CN111999260B - 一种热红外光谱识别含锂辉石伟晶岩的方法及热红外光谱的应用 - Google Patents

一种热红外光谱识别含锂辉石伟晶岩的方法及热红外光谱的应用 Download PDF

Info

Publication number
CN111999260B
CN111999260B CN202010767320.5A CN202010767320A CN111999260B CN 111999260 B CN111999260 B CN 111999260B CN 202010767320 A CN202010767320 A CN 202010767320A CN 111999260 B CN111999260 B CN 111999260B
Authority
CN
China
Prior art keywords
spodumene
thermal infrared
pegmatite
rock
infrared band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010767320.5A
Other languages
English (en)
Other versions
CN111999260A (zh
Inventor
高鹏鑫
史维鑫
张弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Physical Geological Data Center For Natural Resources
Original Assignee
Physical Geological Data Center For Natural Resources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Physical Geological Data Center For Natural Resources filed Critical Physical Geological Data Center For Natural Resources
Priority to CN202010767320.5A priority Critical patent/CN111999260B/zh
Publication of CN111999260A publication Critical patent/CN111999260A/zh
Application granted granted Critical
Publication of CN111999260B publication Critical patent/CN111999260B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Abstract

本发明公开了一种热红外光谱识别含锂辉石伟晶岩的方法及热红外光谱的应用,属于热红外光谱数据解译与应用技术领域,包括在识别含锂辉石伟晶岩的过程中对矿物样品采用热红外光谱仪进行热红外波段光谱数据采集,所述热红外波段是6000~14500nm。本发明的方法区分出了含锂辉石伟晶岩和不含锂辉石伟晶岩以及围岩在热红外波段光谱特征的差别,并依据含锂辉石伟晶岩特有吸收峰的吸收深度估算出了锂元素含量的大小,进而能够快速识别伟晶岩型锂辉石矿体并进行品位估算。

Description

一种热红外光谱识别含锂辉石伟晶岩的方法及热红外光谱的应用
技术领域
本发明涉及热红外光谱,尤其是一种利用热红外光谱识别含锂辉石伟晶岩的方法,属于热红外光谱数据解译与应用技术领域。
背景技术
锂作为一种新型且非常重要的战略性矿产资源,在锂电池、新能源汽车、可控核聚变等领域发挥着巨大的作用。目前我国锂矿资源面临的新形势十分严峻,锂矿需求快速增长,锂矿等资源对外依存度超过70%。
到目前为止,自然界中发现的锂矿床主要包括卤水型、伟晶岩型和沉积岩型三种。全球锂矿资源主要集中在盐湖卤水中,但由于卤水型锂矿主要局限于少数几个盆地,世界各地盐湖锂资源的家底早在20多年前基本上被摸清楚了,具有新发现潜力的锂矿也就聚集到锂辉石伟晶岩矿床。
目前,人们对锂辉石光谱特征的认识还是很欠缺,之前有人基于短波红外波段(350-2500nm)开展了含锂辉石伟晶岩的光谱识别方法研究,但实际上锂辉石在短波红外波段是没有吸收特征,在短波红外波段提取出来的吸收特征实际上主要由伟晶岩中白云母引起的,因此利用短波红外波段识别含锂辉石伟晶岩不具有实际意义。
发明内容
本发明目的针对上述存在的问题,提出一种热红外光谱识别含锂辉石伟晶岩的方法,用于解决含锂辉石伟晶岩、不含锂辉石伟晶岩和围岩难以区分和利用锂辉石的热红外光谱特征建立锂元素反演模型等技术问题。
为解决上述技术问题,本发明所采用的技术方案是:
一种热红外光谱识别含锂辉石伟晶岩的方法,在识别含锂辉石伟晶岩的过程中对矿物样品采用热红外光谱仪进行热红外波段光谱数据采集,所述热红外波段是6000~14500nm。
本发明技术方案的进一步改进在于包括如下步骤:
步骤1.对锂辉石单矿物进行热红外波段光谱测试;
步骤2.分析锂辉石单矿物在热红外波段的光谱特征;
步骤3.测试不同岩性岩石样品在热红外波段的光谱数据;
步骤4.分析不同岩性岩石样品在热红外波段的光谱特征;
步骤5.对不同岩性岩石样品进行镜下鉴定和锂元素含量分析;
步骤6.对比不同岩性岩石样品的热红外光谱特征,寻找含锂辉石伟晶岩的指示意义波段和相对吸收深度阈值;
步骤7.建立识别含锂辉石伟晶岩的定量反演模型。
本发明技术方案的进一步改进在于:所述不同岩性岩石样品包括围岩、含锂辉石伟晶岩、不含锂辉石伟晶岩。
本发明技术方案的进一步改进在于所述步骤1包括以下步骤:
步骤1.1:挑选纯净的锂辉石单矿物样品采用手持式热红外光谱仪进行中-热红外波段光谱数据采集,所述中-热红外波段是2500~15000nm;
步骤1.2:对步骤1.1中锂辉石单矿物的光谱数据进行重采样,得到锂辉石单矿物在热红外波段的光谱数据,所述热红外波段是6000~14500nm。
本发明技术方案的进一步改进在于所述步骤2包括以下步骤:
步骤2.1:使用光谱解译软件提取锂辉石单矿物在热红外波段主要吸收峰的波长位置;
步骤2.2:采用归一化法获取锂辉石单矿物归一化后的热红外光谱数据;
步骤2.3:针对锂辉石单矿物归一化后的热红外光谱数据,选择步骤2.1中主要吸收峰的波段区间采用减法运算进行局部包络线剔除;
步骤2.4:在步骤2.3中包络线剔除后的光谱曲线的基础上,计算各个主要吸收峰的吸收深度。
本发明技术方案的进一步改进在于:所述步骤3中采用岩心光谱扫描仪测试不同岩性岩石样品在热红外波段的光谱数据,所述热红外波段是6000~14500nm;所述步骤4中,依据步骤2中的方法,分别计算不同岩性岩石样品在热红外波段主要吸收峰的波长位置和吸收深度。
本发明技术方案的进一步改进在于所述步骤5包括以下步骤:
步骤5.1:选择步骤4中不同岩性岩石样品进行热红外光谱采集的样品区域,制作岩石探针片;
步骤5.2:在光学显微镜下对步骤5.1中制作的探针片进行鉴定和命名,验证原始岩性命名是否正确;
步骤5.3:选择步骤5.1中制作探针片后的剩余副样,进行锂元素地球化学分析。
本发明技术方案的进一步改进在于所述步骤6包括以下步骤:
步骤6.1:对比不同岩性岩石样品主要吸收峰的波长位置,找出在锂辉石单矿物和含锂辉石伟晶岩中同时出现却没有出现在围岩和不含锂辉石伟晶岩中吸收峰的波长位置;
步骤6.2:依据步骤2中的方法,分别计算围岩和不含锂辉石伟晶岩在步骤6.1中找出的含锂辉石伟晶岩特有吸收峰的吸收深度;
步骤6.3:对比不同岩性岩石样品在含锂辉石伟晶岩特有吸收峰波长位置上吸收深度的数值大小,以含锂辉石伟晶岩样品在此吸收峰深度的最小值作为区分含锂辉石伟晶岩样品和不含锂辉石伟晶岩及围岩样品的阈值。
本发明技术方案的进一步改进在于:所述步骤7中,根据最小二乘原理,根据样品中在含锂辉石伟晶岩特有吸收峰波长位置上吸收深度与锂元素含量的数值大小,得出计算锂元素含量定量计算经验公式:
y=772361x-1142.8,r2=0.6664,
上述公式中x为在含锂辉石伟晶岩特有吸收峰波长位置上吸收深度值,y为样品中锂元素含量。
一种热红外光谱在识别含锂辉石伟晶岩的过程中的应用,所述热红外光谱的波段为6000~14500nm。
由于采用了上述技术方案,本发明取得的技术进步是:
本发明的方法利用热红外光谱区分出了含锂辉石伟晶岩和不含锂辉石伟晶岩以及围岩在热红外波段光谱特征的差别,并依据含锂辉石伟晶岩特有吸收峰的吸收深度估算出了锂元素含量的大小,进而能够快速识别伟晶岩型锂辉石矿体并进行品位估算。
本发明在提取特征吸收峰的吸收深度时,首先对特征吸收峰的波段区间采用减法运算进行局部包络线剔除,采用软件自带的pfit算法对包络线剔除后的光谱曲线进行多项式拟合,最后计算特征吸收峰的吸收深度,这种提取吸收峰吸收深度的方法更加准确。
附图说明
图1为本发明的一种热红外光谱识别含锂辉石伟晶岩的方法流程图;
图2为锂辉石单矿物归一化后的热红外光谱图;
图3为不同岩性岩石样本手标本图像、热红外光谱和光学显微镜下照片;
图4为不同岩性样品在11670nm附近的吸收深度和锂元素含量;
图5为不同岩性样品在11670nm附近的吸收深度与Li含量相关关系图;
图6为对比例中不同岩性样品中1900nm处吸收深度和Li含量;
图7为对比例中1900nm处吸收深度与Li含量关系图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明:
本发明的一种热红外光谱识别含锂辉石伟晶岩的方法,首先测试锂辉石单矿物在热红外波段的光谱数据,分析锂辉石单矿物在热红外波段主要吸收峰的波长位置和吸收深度;之后测试围岩、含锂辉石伟晶岩和不含锂辉石伟晶岩等不同岩性岩石样品在热红外波段的光谱数据,分析这些岩石样品在热红外波段主要吸收峰的波长位置和吸收深度,结合光学显微镜下观察和全岩主微量分析等测试手段,对岩石样品的岩性划分和锂元素含量进行验证和分析;对比锂辉石单矿物和围岩、含锂辉石伟晶岩、不含锂辉石伟晶岩等不同岩性岩石样品的热红外光谱特征,寻找含锂辉石伟晶岩的指示意义波段,总结出提取含锂辉石伟晶岩指示意义波段上吸收深度阈值;最后依据含锂辉石伟晶岩指示意义波段上吸收深度和锂元素含量建立含锂辉石伟晶岩的定量反演模型。
实施例
如图1所示,本发明的一种热红外光谱识别含锂辉石伟晶岩的方法,具体包括以下步骤:
步骤1.对锂辉石单矿物进行热红外波段光谱测试;
步骤1.1:挑选13块纯净的锂辉石单矿物样品采用agilent 4300手持式热红外光谱仪进行中-热红外波段(2500~15000nm)光谱数据采集,每块锂辉石单矿物样品采集一个光谱数据;
步骤1.2:对步骤1.1中锂辉石单矿物的光谱数据进行重采样,得到锂辉石单矿物在热红外波段(6000-14500nm)的光谱数据;
步骤2.分析锂辉石单矿物在热红外波段的光谱特征(参照图2所示);
步骤2.1:使用光谱解译软件提取锂辉石单矿物在热红外波段主要吸收峰的波长位置;
本实例中,锂辉石单矿物主要存在四个明显的吸收峰,吸收峰出现的波长位置分别为8650nm、9150nm、9350nm和11670nm附近;
步骤2.2:采用归一化法获取锂辉石单矿物归一化后的热红外光谱数据;
步骤2.3:针对锂辉石单矿物归一化后的热红外光谱数据,选择中心波长为8650nm、9150nm、9350nm和11670nm的波段区间采用减法运算进行局部包络线剔除;
步骤2.4:在步骤2.3中包络线剔除后的光谱曲线的基础上,计算各个主要吸收峰的吸收深度;
本实例中,8650nm、9150nm、9350nm和11670nm附近吸收峰的吸收深度分别为0.023~0.089、0.002~0.007、0.017~0.049、0.022~0.042;
步骤3.测试围岩、含锂辉石伟晶岩、不含锂辉石伟晶岩等不同岩性岩石样品在热红外波段的光谱数据;
本实例中,研究区为新疆大红柳滩锂辉石矿,从钻孔zk2701和zk2702中挑选出28块不同岩性的岩石样品,岩性主要包括变质粉砂岩、变质砂岩、锂辉石花岗伟晶岩、花岗伟晶岩和灰岩。使用hylogger-3岩心扫描仪对28块岩石样品进行热红外波段光谱扫描,扫描间隔为0.25cm。
步骤4. 依据步骤2中的方法,分别计算变质粉砂岩、变质砂岩、锂辉石花岗伟晶岩、花岗伟晶岩和灰岩等不同岩性岩石样品在热红外波段主要吸收峰的波长位置和吸收深度(参见图3所示);
本实例中,变质粉砂岩主要在9900nm、10375nm和11200nm附近存在吸收峰,相应的吸收深度分别为0.00142~0.00153、0.00439~0.0128、0.0121~0.0273;在8623nm附近存在吸收谷,吸收深度为0.035~0.051;
变质砂岩主要在9887nm附近存在吸收峰,相应的吸收深度为0.00129~0.01;在8623nm附近存在吸收谷,吸收深度为0.013~0.069;
花岗伟晶岩主要在8725nm、9175nm、9600nm、9900nm附近存在吸收峰,相应的吸收深度分别为0.002~0.015、0.002~0.025、0.006~0.031、0.002~0.019;在8623nm附近存在吸收谷,吸收深度为0.008~0.039;
灰岩主要在6500nm、11300nm和14100nm附近存在吸收峰,相应的吸收深度分别为0.134~0.468、0.025~0.122。
锂辉石花岗伟晶岩主要在8385nm、9100nm、10675nm、11675nm附近存在吸收峰,相应的吸收深度分别为0.002~0.038、0.002~0.019、0.001~0.011、0.008~0.027。
步骤5.对变质粉砂岩、变质砂岩、锂辉石花岗伟晶岩、花岗伟晶岩和灰岩等不同岩性岩石样品进行镜下鉴定和锂元素含量分析(参见图3所示);
步骤5.1:选择步骤4中不同岩性岩石样品进行热红外光谱采集的样品区域,制作岩石探针片,探针片制备方法参照国家标准(GB/T 17366-1998);
步骤5.2:在光学显微镜下对步骤5.1中制作的探针片进行鉴定和命名,验证原始岩性命名是否正确;
步骤5.3:选择步骤5.1中制作探针片后的剩余副样,进行锂元素地球化学分析,分析仪器为X Serise 2电感耦合等离子体质谱仪,检测方法参照国家标准(GB/T 14506.30-2010);
步骤6.对比变质粉砂岩、变质砂岩、锂辉石花岗伟晶岩、花岗伟晶岩和灰岩等不同岩性岩石样品的热红外光谱特征,寻找含锂辉石伟晶岩的指示意义波段和吸收深度阈值;
步骤6.1:对比变质粉砂岩、变质砂岩、锂辉石花岗伟晶岩、花岗伟晶岩和灰岩等不同岩性岩石样品主要吸收峰的波长位置,找出在锂辉石单矿物和含锂辉石伟晶岩中同时出现却没有出现在围岩和不含锂辉石伟晶岩中吸收峰的波长位置;
本示例中,锂辉石单矿物和含锂辉石伟晶岩在16750nm附近都出现吸收峰,且在变质粉砂岩、变质砂岩和花岗伟晶岩没有出现,因此选择16750nm附近的波段范围作为含锂辉石伟晶岩的指示意义波段;
步骤6.2:依据步骤2中的方法,分别计算变质粉砂岩、变质砂岩和花岗伟晶岩在16750nm附近吸收峰的吸收深度(如图4所示);
本示例中,变质粉砂岩、变质砂岩和花岗伟晶岩在11670nm附近吸收峰的吸收深度为0~0.00656;
步骤6.3:对比变质粉砂岩、变质砂岩、锂辉石花岗伟晶岩、花岗伟晶岩和灰岩等不同岩性岩石样品在含锂辉石伟晶岩特有吸收峰波长位置上吸收深度的数值大小,以含锂辉石伟晶岩样品在此吸收峰吸收深度的最小值作为区分含锂辉石伟晶岩样品和不含锂辉石伟晶岩及围岩样品的阈值;
本示例中,锂辉石花岗伟晶岩在11670nm附近吸收峰的吸收深度大于或等于0.00795,而变质粉砂岩、变质砂岩和花岗伟晶岩在11670nm附近吸收峰的吸收深度均小于0.00795,因此将在11670nm附近吸收峰的吸收深度大于0.00795的岩石识别为锂辉石花岗伟晶岩,其余岩性则识别为围岩或不含锂辉石花岗伟晶岩,进行迅速区分出锂辉石花岗伟晶岩。
步骤7.建立识别含锂辉石伟晶岩的定量反演模型。
步骤7中,根据最小二乘原理,根据样品中在11670nm附近吸收峰的吸收深度与锂元素含量的数值大小,得出计算锂元素含量定量计算经验公式,即
y=772361x-1142.8
r2=0.6664
其中,x为样品中在11670nm附近吸收峰的吸收深度值,y为样品中锂元素含量(参见图5所示)。
上述经验是针对新疆大红柳滩锂辉石矿研究区所取样品在6000~14500nm波段范围内反演锂元素含量的最优关系式,该公式的系数不限于上述实例,根据样品数量的增加会有很小幅度的波动,总体不影响估算锂元素含量的趋势。
对比例
本对比例为实施例的比对试验,区别点在于本对比例采用现有技术中的方法识别含锂辉石伟晶岩,即采用短波红外波进行含锂辉石伟晶岩的光谱识别,具体的采用专利文献CN108931546A中的方法对实施例中16块花岗伟晶岩和锂辉石伟晶岩样品短波红外波段1900nm处吸收深度进行计算(具体见图6所示),从图6中可以看出花岗伟晶岩中1900nm吸收深度为0.002635~0.024859,平均值为0.014284;锂辉石花岗伟晶岩中1900nm吸收深度为0.001313~0.014166,平均值为0.007711222。与实施例对比发现上述样品中,对比例采用现有技术的锂辉石花岗伟晶岩中1900nm吸收深度总体上小于花岗伟晶岩中1900nm吸收深度,与实施例中结论不一致。此外,经计算得出1900nm吸收深度与Li元素含量的线性关系式为y=-368371x+10441,r2=0.1939
其中,x为样品中在1900附近吸收峰的吸收深度值,y为样品中锂元素含量,参见图7所示,对比例1900nm吸收深度与Li元素含量的线性关系很差,相关系数只有0.1939。
此外,对比例中将1900nm处的吸收深度作为含锂辉石伟晶岩的指示波段,实际上,锂辉石单矿物在短波红外波段(350-2500nm)没有吸收特征,1900nm处存在的吸收峰主要是由于伟晶岩中白云母矿物产生的,而不含锂辉石伟晶岩也常常含有白云母矿物,因此1900nm处的吸收深度并不能作为区分含锂辉石伟晶岩和不含锂辉石伟晶岩的指示意义波段。

Claims (6)

1.一种热红外光谱识别含锂辉石伟晶岩的方法,其特征在于:在识别含锂辉石伟晶岩的过程中对矿物样品采用热红外光谱仪进行热红外波段光谱数据采集,所述热红外波段是6000~14500nm;包括如下步骤:
步骤1.对锂辉石单矿物进行热红外波段光谱测试;
步骤2.分析锂辉石单矿物在热红外波段的光谱特征;
步骤3.测试不同岩性岩石样品在热红外波段的光谱数据;
步骤4.分析不同岩性岩石样品在热红外波段的光谱特征;
步骤5.对不同岩性岩石样品进行镜下鉴定和锂元素含量分析;
步骤6.对比不同岩性岩石样品的热红外光谱特征,寻找含锂辉石伟晶岩的指示意义波段和相对吸收深度阈值,其中,含锂辉石伟晶岩的指示意义波段为11670nm,对比不同岩性岩石样品在11670nm波长位置处的吸收深度的数值大小,以含锂辉石伟晶岩样品在此吸收峰深度的最小值作为区分含锂辉石伟晶岩样品和不含锂辉石伟晶岩及围岩样品的阈值;
步骤7.建立识别含锂辉石伟晶岩的定量反演模型;具体为:根据最小二乘原理,根据样品在11670nm波长位置处的吸收深度与锂元素含量的数值大小,得出计算锂元素含量的定量计算经验公式;
所述不同岩性岩石样品包括围岩、含锂辉石伟晶岩、不含锂辉石伟晶岩。
2.根据权利要求1所述的一种热红外光谱识别含锂辉石伟晶岩的方法,其特征在于所述步骤1包括以下步骤:
步骤1.1:挑选纯净的锂辉石单矿物样品采用手持式热红外光谱仪进行中-热红外波段光谱数据采集,所述中-热红外波段是2500~15000nm;
步骤1.2:对步骤1.1中锂辉石单矿物的光谱数据进行重采样,得到锂辉石单矿物在热红外波段的光谱数据,所述热红外波段是6000~14500nm。
3.根据权利要求2所述的一种热红外光谱识别含锂辉石伟晶岩的方法,其特征在于所述步骤2包括以下步骤:
步骤2.1:使用光谱解译软件提取锂辉石单矿物在热红外波段主要吸收峰的波长位置;
步骤2.2:采用归一化法获取锂辉石单矿物归一化后的热红外光谱数据;
步骤2.3:针对锂辉石单矿物归一化后的热红外光谱数据,选择步骤2.1中主要吸收峰的波段区间采用减法运算进行局部包络线剔除;
步骤2.4:在步骤2.3中包络线剔除后的光谱曲线的基础上,计算各个主要吸收峰的吸收深度。
4.根据权利要求3所述的一种热红外光谱识别含锂辉石伟晶岩的方法,其特征在于:所述步骤3中采用岩心光谱扫描仪测试不同岩性岩石样品在热红外波段的光谱数据,所述热红外波段是6000~14500nm;所述步骤4中,依据步骤2中的方法,分别计算不同岩性岩石样品在热红外波段主要吸收峰的波长位置和吸收深度。
5.根据权利要求4所述的一种热红外光谱识别含锂辉石伟晶岩的方法,其特征在于所述步骤5包括以下步骤:
步骤5.1:选择步骤4中不同岩性岩石样品进行热红外光谱采集的样品区域,制作岩石探针片;
步骤5.2:在光学显微镜下对步骤5.1中制作的探针片进行鉴定和命名,验证原始岩性命名是否正确;
步骤5.3:选择步骤5.1中制作探针片后的剩余副样,进行锂元素地球化学分析。
6.根据权利要求1所述的一种热红外光谱识别含锂辉石伟晶岩的方法,其特征在于:得出的计算锂元素含量的定量计算经验公式如下:
y=772361x-1142.8,r2=0.6664,
上述公式中,x为在11670nm波长位置处的吸收深度值,y为样品中锂元素含量。
CN202010767320.5A 2020-08-03 2020-08-03 一种热红外光谱识别含锂辉石伟晶岩的方法及热红外光谱的应用 Active CN111999260B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010767320.5A CN111999260B (zh) 2020-08-03 2020-08-03 一种热红外光谱识别含锂辉石伟晶岩的方法及热红外光谱的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010767320.5A CN111999260B (zh) 2020-08-03 2020-08-03 一种热红外光谱识别含锂辉石伟晶岩的方法及热红外光谱的应用

Publications (2)

Publication Number Publication Date
CN111999260A CN111999260A (zh) 2020-11-27
CN111999260B true CN111999260B (zh) 2023-04-21

Family

ID=73463555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010767320.5A Active CN111999260B (zh) 2020-08-03 2020-08-03 一种热红外光谱识别含锂辉石伟晶岩的方法及热红外光谱的应用

Country Status (1)

Country Link
CN (1) CN111999260B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049521B (zh) * 2021-03-29 2023-09-26 自然资源实物地质资料中心 识别碳酸盐岩的方法、装置及设备、存储介质
CN113125353A (zh) * 2021-04-16 2021-07-16 自然资源实物地质资料中心 检测方解石含量的方法和预设模型的建设方法
CN116992259B (zh) * 2023-09-28 2023-12-08 奥谱天成(厦门)光电有限公司 适用于生物品质检测的光谱特征提取方法、检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418021B (zh) * 2010-09-27 2013-09-25 上海镒寿康医疗器械有限公司 常温下具有抗衰老功能的宽频红外陶瓷材料及其制备方法
CN110662962B (zh) * 2017-03-14 2022-05-17 沙特阿拉伯石油公司 用于感测和预测烃源岩的成熟度的系统和方法
CN108931546B (zh) * 2018-04-08 2020-06-19 中国地质科学院矿产资源研究所 基于高光谱的含锂辉石伟晶岩识别方法

Also Published As

Publication number Publication date
CN111999260A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
CN111999260B (zh) 一种热红外光谱识别含锂辉石伟晶岩的方法及热红外光谱的应用
Dang et al. Shale gas potential of Lower Permian marine-continental transitional black shales in the Southern North China Basin, central China: Characterization of organic geochemistry
Williams et al. Electron microprobe petrochronology
CN110618106B (zh) 一种基于近红外反射光谱的绿泥石矿物种类鉴定方法
CN110596028B (zh) 一种沉积型稀土La元素含量的高光谱反演方法
CN107367480B (zh) 基于热红外光谱的鞍山式铁矿中二氧化硅含量测定方法
CN109580687A (zh) 一种识别砂岩型铀成矿目的层物源的综合方法
CN115128247B (zh) 基于绿泥石指示元素变化判别找矿类型的新方法
CN105717066A (zh) 一种基于加权相关系数的近红外光谱识别模型
CN110763819A (zh) 一种烃源岩有效性动态定量评价体系的建立方法、该评价体系及应用
CN114646682A (zh) 一种基于绿帘石微量元素的找矿方法
CN106707355A (zh) 一种沉积岩岩性自动识别方法
Liu et al. A New Quantitative Approach for Element-Mineral Determination Based on “EDS (Energy Dispersive Spectroscopy) Method”
CN114813903A (zh) 一种基于石榴石微区化学成分判别矿种的方法
Carvajal-Ortiz* et al. High-frequency (20 MHz) NMR and modified rock-eval pyrolysis methods as an integrated approach to examine producibility in kerogen-rich source-reservoirs
Smith et al. Diamonds from the Atri South pipe, Bunder lamproite field, India, and implications for the nature of the underlying mantle
Gose et al. Water in natural olivine—determined by proton-proton scattering analysis
CN112683875B (zh) 一种快速确定月球玻璃类型的无损分析方法
CN113049521B (zh) 识别碳酸盐岩的方法、装置及设备、存储介质
CN110412113B (zh) 运用锶同位素开展油源对比的方法
Balaram et al. Developments in analytical techniques for chemostratigraphy, chronostratigraphy, and geochemical fingerprinting studies: Current status and future trends
Mueller et al. An expanded workflow for detrital rutile provenance studies: An application from the Neotethys Orogen in Anatolia
CN116067694A (zh) 基于灰岩上覆的元素差异性判识古生界地层的方法及系统
CN108872199A (zh) 基于共线双脉冲激光诱导击穿光谱的土壤镁元素的快速检测方法
Lucas et al. Palynofacies Studies of Sedimentary Succession in Ogbabu-1 well, Anambra Basin, Nigeria.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant