8为本发明实施例中100MW和1000MW光伏电站不同时间间隔下的光伏置信容量箱线图;8 is a boxplot of photovoltaic confidence capacity at different time intervals of 100MW and 1000MW photovoltaic power plants in the embodiment of the present invention;
图9为本发明实施例中时间间隔和光伏渗透率对光伏置信容量的影响示意图;9 is a schematic diagram of the influence of time interval and photovoltaic permeability on photovoltaic confidence capacity in an embodiment of the present invention;
图10为本发明实施例中光伏置信容量评估结果示意图。FIG. 10 is a schematic diagram of a photovoltaic confidence capacity evaluation result in an embodiment of the present invention.
具体实施方式Detailed ways
为了更好地理解本发明,下面结合说明书附图和实例对本发明的内容做进一步的说明。In order to better understand the present invention, the content of the present invention will be further described below with reference to the accompanying drawings and examples.
实施例1:如图1所示,本发明提供了一种并网光伏系统置信容量的确定方法,包括:Embodiment 1: As shown in Figure 1, the present invention provides a method for determining the confidence capacity of a grid-connected photovoltaic system, including:
S1获取光伏渗透率、时间步长和光伏负荷相关相似指数;S1 obtains the PV penetration rate, time step and PV load related similarity index;
S2将所述光伏渗透率、时间步长和光伏负荷相关相似指数带入预先训练的经验模型确定光伏系统的置信容量;S2 brings the photovoltaic permeability, time step and photovoltaic load related similarity index into the pre-trained empirical model to determine the confidence capacity of the photovoltaic system;
其中,所述经验模型为利用人工神经网络对置信容量与光伏渗透率、时间步长和光伏负荷相关相似指数之间的映射关系进行训练得到。Wherein, the empirical model is obtained by using artificial neural network to train the mapping relationship between confidence capacity and photovoltaic permeability, time step and photovoltaic load related similarity index.
本发明首先建立了阵列面(POA)辐照度模型,当已知某一时刻辐照度的标准成分时,可按以下公式(1)-(5)计算到达倾斜光伏组件的辐照度。其中辐照度的标准成分包括:太阳辐照度的直接正常辐照度(DNI)、全球水平辐照度(GHI)和漫射水平辐照度(DHI)。The present invention first establishes a surface-of-array (POA) irradiance model. When the standard composition of irradiance at a certain time is known, the irradiance reaching the inclined photovoltaic module can be calculated according to the following formulas (1)-(5). The standard components of irradiance include: direct normal irradiance (DNI), global horizontal irradiance (GHI) and diffuse horizontal irradiance (DHI) of solar irradiance.
POA辐照度EPOA如下式所示:The POA irradiance E POA is given by the following formula:
EPOA=Eb+Eg+Ed (1)E POA =E b +E g +E d (1)
式中:Eb是POA光束分量,Eg是POA是地面反射分量,Ed是POA扩散分量。In the formula: E b is the POA beam component, E g is the POA ground reflection component, and Ed is the POA diffusion component.
其中POA光束分量Eb可由下列公式求得:The POA beam component E b can be obtained by the following formula:
Eb=DNI×cos(AOI) (2)E b =DNI×cos(AOI) (2)
AOI=cos-1[cos(θZ)cos(θT)+sin(θZ)sin(θT)×cos(θA-θα)] (3)AOI=cos -1 [cos(θ Z )cos(θ T )+sin(θ Z )sin(θ T )×cos(θ A -θ α )] (3)
式中:AOI为入射角,θT是阵列的倾斜度,θa是阵列的方位角,北0°,东90°,南180°,西270°,呈顺时针方向。太阳方位角θA和天顶角θZ可由Reda和Andreas描述的太阳位置算法(SPA)模型导出。Where: AOI is the incident angle, θ T is the inclination of the array, θ a is the azimuth angle of the array, 0° north, 90° east, 180° south, and 270° west, in a clockwise direction. The sun azimuth angle θ A and the zenith angle θ Z can be derived from the Sun Position Algorithm (SPA) model described by Reda and Andreas.
所述地面反射分量Eg可由下列公式求得:The ground reflection component E g can be obtained by the following formula:
式中:ρ是反照率,它描述了地表的反射率。反照率代表被反射的GHI,暗面的反射率低,亮白面的值高。在本发明中,对地面上的干混凝土和新鲜雪,分别假定其为ρ=0.2和ρ=0.8。Where: ρ is the albedo, which describes the reflectivity of the surface. The albedo represents the reflected GHI, with low reflectance on dark sides and high values on bright white sides. In the present invention, ρ=0.2 and ρ=0.8 are assumed for dry concrete and fresh snow on the ground, respectively.
本发明采用天空散射辐射的Sandia经验模型按下式计算Ed分量:The present invention uses the Sandia empirical model of sky scattered radiation to calculate the E d component as follows:
式中:θT是阵列的倾斜度,θZ为由Reda和Andreas描述的太阳位置算法(SPA)模型导出的天顶角,在公式(5)中,第一项为各向同性的天空散射辐射模型,第二项是经验修正项,用来解释太阳周围和地平线的亮化效应。where: θ T is the inclination of the array, θ Z is the zenith angle derived from the Sun Position Algorithm (SPA) model described by Reda and Andreas, and in equation (5), the first term is the isotropic sky scattering The radiation model, the second term is the empirical correction term, is used to account for the brightening effect around the sun and the horizon.
现有光伏电站具有低通滤波器的特点,本发明提出一种基于低通滤波器的光伏输出模型,在频域分析的基础上,提出了一阶传递函数来刻画光伏输出功率与辐照度之间的非线性关系,如下式所示:The existing photovoltaic power station has the characteristics of a low-pass filter. The present invention proposes a photovoltaic output model based on the low-pass filter. On the basis of frequency domain analysis, a first-order transfer function is proposed to describe the photovoltaic output power and irradiance. The nonlinear relationship between , as shown in the following formula:
式中:G(t)是GHI时间序列,P(t)是模拟光伏功率输出时间序列。光伏发电站面积S(公顷)是影响光伏发电波动平稳性的主要因素。In the formula: G(t) is the GHI time series, and P(t) is the simulated photovoltaic power output time series. Photovoltaic power station area S (ha) is the main factor affecting the stability of photovoltaic power generation fluctuations.
将传递函数从模拟转换为数字滤波器,离散传递函数可以写为:Converting the transfer function from analog to digital filter, the discrete transfer function can be written as:
式中:z=esf,f是实测辐照度时间序列的采样频率,P*(W)是变压器标称功率,G*(1000W/m2)代表参考辐照度。为了简化,光伏电站的组件被认为是绝对可靠的,而不考虑故障特性。本发明中的光伏功率密度,代表布满太阳能电池板的单位面积直流输出功率,地面固定倾斜度为65-dcW/m2,作为经验法则被采纳。因此,面积为1公顷的光伏电站的装机容量为P*=0.65MW。where: z= esf , f is the sampling frequency of the measured irradiance time series, P * (W) is the nominal power of the transformer, and G * (1000W/m 2 ) represents the reference irradiance. For simplicity, the components of a photovoltaic power plant are considered infallible, regardless of fault characteristics. The photovoltaic power density in the present invention represents the DC output power per unit area covered with solar panels, and the fixed slope of the ground is 65-dcW/m 2 , which is adopted as a rule of thumb. Therefore, the installed capacity of a photovoltaic power plant with an area of 1 hectare is P * = 0.65MW.
本发明提供了基于逆向蒙特卡罗(SMC)模拟计算光伏系统的可靠性,采用割线法确定光伏系统的有效带载能力(ELCC)。如图2所示分别为基础电力系统、附加常规发电机的电力系统和带有光伏发电机组的电力系统的可靠性曲线。The invention provides the reliability of the photovoltaic system based on reverse Monte Carlo (SMC) simulation, and uses the secant method to determine the effective load capacity (ELCC) of the photovoltaic system. Figure 2 shows the reliability curves of the basic power system, the power system with additional conventional generators, and the power system with photovoltaic generator sets, respectively.
割线法实现步骤如下所示:The implementation steps of the secant method are as follows:
第一步:利用SMC仿真计算了不安装光伏发电机组的基础电力系统的负荷缺额期望值,记录为R0和年峰值负荷Lpk0和常规发电机的Ccon,并在图2中用点S(Lpk0,R0)表示。将CPV光伏发电单元添加到基本系统时计算可靠性RA=R(Ccon+CPV,Lpk0),用A(Lpk0,RA)表示。当年峰值负荷增加到Lpk0+CPV后,添加CPV光伏系统可靠性可以表示为RB=R(CCON+CPV,Lpk0+CPV),并用B(Lpk0+CPV,RB)表示。Step 1: Calculate the expected load shortfall value of the basic power system without photovoltaic generator sets using SMC simulation, record it as R 0 and annual peak load L pk0 and C con of conventional generators, and use point S ( L pk0 , R 0 ) represents. Reliability R A =R(C con +C PV ,L pk0 ) is calculated when adding C PV photovoltaic power generation units to the basic system, denoted by A(L pk0 , R A ). After the peak load of the year increases to L pk0 +C PV , the reliability of the photovoltaic system with C PV can be expressed as R B =R(C CON +C PV ,L pk0 +C PV ), and B(L pk0 +C PV ,R B ) said.
第二步:计算直线段AB与f(x)=R0的交点S1,确定了相应的年峰值负荷L1。通过SMC仿真估计新的可靠性水平RC=R(CCON+CPV,L1),如果|RC-R0|>ε,则继续计算线段BC和f(x)=R0的交点S2,用C代替A。这个过程被反复运行,直到|RC-R0|>ε,其中ε=0.001是一个期望的误差阈值。Step 2: Calculate the intersection S 1 of the straight line segment AB and f(x)=R 0 , and determine the corresponding annual peak load L 1 . Estimate the new reliability level R C =R(C CON +C PV ,L 1 ) by SMC simulation, if |R C -R 0 |>ε, continue to calculate the intersection of line segment BC and f(x)=R 0 S 2 , replace A with C. This process is run iteratively until |R C - R 0 | > ε, where ε = 0.001 is a desired error threshold.
第三步:确定PV系统的有效带载能力ELCC,当收敛条件满足时,假定交点为D(LD,R0),计算的峰值负荷可表示为LD=Lpk0+ΔL。这意味着安装的CPV光伏系统可以承担额外的ΔL负载,并保持指定的可靠性水平。容量值由基础系统Lpk0的年峰值负荷与光伏发电系统的年峰值负荷LD之差决定,置信容量可由(8)确定,显然,光伏电站的额外容量值ΔL属于[0,CPV]范围。Step 3: Determine the effective load capacity ELCC of the PV system. When the convergence condition is satisfied, assuming that the intersection point is D(L D , R 0 ), the calculated peak load can be expressed as L D =L pk0 +ΔL. This means that the installed C PV photovoltaic system can take the additional ΔL load and maintain the specified reliability level. The capacity value is determined by the difference between the annual peak load of the basic system L pk0 and the annual peak load LD of the photovoltaic power generation system . The confidence capacity can be determined by (8). Obviously, the additional capacity value ΔL of the photovoltaic power station belongs to the range of [0, C PV ] .
上述步骤中以接入的间歇性能源可以使规划的常规发电减少的容量来衡量其置信容量,此时不直接用ELCC来衡量新增间歇式能源的置信容量。In the above steps, the connected intermittent energy can reduce the planned conventional power generation capacity to measure the confidence capacity. At this time, the ELCC is not directly used to measure the confidence capacity of the newly added intermittent energy.
通过上述三个步骤可知,根据逆向蒙特卡罗(SMC)模拟计算光伏系统的可靠性,需要采用割线法确定光伏系统的有效带载能力(ELCC),具体包括:首先需要确定基础电力系统、附加常规发电机的电力系统和带有光伏发电机组的电力系统的可靠性曲线,然后确定曲线的交点,计算直线段AB与f(x)=R0的交点S1,确定了相应的年峰值负荷L1。通过SMC仿真估计新的可靠性水平RC=R(CCON+CPV,L1),如果|RC-R0|>ε,则继续计算线段BC和f(x)=R0的交点S2,用C代替A。这个过程被反复运行,直到|RC-R0|>ε。通过SMC计算不仅计算过程复杂,同时要计算光伏系统的置信容量时需要不断重复通过SMC仿真估计新的可靠性水平RC=R(CCON+CPV,L1),如果|RC-R0|>ε,则继续计算线段BC和f(x)=R0的交点S2,用C代替A,这个过程需要耗费大量时间。Through the above three steps, it can be seen that according to the reverse Monte Carlo (SMC) simulation to calculate the reliability of the photovoltaic system, it is necessary to use the secant method to determine the effective load capacity (ELCC) of the photovoltaic system, which includes: firstly, it is necessary to determine the basic power system, The reliability curve of the power system with conventional generators and the power system with photovoltaic generator set is added, and then the intersection point of the curve is determined, and the intersection point S 1 of the straight line segment AB and f(x)=R 0 is calculated, and the corresponding annual peak value is determined load L 1 . Estimate the new reliability level R C =R(C CON +C PV ,L 1 ) by SMC simulation, if |R C -R 0 |>ε, continue to calculate the intersection of line segment BC and f(x)=R 0 S 2 , replace A with C. This process is repeated until |R C -R 0 |>ε. The SMC calculation is not only complicated in the calculation process, but also it is necessary to repeatedly estimate the new reliability level through the SMC simulation when calculating the confidence capacity of the photovoltaic system. R C =R( C CON +C PV ,L 1 ), if | 0 |>ε, then continue to calculate the intersection S 2 of the line segment BC and f(x)=R 0 , and replace A with C, which takes a lot of time.
本发明提出了一种同时描述光伏输出和负荷分布的可变性和时间相关性的新度量方法,其中引入了一种新的光伏输出按时间变化的斜坡速率指标v:The present invention proposes a new metric that simultaneously describes the variability and time dependence of photovoltaic output and load distribution, in which a new time-varying ramp rate index v of photovoltaic output is introduced:
式中:n表示PV输出单元数,表示负荷时间序列,表示PV输出和负荷的绝对最大波动,在时间步长Δt中。分子项表示PV功率时间序列的归一化斜坡率,分母项表示T时间内的归一化负荷斜坡率。In the formula: n represents the number of PV output units, represents the load time series, Represents the absolute maximum fluctuation of PV output and load, in time step Δt. The numerator term represents the normalized ramp rate of the PV power time series, and the denominator term represents the normalized load ramp rate over time T.
定义了一个按时间顺序的PV-负荷相关相似指数η,描述了影响光伏系统ELCC评价的主要因素,定义如下:A chronological PV-load-related similarity index η is defined, which describes the main factors affecting the ELCC evaluation of photovoltaic systems, and is defined as follows:
η=v×γC (10)η=v× γC (10)
η为按时间顺序的PV-负荷相关相似指数,v为按时间变化的斜坡速率指标,即光伏输出的变化率;γC为光伏输出与负荷分布的相关性。η is the PV-load correlation similarity index in chronological order, v is the time-varying ramp rate index, that is, the rate of change of PV output; γ C is the correlation between PV output and load distribution.
在实际中光伏系统的置信容量κCC主要由PV渗透率r、时间步长Δt、光伏输出的变化率v以及光伏输出与负荷分布的相关性γC来决定,具体表现如下:In practice, the confidence capacity κ CC of a photovoltaic system is mainly determined by the PV permeability r, the time step Δt, the rate of change of the photovoltaic output v, and the correlation between the photovoltaic output and the load distribution γ C. The specific performance is as follows:
κCC=f(r,Δt,v,γc) (11)κ CC =f( r ,Δt,v,γc ) (11)
针对不同的PV渗透率,时间尺度和相关性建立反向传播(BP)神经网络用来估计光伏系统的置信容量,基于人工神经网络的经验模型计算光伏置信容量,经验模型如下式所示:For different PV penetration rates, time scales and correlations, a back-propagation (BP) neural network is established to estimate the confidence capacity of the photovoltaic system. The empirical model of the artificial neural network is used to calculate the photovoltaic confidence capacity. The empirical model is as follows:
κCC=g(r,Δt,η) (12)κ CC =g(r,Δt,η) (12)
式中:r为PV渗透率、Δt为时间步长和PV-负荷相关-相似指数η。where r is the PV permeability, Δt is the time step and the PV-load correlation-similarity index η.
本发明提供的经验模型基于人工神经网络进行构建,其构建步骤为:The empirical model provided by the present invention is constructed based on artificial neural network, and its construction steps are:
(1)选择不同的PV容量并在各种仿真时间间隔进行广泛仿真得到人工神经网络(ANN)样本集。在PV容量向量(10、50、100、200、300、400、500、600、700、800、900、1000)MW并在各种模拟时间间隔(2、3、4、5、7、10、15、20、30、35、40、45、50、60分钟)上进行了广泛的模拟,在指定的光伏容量和指定的时间步长进行模拟时,通过日光伏输出随机置换得到30个情景,在每天的时间尺度上随机变换364天光伏输出时间序列得到不同光伏输出分布,通过模拟仿真得到5040个单元的样本集;(1) Select different PV capacities and conduct extensive simulations at various simulation time intervals to obtain artificial neural network (ANN) sample sets. at PV capacity vectors (10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000) MW and at various simulation time intervals (2, 3, 4, 5, 7, 10, 15, 20, 30, 35, 40, 45, 50, 60 minutes) extensive simulations were carried out, 30 scenarios were obtained by random permutation of daily PV output when simulating at the specified PV capacity and at the specified time step, Randomly transform the 364-day photovoltaic output time series on the daily time scale to obtain different photovoltaic output distributions, and obtain a sample set of 5040 units through simulation;
(2)针对不同的光伏渗透率,时间尺度和光伏负荷相关相似值建立的反向传播(BP)神经网络用来估计光伏系统的置信容量,采用Levenberg-Marquardt反向传播训练算法对神经网络进行训练;(2) The back-propagation (BP) neural network established for different photovoltaic penetration rates, time scales and photovoltaic load-related similar values is used to estimate the confidence capacity of photovoltaic systems. train;
(3)训练完成后,记录网络的所有连接权重,建立经验模型,然后用训练后的网络对PV置信容量进行仿真评估。(3) After the training is completed, all connection weights of the network are recorded, an empirical model is established, and then the PV confidence capacity is simulated and evaluated with the trained network.
经验模型中置信容量与不同的光伏渗透率,时间步长和光伏负荷相关相似值的关系如下式所示:The relationship between confidence capacity and different PV penetration rates, time steps and PV load-related similarity values in the empirical model is shown as follows:
κCC=g(r,Δt,η) (13)κ CC =g(r,Δt,η) (13)
式中:r为PV渗透率;Δt为时间步长;η为光伏负荷相关相似指数。where r is the PV permeability; Δt is the time step; η is the PV load-related similarity index.
本实施例中存在光伏渗透率=光伏容量/总容量;光伏负荷相关相似指数需要根据光伏输出功率分布和负荷分布得到。In this embodiment, there is a photovoltaic penetration rate=photovoltaic capacity/total capacity; the photovoltaic load-related similarity index needs to be obtained according to the photovoltaic output power distribution and load distribution.
本发明考虑了光伏发电的间歇性,提出了一种新的测量方法来描述光伏输出与负荷分布之间的时间相关性,即按时间变化的斜坡速率指标v,有效验证了光伏渗透、模拟时间粒度、变化光伏与负荷时间序列的相关性等因素对光伏系统置信容量评估的影响。The present invention considers the intermittency of photovoltaic power generation, and proposes a new measurement method to describe the time correlation between photovoltaic output and load distribution, that is, the ramp rate index v that changes according to time, which effectively verifies photovoltaic penetration, simulation time The influence of factors such as granularity, correlation between PV and load time series on PV system confidence capacity assessment.
本发明所提出的置信容量评估方法可应用于任意条件下的置信容量评估,验证了边际容量价值递减的规律,并利用所建立的模型得到了置信容量评估的最优时间尺度。The confidence capacity assessment method proposed by the invention can be applied to confidence capacity assessment under arbitrary conditions, verifies the law of decreasing marginal capacity value, and obtains the optimal time scale of confidence capacity assessment by using the established model.
本实施例采用IEEE RTS-79系统作为基础电力系统,拥有32台容量值为3405MW的常规发电机,峰值负荷为2850MW。从IEEE RTS-79系统中获得常规发电机的年负荷数据、容量和可用度,在给定的时间间隔内,通过移动时间窗口获得平均3s辐照度。在进行可靠性计算时,采用线性插值法确定负荷值。给出负荷和PV时间序列,在进行可靠性计算时,仅利用SMC仿真对常规发电机的输出状态进行采样。This embodiment uses the IEEE RTS-79 system as the basic power system, and has 32 conventional generators with a capacity of 3405MW and a peak load of 2850MW. The annual load data, capacity and availability of conventional generators are obtained from the IEEE RTS-79 system, and the average 3s irradiance is obtained by moving time windows over a given time interval. In the reliability calculation, the linear interpolation method is used to determine the load value. Given the load and PV time series, only the SMC simulation is used to sample the output state of conventional generators when performing reliability calculations.
利用本发明提供的基于人工神经网络的经验模型评估置信容量,其步骤如下:Utilize the empirical model based on artificial neural network provided by the present invention to evaluate confidence capacity, and its steps are as follows:
PV渗透率是ELCC估计的关键因素,一般而言,光伏电站具有低光伏渗透的高置信容量,以及具有高PV渗透的低置信容量值。PV penetration is a key factor in ELCC estimation, in general, PV plants have high confidence capacity with low PV penetration, and low confidence capacity values with high PV penetration.
PV渗透定义如下式所示:PV penetration is defined as follows:
由于太阳辐照度的间歇性,应选择最佳的光伏置信容量评估时间间隔。Due to the intermittent nature of solar irradiance, the optimal PV confidence capacity evaluation interval should be selected.
此外为了反映PV和负荷的变化对ELCC评价的影响,提出了一种新的按时间变化的斜坡速率指标v:In addition, in order to reflect the influence of PV and load changes on the ELCC evaluation, a new time-varying ramp rate index v is proposed:
式中:n表示PV输出单元数,表示负荷时间序列,表示PV输出和负荷的绝对最大波动,在时间步长Δt中。分子项表示PV功率时间序列的归一化斜坡率,分母项表示T时间内的归一化负荷斜坡率。In the formula: n represents the number of PV output units, represents the load time series, Represents the absolute maximum fluctuation of PV output and load, in time step Δt. The numerator term represents the normalized ramp rate of the PV power time series, and the denominator term represents the normalized load ramp rate over time T.
PV与负荷分布的相关性也是影响光伏发电能力信用评价的重要因素,设和V2={LΔt,L2Δt,...,LnΔt}分别是PV输出和负荷需求的时间序列。本发明引入Spearman秩相关系数ρS来描述V1和V2之间的相关性。The correlation between PV and load distribution is also an important factor affecting the credit evaluation of photovoltaic power generation capacity. and V 2 ={L Δt , L 2Δt , . . . , L nΔt } are the time series of PV output and load demand, respectively. The present invention introduces the Spearman rank correlation coefficient ρ S to describe the correlation between V 1 and V 2 .
将向量V1和V2按升序排序,并根据变量和LiΔt在升序向量中的位置记录等级xi和yi。变量di=xi-yi是等级xi和yi的差值,Spearman秩相关系数只是描述了两条曲线的变化趋势,而不考虑它们的平均距离。为了便于描述两个时间序列之间的平均距离,引入Frechet距离。Frechet距离是度量两条连续直线或曲线(V1和V2)之间的相似性的度量,公式(17)中V1和V2的离散Frechet距离δdF(V1,V2)提供了一个很好的连续度量的近似,可以用一个简单的算法实现:Sort the vectors V 1 and V 2 in ascending order and according to the variable and L iΔt record the rank x i and y i at the position in the ascending vector. The variable d i = xi -y i is the difference between the levels x i and y i , and the Spearman rank correlation coefficient just describes the changing trend of the two curves without considering their average distance. In order to facilitate the description of the average distance between two time series, the Frechet distance is introduced. Frechet distance is a measure of the similarity between two consecutive straight lines or curves (V 1 and V 2 ), the discrete Frechet distance δ dF (V 1 ,V 2 ) of V 1 and V 2 in Eq. (17) provides A good approximation of continuous metrics can be achieved with a simple algorithm:
δdF(V1,V2)=min{||D|||D is a coupling between V1 and V2} (17)δ dF (V 1 , V 2 )=min{||D|||D is a coupling between V 1 and V 2 } (17)
V1和V2之间模D依照V1和V2中点的顺序,而模D的长度是D中最长的链路的长度,即 The modulo D between V1 and V2 follows the order of the midpoints of V1 and V2, and the length of modulo D is the length of the longest link in D, i.e.
其中dist()函数表示欧氏范数,离散Frechet距离定义为在所有参数化中最小化的最大点态距离,而曲线上的其他点态距离对Frechet距离没有影响。为了考虑所有的点态距离。本发明选择平均Frechet距离定义。平均离散Frechet距离δα(V1,V2)可以用离散的Frechet距离之和来定义,定义如下:where the dist() function represents the Euclidean norm, the discrete Frechet distance is defined as the largest pointwise distance minimized across all parameterizations, and other pointwise distances on the curve have no effect on the Frechet distance. in order to account for all pointwise distances. The present invention chooses the mean Frechet distance definition. The average discrete Frechet distance δ α (V 1 , V 2 ) can be defined as the sum of the discrete Frechet distances as follows:
其中和L'I=LiΔt/max(V1,V2)分别是归一化的PV发电和负荷需求,在得到Spearman秩相关系数ρS和归一化平均离散Frechet距离δα后,定义了一个度量γC,它同时表示两条曲线之间的相关性和平均距离(或相似性):in and L' I =L iΔt /max(V 1 , V 2 ) are the normalized PV generation and load demands, respectively. After obtaining the Spearman rank correlation coefficient ρ S and the normalized average discrete Frechet distance δ α , we define A metric γ C that represents both the correlation and the average distance (or similarity) between two curves:
若ρS值较高,δα值较小,即PV分布与负荷分布基本一致,且两者曲线接近,则PV输出与负荷需求很好地匹配,在此情况下可获得较高的PV置信容量。If the value of ρ S is high and the value of δ α is small, that is, the PV distribution is basically consistent with the load distribution, and the two curves are close, then the PV output and the load demand are well matched, and in this case a higher PV confidence can be obtained capacity.
在实践中,光伏电站的ELCCκCC主要由PV渗透率r、时间步长Δt、光伏输出的变化率v以及光伏输出与负荷分布的相关性γC来决定,具体表现为:In practice, the ELCCκ CC of a photovoltaic power station is mainly determined by the PV penetration rate r, the time step Δt, the rate of change of the photovoltaic output v, and the correlation between the photovoltaic output and the load distribution γ C , which is specifically expressed as:
κCC=f(r,Δt,v,γc) (21)κ CC =f( r ,Δt,v,γc ) (21)
考虑到上述因素,定义了一个按时间顺序的PV-负荷相关相似指数η,描述了影响光伏系统ELCC评价的主要因素:Considering the above factors, a chronological PV-load-related similarity index η is defined, describing the main factors affecting the ELCC evaluation of photovoltaic systems:
η=v×γC (22)η=v× γC (22)
式(21)可以重写为:Equation (21) can be rewritten as:
κCC=g(r,Δt,η) (23)κ CC =g(r,Δt,η) (23)
这里,η是描述PV和负荷分布的时间步长、相关性和平均离散距离的综合度量。Here, η is a composite measure of time step, correlation, and mean discrete distance describing PV and load distributions.
图3为针对不同的PV渗透率r、时间步长Δt和PV-负荷相关相似指数η建立的反向传播(BP)神经网络用来估计光伏系统的置信容量。其中,wij表示节点i和j之间的权重,神经元的偏差bias由θi(k)和θj(k)表示。本发明指出,隐含层神经元NHLN只是一个可能的选择,而不是一个最优的选择,采用量子(Levenberg-Marqudt,LM)反向传播训练算法对神经网络进行训练。隐含层和输出层分别采用双曲切线Sigmoid传递函数“tansig”和线性传递函数“purelin”。将学习速率和最大迭代设置为0.05和3000。Figure 3 shows the back-propagation (BP) neural network built for different PV permeability r, time step Δt and PV-load-related similarity index η to estimate the confidence capacity of photovoltaic systems. where w ij represents the weight between nodes i and j, and the neuron’s bias is represented by θ i (k) and θ j (k). The present invention points out that the hidden layer neuron NHLN is only a possible choice, not an optimal choice, and a quantum (Levenberg-Marqudt, LM) back-propagation training algorithm is used to train the neural network. The hidden layer and output layer adopt the hyperbolic tangent Sigmoid transfer function "tansig" and the linear transfer function "purelin", respectively. Set the learning rate and max iterations to 0.05 and 3000.
为了获得ANN样本集,在PV容量向量(10、50、100、200、300、400、500、600、700、800、900、1000)MW并在各种模拟时间间隔(2、3、4、5、7、10、15、20、30、35、40、45、50、60分钟)上进行了广泛的模拟。每次模拟(指定的光伏容量和指定的时间步长),通过日光伏输出随机置换得到30个场景,为了得到不同的光伏输出分布,在每天的时间尺度上随机变换364天光伏输出时间序列,通过模拟得到5040个单元的样本集。当人工神经网络完成训练过程后,记录网络的所有连接权重,训练后的ANN具有推理和推广的能力,建立了式子(10)中所提出的经验模型,在给定的PV渗透率r、时间步长Δt和PV-负荷相关-相似指数η下,可以用训练后的网络对PV置信容量进行评估,而不进行耗时的SMC仿真。To obtain the ANN sample set, at PV capacity vectors (10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000) MW and at various simulation time intervals (2, 3, 4, 5, 7, 10, 15, 20, 30, 35, 40, 45, 50, 60 minutes) with extensive simulations. For each simulation (specified PV capacity and specified time step), 30 scenarios are obtained by random permutation of daily PV output. In order to obtain different PV output distributions, the 364-day PV output time series is randomly transformed on the daily time scale, A sample set of 5040 units is obtained by simulation. When the artificial neural network completes the training process, all the connection weights of the network are recorded, and the trained ANN has the ability of reasoning and generalization, and the empirical model proposed in equation (10) is established. With time step Δt and PV-load correlation-similarity index η, PV confidence capacity can be evaluated with the trained network without time-consuming SMC simulation.
图4给出了100MW光伏系统在1-h时间步长的置信容量评价仿真过程。在每次SMC模拟迭代中,计算了光伏装置的ELCC,并在图4中给出了ELCC曲线。假设光伏功率密度为65-dcW/m2,100MW光伏系统的面积153.8公顷。100MW光伏电站ELCC估算的参数为:r=0.0285,ν=0.1629,ρS=0.4683,δa=0.4523,γC=1.0353,η=0.1687。本发明采用Garver近似法计算了光伏置信容量,并与SMC仿真结果进行了比较,计算结果与所提方法的计算结果一致。Figure 4 shows the simulation process of confidence capacity evaluation for a 100MW photovoltaic system at a 1-h time step. In each iteration of the SMC simulation, the ELCC of the photovoltaic device was calculated and the ELCC curves are presented in Fig. 4. Assuming a photovoltaic power density of 65-dcW/m 2 , the area of a 100 MW photovoltaic system is 153.8 hectares. The parameters estimated by ELCC of the 100MW photovoltaic power station are: r=0.0285, ν=0.1629, ρ S =0.4683, δ a =0.4523, γ C =1.0353, η=0.1687. The present invention uses the Garver approximation method to calculate the photovoltaic confidence capacity, and compares it with the SMC simulation results. The calculation results are consistent with the calculation results of the proposed method.
为了说明所提出的光伏负荷相关相似指数与光伏置信容量之间的关系,对在公式IEEE RTS-79系统的PV输出曲线和年负荷分布进行了多场景仿真。图5中的每个点表示特定PV输出时间序列下的一个场景,在每个场景模拟中,对每一天的PV输出进行每日随机排列,以获得特定的PV输出分布。采用线性拟合技术得到拟合曲线,拟合曲线表示光伏置信容量与光伏负荷相关相似指数之间的正相关关系。To illustrate the relationship between the proposed PV load-related similarity index and PV confidence capacity, a multi-scenario simulation of the PV output curve and annual load distribution of the system in formula IEEE RTS-79 was performed. Each point in Figure 5 represents a scenario under a specific PV output time series, and in each scenario simulation, daily random permutation of PV output for each day was performed to obtain a specific PV output distribution. The fitting curve was obtained by using the linear fitting technique, and the fitting curve represented the positive correlation between the PV confidence capacity and the PV load correlation similarity index.
如图6所示PV-负荷相关相似度η也随时间间隔的不同而变化,表明η随模拟时间间隔和PV渗透率的不同而变化。可以发现在不同的模拟时间间隔下,PV-负荷相关-相似指数随模拟时间间隔的增加而增大;在相同的模拟时间步长下,PV渗透率越高,PV-负荷相关-相似指数越大,这是由于光伏渗透率高导致光伏输出和负荷需求之间的平均距离较小;光伏渗透率越高,发电站面积越大,对光伏发电输出的平滑效果越明显;光伏渗透率越低,模拟时间尺度对PV-负荷相关-相似指数的影响程度越小。As shown in Fig. 6, the PV-load-related similarity η also varies with time interval, indicating that η varies with simulation time interval and PV permeability. It can be found that under different simulation time intervals, the PV-load correlation-similarity index increases with the increase of the simulation time interval; under the same simulation time step, the higher the PV permeability, the higher the PV-load correlation-similarity index. This is because the average distance between photovoltaic output and load demand is small due to the high photovoltaic penetration rate; the higher the photovoltaic penetration rate, the larger the power station area, and the more obvious the smoothing effect on the photovoltaic power generation output; the lower the photovoltaic penetration rate , the smaller the effect of the simulation time scale on the PV-load correlation-similarity index.
当人工神经网络被训练后,可以利用ANN的泛化能力来实现光伏置信容量评估。图7阐述了PV渗透率在1-h时间分辨率下对置信容量的影响,研究结果一致,表明PV置信容量将随着PV安装容量的增加而饱和,可得到光伏系统边际容量值下降的结论,符合边际效用递减的规律。表1的结果表明,光伏发电的边际容量值随着光伏装置的增加而降低。When the artificial neural network is trained, the generalization ability of ANN can be used to realize photovoltaic confidence capacity evaluation. Figure 7 illustrates the effect of PV permeability on the confidence capacity at 1-h time resolution. The research results are consistent, indicating that the PV confidence capacity will saturate with the increase of PV installed capacity, and a conclusion can be drawn that the marginal capacity value of the PV system decreases , in accordance with the law of diminishing marginal utility. The results in Table 1 show that the marginal capacity value of photovoltaic power generation decreases with the increase of photovoltaic installations.
表1光伏系统1-h时间分辨率下递减边际容量值Table 1 Decreasing marginal capacity values at 1-h time resolution of photovoltaic systems
图8中给出了100MW和1000MW光伏电站在不同时间间隔下的光伏置信容量箱线图。模拟时间步长对100MW和1000MW光伏置信容量估计有明显的影响。结果表明光伏输出时间间隔和负荷分布的选择对光伏置信容量评价有很大影响,最优时间步长也是由PV渗透率决定的。Figure 8 shows the PV confidence capacity boxplots of 100MW and 1000MW PV plants at different time intervals. The simulation time step has a significant effect on the 100MW and 1000MW PV confidence capacity estimates. The results show that the choice of photovoltaic output time interval and load distribution has a great influence on the photovoltaic confidence capacity evaluation, and the optimal time step is also determined by the PV permeability.
从图9中可以发现较低的光伏渗透率(200MW光伏容量)导致的置信容量变化范围(30.1862%,42.2492%)大于较高光伏渗透率(1000MW光伏容量)的置信容量变化范围(8.0520%,12.2028%)。这主要由于大型光伏发电站的平滑效应导致的。From Figure 9, it can be found that the lower PV penetration rate (200MW PV capacity) leads to a larger confidence capacity variation range (30.1862%, 42.2492%) than that of the higher PV penetration rate (1000MW PV capacity) (8.0520%, 12.2028%). This is mainly due to the smoothing effect of large photovoltaic power plants.
图10为经过训练的基于ANN的经验模型,论证了时间间隔和光伏渗透对光伏发电能力信用评估的影响。在图10中可以发现结果与表1有一定差距,但仍在可接受的范围内。可以发现光伏置信容量评估取决于时间间隔的选择,随着时间间隔的延长,光伏置信容量将得到更大的影响。这可以从图6中理解随着时间间隔的增加,PV-负荷的相似相关指数会越来越高,从而得到更大的PV置信容量值;光伏置信容量评估的最优时间步长随光伏渗透程度的不同而变化,图9中,时间步长对光伏发电能力信用评价的影响随着光伏渗透的增加而减小。在实际应用中,可以选择更大的时间尺度来进行光伏置信容量评估,以提高光伏渗透率,加快计算速度,保持计算精度。可以使用图3中所示的经过训练的人工神经网络来评估给定时间步长的置信容量。对不同的时间步长反复进行此过程,得到置信容量序列,可用于确定最优时间间隔。对不同的时间步长反复进行此过程,得到置信容量序列,可用于确定最优时间间隔。表2给出了η=0.1687时不同PV渗透率下的Δtopt参考值。图10中给出了利用所提出的经验模型进行光伏置信容量评估的详细结果。Figure 10 is a trained ANN-based empirical model demonstrating the effect of time interval and PV penetration on PV capacity credit assessment. It can be found in Figure 10 that the results are somewhat different from Table 1, but still within the acceptable range. It can be found that the PV confidence capacity assessment depends on the choice of time interval, and as the time interval increases, the PV confidence capacity will be more affected. This can be understood from Fig. 6 as the time interval increases, the similarity correlation index of PV-load becomes higher and higher, resulting in a larger PV confidence capacity value; the optimal time step for PV confidence capacity evaluation varies with PV penetration In Figure 9, the effect of time step on the credit rating of photovoltaic power generation capacity decreases with the increase of photovoltaic penetration. In practical applications, a larger time scale can be selected for PV confidence capacity assessment to improve PV penetration, speed up computation, and maintain computational accuracy. The confidence capacity for a given time step can be evaluated using the trained artificial neural network shown in Figure 3. This process is repeated for different time steps to obtain the confidence capacity sequence, which can be used to determine the optimal time interval. This process is repeated for different time steps to obtain the confidence capacity sequence, which can be used to determine the optimal time interval. Table 2 gives the reference values of Δt opt at different PV permeability at η=0.1687. The detailed results of PV confidence capacity assessment using the proposed empirical model are presented in Fig. 10.
表2不同光伏渗透率下光伏置信容量评估的最优时间步长Table 2 Optimal time steps for PV confidence capacity evaluation under different PV penetration rates
经过仿真模拟验证后可以发现本发明提出的基于经验模型的大型并网光伏置信容量评估方法可以避免使用复杂、耗时的SMC计算的情况下,可以在任意给定光伏渗透率、时间步长和光伏负荷相关相似条件下准确估计出的置信容量。After the simulation and verification, it can be found that the large-scale grid-connected photovoltaic confidence capacity evaluation method based on the empirical model proposed in the present invention can avoid the use of complex and time-consuming SMC calculations, and can be used at any given photovoltaic permeability, time step and Confidence capacity accurately estimated under similar conditions related to PV load.
实施例2:基于同一发明构思,本发明还提供了一种并网光伏系统置信容量的确定系统,包括:Embodiment 2: Based on the same inventive concept, the present invention also provides a system for determining the confidence capacity of a grid-connected photovoltaic system, including:
获取模块,用于获取光伏渗透率、时间步长和光伏负荷相关相似指数;The acquisition module is used to obtain the PV penetration rate, time step and PV load related similarity index;
确定模块,用于将所述光伏渗透率、时间步长和光伏负荷相关相似指数带入预先训练的经验模型确定光伏系统的置信容量;a determination module, used for bringing the photovoltaic penetration rate, time step and photovoltaic load related similarity index into a pre-trained empirical model to determine the confidence capacity of the photovoltaic system;
其中,所述经验模型为利用人工神经网络对置信容量与光伏渗透率、时间步长和光伏负荷相关相似指数之间的映射关系进行训练得到。Wherein, the empirical model is obtained by using artificial neural network to train the mapping relationship between confidence capacity and photovoltaic permeability, time step and photovoltaic load related similarity index.
实施例中,所述系统还包括训练模块;所述训练模块具体用于:In an embodiment, the system further includes a training module; the training module is specifically used for:
设置多个光伏容量;Set multiple photovoltaic capacities;
对每一个光伏容量,在不同时间步长下进行仿真得到对应的光伏输出功率分布;For each photovoltaic capacity, simulate under different time steps to obtain the corresponding photovoltaic output power distribution;
基于所有与各光伏容量对应的时间步长和光伏输出功率分布组成样本集;A sample set is formed based on all the time steps corresponding to each photovoltaic capacity and the photovoltaic output power distribution;
基于不同的光伏渗透率,时间步长和光伏负荷相关相似值建立人工神经网络;Build artificial neural networks based on different PV penetration rates, time steps and PV load-related similarity values;
基于所述样本集对所述人工神经网络进行训练,得到置信容量与光伏渗透率、时间步长和光伏负荷相关相似指数之间的映射关系。The artificial neural network is trained based on the sample set, and the mapping relationship between confidence capacity and photovoltaic permeability, time step and photovoltaic load related similarity index is obtained.
实施例中,所述经验模型中置信容量与光伏渗透率、时间步长和光伏负荷相关相似指数之间的映射关系,如下式所示:In the embodiment, the mapping relationship between the confidence capacity in the empirical model and the photovoltaic permeability, the time step and the photovoltaic load related similarity index is shown in the following formula:
κCC=g(r,Δt,η)κ CC =g(r,Δt,η)
式中:κCC为光伏系统的置信容量;r为光伏渗透率;Δt为时间步长;η为按时间顺序的光伏负荷相关相似指数。In the formula: κ CC is the confidence capacity of the photovoltaic system; r is the photovoltaic penetration rate; Δt is the time step; η is the photovoltaic load correlation similarity index in time order.
实施例中,所述光伏负荷相关相似指数η,如下式所示:In the embodiment, the photovoltaic load-related similarity index η is shown in the following formula:
η=v×γC η=v× γC
式中:v为光伏输出的功率按时间变化的斜坡速率指标,γC为光伏输出功率与负荷分布的相关性。In the formula: v is the ramp rate index of photovoltaic output power according to time change, γ C is the correlation between photovoltaic output power and load distribution.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flows of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
以上仅为本发明的实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均包含在申请待批的本发明的权利要求范围之内。The above are only examples of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention are included in the application for pending approval of the present invention. within the scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010654225.4A CN112001490A (en) | 2020-07-08 | 2020-07-08 | Method and system for determining confidence capacity of grid-connected photovoltaic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010654225.4A CN112001490A (en) | 2020-07-08 | 2020-07-08 | Method and system for determining confidence capacity of grid-connected photovoltaic system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112001490A true CN112001490A (en) | 2020-11-27 |
Family
ID=73466799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010654225.4A Pending CN112001490A (en) | 2020-07-08 | 2020-07-08 | Method and system for determining confidence capacity of grid-connected photovoltaic system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112001490A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117220597A (en) * | 2023-11-08 | 2023-12-12 | 徐州工程学院 | Quick frequency response rate monitoring system of photovoltaic power station |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103218757A (en) * | 2013-04-28 | 2013-07-24 | 重庆大学 | Method for determining credibility of photovoltaic power capacities |
CN105719059A (en) * | 2016-01-13 | 2016-06-29 | 合肥工业大学 | Method for capacity credit assessment of photovoltaic power generation system |
CN109861293A (en) * | 2019-03-29 | 2019-06-07 | 国网河南省电力公司经济技术研究院 | An evaluation method for the impact of photovoltaic uncertainty on the small-signal stability of power systems |
CN109858673A (en) * | 2018-12-27 | 2019-06-07 | 南京工程学院 | A kind of photovoltaic generating system power forecasting method |
CN109934367A (en) * | 2017-12-15 | 2019-06-25 | 华北电力大学 | Power grid medium-long term load prediction method considering uncertainty of distributed photovoltaic installed capacity |
-
2020
- 2020-07-08 CN CN202010654225.4A patent/CN112001490A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103218757A (en) * | 2013-04-28 | 2013-07-24 | 重庆大学 | Method for determining credibility of photovoltaic power capacities |
CN105719059A (en) * | 2016-01-13 | 2016-06-29 | 合肥工业大学 | Method for capacity credit assessment of photovoltaic power generation system |
CN109934367A (en) * | 2017-12-15 | 2019-06-25 | 华北电力大学 | Power grid medium-long term load prediction method considering uncertainty of distributed photovoltaic installed capacity |
CN109858673A (en) * | 2018-12-27 | 2019-06-07 | 南京工程学院 | A kind of photovoltaic generating system power forecasting method |
CN109861293A (en) * | 2019-03-29 | 2019-06-07 | 国网河南省电力公司经济技术研究院 | An evaluation method for the impact of photovoltaic uncertainty on the small-signal stability of power systems |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117220597A (en) * | 2023-11-08 | 2023-12-12 | 徐州工程学院 | Quick frequency response rate monitoring system of photovoltaic power station |
CN117220597B (en) * | 2023-11-08 | 2024-01-30 | 徐州工程学院 | A fast frequency response rate monitoring system for photovoltaic power stations |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Elminir et al. | Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models | |
Ding et al. | Empirical model for capacity credit evaluation of utility-scale PV plant | |
CN109886473B (en) | A multi-objective optimal scheduling method for watershed scenery and water systems considering downstream ecology | |
Hering et al. | Powering up with space-time wind forecasting | |
Şen | Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy | |
Liu et al. | PV generation forecasting with missing input data: A super-resolution perception approach | |
CN105719059B (en) | Confidence capacity evaluation method of photovoltaic power generation system | |
CN105868853A (en) | Method for predicting short-term wind power combination probability | |
CN112100911A (en) | Solar radiation prediction method based on deep BISLTM | |
CN113094891B (en) | Method and system for power modeling, PDF construction, and forecasting scenario generation for multiple wind farms | |
CN117526274A (en) | New energy power prediction method, electronic equipment and storage medium in extreme climate | |
CN114221334B (en) | Rapid state estimation method based on graph neural network | |
CN104112167B (en) | Can power generating wind resource distribution acquisition methods | |
CN119134336B (en) | Photovoltaic power prediction method and system based on clustering and hybrid neural network | |
Okundamiya | Modelling and optimization of a hybrid energy system for GSM base transceiver station sites in emerging cities | |
CN115149565A (en) | A new energy credible capacity evaluation method and system considering source-load matching characteristics | |
CN116488166A (en) | A prediction model of regional wind power system output based on ensemble empirical mode decomposition and long short-term memory network based on particle swarm optimization | |
CN117495089A (en) | Risk assessment method for distribution network voltage and power flow exceeding limit with high penetration rate of distributed new energy. | |
CN116760006A (en) | Wind power prediction method, device, equipment and storage medium | |
Vega Zuñiga et al. | Evaluation of eleven numerical methods for determining Weibull parameters for wind energy generation in the Caribbean region of Colombia | |
CN105138729A (en) | Filling method based on PSO-GRNN (Particle Swarm Optimization-Generalized Regression Neural Network) for defect wind speed values of wind turbines in wind power plant | |
CN112001490A (en) | Method and system for determining confidence capacity of grid-connected photovoltaic system | |
CN114862023A (en) | Distributed photovoltaic power prediction method and system based on four-dimensional point-by-point meteorological forecast | |
CN112070320B (en) | A method and system for ultra-short-term wind power forecasting based on dynamic harmonic regression | |
CN112270453A (en) | Structural analysis method, device and processor for generalized load including photovoltaic load |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |