CN111982893A - 一种基于石墨烯量子点的电化学发光检测日落黄的方法 - Google Patents

一种基于石墨烯量子点的电化学发光检测日落黄的方法 Download PDF

Info

Publication number
CN111982893A
CN111982893A CN201910424686.XA CN201910424686A CN111982893A CN 111982893 A CN111982893 A CN 111982893A CN 201910424686 A CN201910424686 A CN 201910424686A CN 111982893 A CN111982893 A CN 111982893A
Authority
CN
China
Prior art keywords
graphene quantum
sunset yellow
quantum dots
concentration
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910424686.XA
Other languages
English (en)
Inventor
杨正春
牛慧敏
刘君
祁洋洋
杨鑫
潘鹏
臧传来
魏军
廖振宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201910424686.XA priority Critical patent/CN111982893A/zh
Publication of CN111982893A publication Critical patent/CN111982893A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开一种基于石墨烯量子点的电化学发光检测日落黄的方法,以石墨烯量子点为发光体,过硫酸钾氯化钾溶液为共反应剂,玻碳电极为工作电极,铂电极为对电极,Ag/AgCl为参比电极,组成三电级体系,用电化学发光的方法检测日落黄,成本低、灵敏度高、操作简单,选择性好。

Description

一种基于石墨烯量子点的电化学发光检测日落黄的方法
技术领域
本发明涉及一种电化学发光检测领域,更加具体地说,具体涉及一种基于石墨烯量子点的电化学发光检测日落黄的方法。
背景技术
近年来,食品安全问题一直是我们的热门话题,过量使用某些食品添加剂会对我们的健康问题构成威胁。对于食品而言,颜色为最显著的特点,消费者通过食物外观预期食物的质量、风味,因此多数食品制造过程中通常会考虑市场接受度,使用着色剂对食品进行染色,用于改变食品外观,使其对消费者更具有吸引力。日落黄是常见的食品添加剂之一,是一种合成色素,也称为食用黄3号,可增强食物的外观。根据中国的“食品添加剂使用卫生标准”,日落黄可用于食品中作为着色剂:用于固体饮料,膨化食品,油炸休闲食品,饼干三明治等食品,最大允许用量为0.1g/kg;用于调味酸奶,调味炼乳,超高温调味牛奶,最大允许量为0.05g/kg;用于冰淇淋,冰棒最大使用量为0.09g/kg;用于果酱,水果味糖浆,蛋黄酱,沙拉酱,最大允许量为0.5g/kg;固体复合调味料,固体方便汤最大允许量为0.3g/kg;对于果冻,最大用量为0.025g/kg。如果人们长时间或一次性食用含有过量日落黄的食物,可能会引起过敏和腹泻等症状。当摄入量过大并超过肝脏负荷时,它会在体内积聚并对肾脏和肝脏造成一定的伤害。
目前测定日落黄的方法有很多种,主要有HPLC法(高效液相色谱法)、荧光光谱法、分光光度法、电化学法等。色谱法相比光谱法和电化学方法来说,拥有更为广泛的应用,但是需要专门的操作人员来操作,仪器的使用条件和检测的方法要求相对较高,而且需要有机溶剂的量是比较大的,而复杂繁琐的预处理更是使色谱法不能得到普遍的运用。选用石墨烯量子点作为发光材料,石墨烯量子点是一种粒径小于10nm的石墨烯纳米晶体,由于具有良好的生物相容性和低毒性、良好的水溶性、很好的化学惰性、抗光漂白性及可调的带隙等优点,作为碳纳米家族的一颗新星,引起了人们的广泛关注。尤其是石墨烯量子点具备独特的光学和电化学性质,在传感、光电子、生物医药和电催化等领域具有潜在的应用。
发明内容
本发明的目的在于克服现有技术的不足,提供一种检测限更低、线性范围更宽、灵敏度更高的,基于石墨烯量子点检测日落黄的电化学发光检测方法。电化学发光,通过给电极施加一定的电压或者电流,使得体系中的发光体在电极表面发生氧化还原反应,从而形成激发态,随后返回基态时释放光辐射。电化学发光汲取了电化学与化学发光的优势,不仅具有电化学中电位可控制,电极产物循环再生,节省试剂,良好的选择性,重现性好等优势,同时还具备了化学发光分析方法中高灵敏度,宽线性范围的特点。该实验使用电化学发光测定日落黄,为日落黄的选择性检测提供一种新的方法。
本发明的技术目的通过下述技术方案予以实现。
一种基于石墨烯量子点的电化学发光检测日落黄的方法,取待测样品并在其中加入石墨烯量子点的PBS溶液、KCl和K2S2O8的水溶液,形成待检测体系,其中终石墨烯量子点的浓度为0.01mg/mL,KCl的浓度为0.09mol/L,K2S2O8的浓度为0.09mol/L;利用三电极体系进行日落黄的检测,利用三电极体系进行日落黄的检测,线性回归方程为Y=1933.3X+27156.4,R2=0.98,纵坐标为光强,横坐标为日落黄浓度的log对数,在日落黄浓度范围为2.5×10-9~2.5×10-5mol/L内均可实现利用石墨烯量子点进行日落黄的有效检测。
而且,选择-2.2 V为测试电压。
而且,玻碳电极作为工作电极,铂丝作为对电极,Ag/AgCl电极作为参比电极。
而且,在石墨烯量子点的PBS溶液中,使用ph=7.4的0.1mol/L磷酸盐(PBS)缓冲溶液作为支持电解质,将1mg/mL石墨烯量子点水溶液稀释浓度为0.1mg/mL。
而且,使用KCl和K2S2O8的水溶液作为共反应剂,KCl的浓度为0.1mol/L,K2S2O8的浓度为0.1mol/L。
而且,将含0.1mg/mL石墨烯量子点的PBS溶液与共反应剂按照体积比1:9的比例混合。
本发明还公开了石墨烯量子点在检测日落黄中的应用。
在本发明中,化学发光原理如图6所示,首先,K2S2O8吸附在GQDs表面,吸附在GQDs上的K2S2O8发生电化学还原成为SO4 ·-,GQDs生成了GQD·-,最终,生成了激发态的GQDs(GQDs*),GQDs返回基态的过程中产生了ECL光辐射。
(1)S2O8 2-+e-→SO4 2-+SO4 ·-
(2)GQDs+e-→GQD·-
(3)GQDs·-+SO4 ·-→GQDs*+SO4 2-
(4)GQDs*→GQDs+hν
本发明的技术方案以量子点为发光体,过硫酸钾和氯化钾的水溶液为共反应剂,玻碳电极为工作电极,铂电极为对电极,Ag/AgCl为参比电极,组成三电级体系,用电化学发光的方法检测日落黄,该方法的检测范围为2.5×10-9~2.5×10-5mol/L,本发明检测方法的成本低、灵敏度高、操作简单,选择性好。
附图说明
图1是本发明实施例采用的石墨烯量子点粉末在水溶液中的照片(左)和在365nm紫外灯下的照片(右)。
图2是本发明实施例采用的石墨烯量子点(水)溶液的紫外光谱谱图
图3是本发明实施例采用的石墨烯量子点(水)溶液荧光光谱谱图,其中a为320nm,b为350nm,c为380nm,d为410nm,e为440nm。
图4是本发明实施例采用的石墨烯量子点(水)溶液的拉曼光谱谱图。
图5是本发明使用的电化学检测池示意图,其中1为铂丝(作为对电极),2为玻碳电极(作为工作电极),3为Ag/AgCl电极(作为参比电极),4为盖子(用于固定三电极,对电极和参比电极插口为斜插口,能够拉近三电极之间的距离,加强发光强度),5为溶液池(存放检测溶液),6为底座(固定溶液池,使工作电极对准光电倍增光,更好地发光),7为光电倍增管—增强光信号。
图6是本发明过程中发光原理示意图,其中GQDs为石墨烯量子点,GCE为工作电极。
图7是本发明中利用石墨烯量子点检测日落黄的曲线图,其中A是石墨烯量子点检测日落黄的电压与电流的关系曲线图;B为石墨烯量子点检测日落黄的电压与光强的关系曲线图;C是石墨烯量子点检测日落黄的时间与光强的关系曲线图;D为石墨烯量子点检测日落黄的电化学发光反应的稳定性测试所得到的曲线图。
图8是本发明中选取-2.2V处的电压,光强随日落黄浓度的对数的线性回归方程曲线图,其中纵坐标为光强,横坐标为日落黄浓度的log对数。
具体实施方式
下面结合具体实例对本发明作进一步的说明。实施例采用的石墨烯量子点购自南京先锋纳米材料有限公司(南京市国家级江北新区步月路29号9栋,联系电话400-025-3200,XF075-氧化石墨烯量子点),使用的MPI-E型电化学发光检测仪购自中国西安瑞迈公司。
根据厂商提供的信息,石墨烯量子点性能如下所示,均匀分散石墨烯量子点的水溶液在365nm紫外灯下呈现均匀的蓝色,如图1所示;激光光谱在380nm左右,发射光谱在450nm左右,其紫外光谱图如图2所示,荧光光谱图如图3所示,拉曼光谱图如图4所示。关于使用的石墨烯量子点和三电极测试体系可以参见之前针对丁基羟基茴香醚的检测方案,中国专利申请2018107723141,申请号为2018年7月13日。
名称 石墨烯量子点
层数L 1—5 AFM/TEM
厚度nm 1—2 HRTEM
横向尺寸nm 5—15 AFM/TEM
荧光量子产率at.% ~20%
首先进行三电极体系的构建,本发明采用MPI-E型电致化学发光检测仪进行电化学测试。采用三电极体系,3mm的玻碳电极作为工作电极,铂丝作为对电极,Ag/AgCl电极作为参比电极。玻碳电极用前需对电极表面进行预处理,具体步骤如下:
(1)使用0.3um,0.05um的Al2O3抛光粉在鹿皮布上抛光,将玻碳电极表面打磨成镜面,用去离子水冲洗干净。
(2)然后分别在乙醇和去离子水中超声1-2min。
(3)最后放在室温下晾干备用。
再进行石墨烯量子点溶液的配置,使用ph=7.4的0.1mol/L磷酸盐(PBS)缓冲溶液作为支持电解质,用PBS溶液将从南京先锋纳米科技有限公司购置的1mg/mL石墨烯量子点水溶液稀释浓度为0.1mg/mL。
待测溶液的配置:使用KCl和K2S2O8的水溶液作为共反应剂,KCl的浓度为0.1mol/L,K2S2O8的浓度为0.1mol/L。将含0.1mg/mL石墨烯量子点的PBS溶液与共反应剂按照体积比1:9的比例混合—取200μL浓度为0.1mg/mL的石墨烯量子点磷酸缓冲液,1800μL的共反应剂,最终石墨烯量子点的浓度为0.01mg/mL,KCl的浓度为0.09mol/L,K2S2O8的浓度为0.09mol/L。
准确称量日落黄粉末,用去离子水配置1.0×10-2mol/L,1.0×10-3mol/L,1.0×10-4mol/L,1.0×10-5mol/L,1.0×10-6mol/L标准溶液,每次量取5μL的溶液,加入混合好的石墨烯量子点—共反应剂溶液中得到一系列不同浓度的日落黄溶液,日落黄浓度范围为2.5×10-9~2.5×10-5mol/L。将上述配置的不同浓度的需要测试的日落黄溶液加入到如图4所示的电解池当中,混合后将溶液搅拌均匀。
实验仪器测试:在-2.2-0.6V的电化学窗口范围内,光电倍增管高压800V,扫速0.1V/s,测试不同浓度日落黄的CV,TP曲线以及时间光强曲线,进行循环伏安扫描,记录这些ECL曲线,对不同浓度的时间光强曲线通过Origin软件做图得到相应的线性回归方程。A是石墨烯量子点检测日落黄的电压与电流的关系曲线图,可知,在电压为-2.2 V-0.6 V的范围里发光强烈,且随着浓度的上升,发光强度不断上升(a:25μM,b:2.5μM,c:0.25μM,d:0.025μM,e:0.0025μM);B是石墨烯量子点检测日落黄的电压与光强的关系曲线图,可知,在电压为-2.2—-0.6 V的范围里发光强烈,且随着浓度的上升发光强度不断上升(a:25μM,b:2.5μM,c:0.25μM,d:0.025μM,e:0.0025μM),不同浓度均在-2.2V具有较强的发光强度;C是石墨烯量子点检测日落黄的时间与光强的关系,在电压为-2.2—-0.6 V的范围里发光强烈,且随着浓度的上升发光强度不断上升(从左到右依次为a:25μM,b:2.5μM,c:0.25μM,d:0.025μM,e:0.0025μM);D是石墨烯量子点测试日落黄的电化学发光反应的稳定性测试所得到的曲线图(-2.2-0.6 V),经过十圈的对25μmol/L的日落黄的扫描,其发光强度基本稳定。选择-2.2 V为测试电压,线性回归方程为Y=1933.3X+27156.4,R2=0.98,纵坐标为光强,横坐标为日落黄浓度的log对数,通过线性回归方程能够通过发光强度知道日落黄的浓度,从而可以检测出样品中的日落黄浓度。
利用本发明内容的线性回归方程进行待测样品中日落黄浓度的检测,取待测样品并在其中加入石墨烯量子点的PBS溶液、KCl和K2S2O8的水溶液,形成待检测体系,其中终石墨烯量子点的浓度为0.01mg/mL,KCl的浓度为0.09mol/L,K2S2O8的浓度为0.09mol/L;利用三电极体系进行日落黄的检测,在日落黄浓度范围为2.5×10-9~2.5×10-5mol/L内均可实现利用石墨烯量子点进行日落黄的有效检测。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (8)

1.一种基于石墨烯量子点的电化学发光检测日落黄的方法,其特征在于,取待测样品并在其中加入石墨烯量子点的PBS溶液、KCl和K2S2O8的水溶液,形成待检测体系,其中终石墨烯量子点的浓度为0.01mg/mL,KCl的浓度为0.09mol/L,K2S2O8的浓度为0.09mol/L;利用三电极体系进行日落黄的检测,利用三电极体系进行日落黄的检测,线性回归方程为Y=1933.3X+27156.4,R2=0.98,纵坐标为光强,横坐标为日落黄浓度的log对数,在日落黄浓度范围为2.5×10-9~2.5×10-5mol/L内均可实现利用石墨烯量子点进行日落黄的有效检测。
2.根据权利要求1所述的一种基于石墨烯量子点的电化学发光检测日落黄的方法,其特征在于,选择-2.2V为测试电压。
3.根据权利要求1所述的一种基于石墨烯量子点的电化学发光检测日落黄的方法,其特征在于,玻碳电极作为工作电极,铂丝作为对电极,Ag/AgCl电极作为参比电极。
4.根据权利要求1所述的一种基于石墨烯量子点的电化学发光检测日落黄的方法,其特征在于,在石墨烯量子点的PBS溶液中,使用ph=7.4的0.1mol/L磷酸盐PBS缓冲溶液作为支持电解质,将1mg/mL石墨烯量子点水溶液稀释浓度为0.1mg/mL。
5.根据权利要求1所述的一种基于石墨烯量子点的电化学发光检测日落黄的方法,其特征在于,使用KCl和K2S2O8的水溶液作为共反应剂,KCl的浓度为0.1mol/L,K2S2O8的浓度为0.1mol/L。
6.根据权利要求4或者5所述的一种基于石墨烯量子点的电化学发光检测日落黄的方法,其特征在于,将含0.1mg/mL石墨烯量子点的PBS溶液与共反应剂按照体积比1:9的比例混合。
7.石墨烯量子点在检测日落黄中的应用。
8.根据权利要求8所述的石墨烯量子点在检测日落黄中的应用,其特征在于,取待测样品并在其中加入石墨烯量子点的PBS溶液、KCl和K2S2O8的水溶液,形成待检测体系,其中终石墨烯量子点的浓度为0.01mg/mL,KCl的浓度为0.09mol/L,K2S2O8的浓度为0.09mol/L;利用三电极体系进行日落黄的检测,利用三电极体系进行日落黄的检测,线性回归方程为Y=1933.3X+27156.4,R2=0.98,纵坐标为光强,横坐标为日落黄浓度的log对数,在日落黄浓度范围为2.5×10-9~2.5×10-5mol/L内均可实现利用石墨烯量子点进行日落黄的有效检测。
CN201910424686.XA 2019-05-21 2019-05-21 一种基于石墨烯量子点的电化学发光检测日落黄的方法 Pending CN111982893A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910424686.XA CN111982893A (zh) 2019-05-21 2019-05-21 一种基于石墨烯量子点的电化学发光检测日落黄的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910424686.XA CN111982893A (zh) 2019-05-21 2019-05-21 一种基于石墨烯量子点的电化学发光检测日落黄的方法

Publications (1)

Publication Number Publication Date
CN111982893A true CN111982893A (zh) 2020-11-24

Family

ID=73436139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910424686.XA Pending CN111982893A (zh) 2019-05-21 2019-05-21 一种基于石墨烯量子点的电化学发光检测日落黄的方法

Country Status (1)

Country Link
CN (1) CN111982893A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854234A (zh) * 2012-07-23 2013-01-02 常州大学 一种食品中日落黄的检测方法
CN105223243A (zh) * 2015-09-24 2016-01-06 济南大学 一种碳点复合材料修饰的印迹电化学传感器的制备及应用
WO2017032330A1 (zh) * 2015-08-25 2017-03-02 深圳粤网节能技术服务有限公司 不同含氧量的石墨烯量子点的制备方法、石墨烯量子点和荧光材料
CN106596697A (zh) * 2017-01-04 2017-04-26 太原理工大学 食品中日落黄的检测方法
WO2018054393A1 (zh) * 2016-09-20 2018-03-29 江南大学 一种基于金-石墨烯纳米组装体对Mucin-1手性信号超灵敏检测的方法
CN109060778A (zh) * 2018-07-13 2018-12-21 天津理工大学 一种基于石墨烯量子点的电化学发光检测丁基羟基茴香醚的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854234A (zh) * 2012-07-23 2013-01-02 常州大学 一种食品中日落黄的检测方法
WO2017032330A1 (zh) * 2015-08-25 2017-03-02 深圳粤网节能技术服务有限公司 不同含氧量的石墨烯量子点的制备方法、石墨烯量子点和荧光材料
CN105223243A (zh) * 2015-09-24 2016-01-06 济南大学 一种碳点复合材料修饰的印迹电化学传感器的制备及应用
WO2018054393A1 (zh) * 2016-09-20 2018-03-29 江南大学 一种基于金-石墨烯纳米组装体对Mucin-1手性信号超灵敏检测的方法
CN106596697A (zh) * 2017-01-04 2017-04-26 太原理工大学 食品中日落黄的检测方法
CN109060778A (zh) * 2018-07-13 2018-12-21 天津理工大学 一种基于石墨烯量子点的电化学发光检测丁基羟基茴香醚的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张金磊等: "石墨烯量子点修饰玻碳电极对日落黄的电化学检测" *

Similar Documents

Publication Publication Date Title
Cui et al. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode
Liu et al. Anodic electrochemiluminescence of graphitic-phase C3N4 nanosheets for sensitive biosensing
Bi et al. A FRET-based aptasensor for ochratoxin A detection using graphitic carbon nitride quantum dots and CoOOH nanosheets as donor-acceptor pair
Perales-Rondon et al. Electrochemical surface oxidation enhanced Raman scattering
Fu et al. The electrochemiluminescence resonance energy transfer between Fe-MIL-88 metal–organic framework and 3, 4, 9, 10-perylenetetracar-boxylic acid for dopamine sensing
Su et al. Determination of epinephrine based on its enhancement for electrochemiluminescence of lucigenin
CN105675559B (zh) 一种利用碳点作为荧光探针检测多巴胺的方法
Zhou et al. Electrochemical synthesis of silver nanoclusters on electrochemiluminescent resonance energy transfer amplification platform for Apo-A1 detection
Koçak et al. Highly sensitive determination of gallic acid on poly (l-Methionine)-carbon nanotube composite electrode
Wu et al. A highly sensitive electrochemiluminescence sensor for the detection of l-cysteine based on the rhombus-shaped rubrene microsheets and platinum nanoparticles
Zhou et al. Ultrasensitive electrochemiluminescent detection of cardiac troponin I based on a self-enhanced Ru (II) complex
Zhang et al. A ratiometric electrochemiluminescent biosensor for Con A detecting based on competition of dissolved oxygen
Yan et al. Label-free immunosensor for cardiac troponin I detection based on aggregation-induced electrochemiluminescence of a distyrylarylene derivative
Lv et al. Electrochemiluminescence modified electrodes based on RuSi@ Ru (bpy) 32+ loaded with gold functioned nanoporous CO/Co3O4 for detection of mycotoxin deoxynivalenol
Li et al. A gold nanoparticles-based molecularly imprinted electrochemical sensor for histamine specific-recognition and determination
Hanif et al. Electrochemiluminescence of luminol-tripropylamine system
Salminen et al. Immunoassay of C-reactive protein by hot electron-induced electrochemiluminescence at polystyrene-carbon black composite electrodes
Zhao et al. An ultrasensitive photoelectrochemical sensor with layer-by-layer assembly of chiral multifarene [3, 2, 1] and g-C3N4 quantum dots for enantiorecognition towards thyroxine
CN107315039A (zh) 碳纳米管/金纳米复合材料修饰电极及其制备方法与应用
Yu et al. Sensitive and simple voltammetric detection of Sudan I by using platinum nanoparticle-modified glassy carbon electrode in food samples
Lv et al. An ultrasensitive ratiometric aptasensor based on the dual-potential electrochemiluminescence of Ru (bpy) 32+ in a novel ternary system for detection of Patulin in fruit products
Luo et al. Dual-quenching effects of methylene blue on the luminophore and co-reactant: Application for electrochemiluminescent-electrochemical ratiometric zearalenone detection
Yuan et al. A novel electrochemiluminescence aptasensor based on in situ generated proline and matrix polyamidoamine dendrimers as coreactants for signal amplication
Deng et al. A novel electrochemiluminescence resonance energy transfer system for ultrasensitive detection of prostate-specific antigen
Mou et al. Orange emissive carbon dots for fluorescent determination of hypoxanthine in fish

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201124

RJ01 Rejection of invention patent application after publication