CN111980870B - 一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法 - Google Patents

一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法 Download PDF

Info

Publication number
CN111980870B
CN111980870B CN202010915931.XA CN202010915931A CN111980870B CN 111980870 B CN111980870 B CN 111980870B CN 202010915931 A CN202010915931 A CN 202010915931A CN 111980870 B CN111980870 B CN 111980870B
Authority
CN
China
Prior art keywords
floating platform
floating
rolling motion
wind turbine
fans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010915931.XA
Other languages
English (en)
Other versions
CN111980870A (zh
Inventor
马冲
李刚
邹荔兵
张启应
陈思范
刘凡鹰
魏煜锋
任永
卢军
王超
牛圣凯
陈宝康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MingYang Smart Energy Group Co Ltd
Original Assignee
MingYang Smart Energy Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MingYang Smart Energy Group Co Ltd filed Critical MingYang Smart Energy Group Co Ltd
Priority to CN202010915931.XA priority Critical patent/CN111980870B/zh
Publication of CN111980870A publication Critical patent/CN111980870A/zh
Application granted granted Critical
Publication of CN111980870B publication Critical patent/CN111980870B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/047Automatic control; Regulation by means of an electrical or electronic controller characterised by the controller architecture, e.g. multiple processors or data communications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法,该方法是通过采集机舱的横滚角作为控制的输入量,经处理后分别在两台风机的机舱上施加一个与浮台横摇运动周期相一致的电磁转矩扰动量,并叠加在转矩指令上再下发到各自变频器去执行,以确保在整个机组运行的有效风速段内能够抑制浮台的横摇运动,使浮台运动更加平稳,有效衰减由浮台侧摇引起的塔架低频载荷和系泊系统的疲劳载荷。

Description

一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法
技术领域
本发明涉及漂浮式双叶轮风电机组浮台的技术领域,尤其是指一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法。
背景技术
目前,风电机组逐步向深远海发展,海上漂浮式风电机组是其重点研发方向。出于安装运输成本考虑,海上漂浮式风电机组一般都是大兆瓦机型,大容量和大叶轮。但容量越高叶轮直径越大就造成了设计难度成倍增加,解决方案之一就是两个叶轮共用一个浮台,两个叶轮及塔架的支撑结构类似于“Y”字型。此类型的机组同样面临浮台负阻尼运动的难题,与单叶轮漂浮式风电机组不同的是浮台运动是由双叶轮运动耦合的结果,其控制难度要远远高于单叶轮漂浮式风电机组。当前对于漂浮式双叶轮风电机组浮台运动控制的技术方案基本空白,本发明主要解决漂浮式双叶轮风电机组浮台横摇(roll rotation)运动问题,通过采集两台风机机舱的横滚角作为控制输入量,输出是统一的电磁转矩扰动量同时叠加到各自的转矩指令上去,达到抑制浮台横摇的目的,进而衰减塔架侧向低频疲劳载荷和系泊系统疲劳载荷。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提出了一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法,可在整个机组运行的有效风速段内实现对浮台横摇的有效控制,浮台运动更加平稳,衰减由于浮台横摇运动造成的塔架侧向与系泊系统的低频载荷。
为实现上述目的,本发明所提供的技术方案为:一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法,所述漂浮式双叶轮风电机组为两台风机通过Y形塔架共用一个浮台,两台风机通过各自偏航驱动系统分别装于Y形塔架的两个端部上,Y形塔架的底部固定于浮台上,两台风机的叶轮旋转方向相反,以抵消两台风机的离心力;其特征在于:该方法是通过采集机舱的横滚角作为控制的输入量,经处理后分别在两台风机的机舱上施加一个与浮台横摇运动周期相一致的电磁转矩扰动量,并叠加在转矩指令上再下发到各自变频器去执行,以确保在整个机组运行的有效风速段内能够抑制浮台的横摇运动,使浮台运动更加平稳,其具体情况如下:
首先,要在两台风机的机舱上分别安装倾角传感器,用于测量机舱的横滚角度;然后将两台风机的机舱测量得到的横滚角传送到机组的主控系统做加权平均处理,得到横滚角均值并送入浮台横摇运动控制器,所述浮台横摇运动控制器由伪微分器、一阶低通滤波器、带阻滤波器和比例环节即P控制器组成,横滚角均值在浮台横摇运动控制器中的处理过程是:横滚角均值经过伪微分器得到横滚角速度,横滚角速度依次经过一阶低通滤波器和带阻滤波器滤波后,再经过P控制器得到与浮台横摇运动周期相一致的电磁转矩扰动量,即所述浮台横摇运动控制器会输出与浮台横摇运动周期相一致的电磁转矩扰动量,而后再由机组的主控系统同时下发到两台风机的转矩控制器中,并叠加到各自的转矩指令上,最终由各自的变频器来执行。
进一步,所述伪微分器的传递函数为:
Figure GDA0002961566710000021
式中,G为缩放系数,T为时间常数,s为拉普拉斯算子。
进一步,所述一阶低通滤波器的传递函数为:
Figure GDA0002961566710000022
式中,T为时间常数,s为拉普拉斯算子。
进一步,所述带阻滤波器的传递函数为:
Figure GDA0002961566710000031
式中,ξ1和ξ2为带阻滤波器阻尼比,ω1和ω2为带阻滤波器中心频率,s为拉普拉斯算子。
本发明与现有技术相比,具有如下优点与有益效果:
1、在漂浮式双叶轮风电机组上应用此控制技术,整个机组运行的有效风速段内能够有效抑制浮台的横摇运动,特别是额定风速以上工况。
2、有效衰减由浮台横摇引起的塔架低频载荷和系泊系统的疲劳载荷。
附图说明
图1为漂浮式双叶轮风电机组示意图。
图2为浮台横摇运动整体控制逻辑框图。
图3为浮台横摇运动控制器逻辑框图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
漂浮式风电机组在额定风速以上运行时,特别是在额定风速附近,其叶轮推力达到峰值,推力对风速的偏导数为负数,即气动阻尼为负;此外,在高风速下由风->浪->流的联合作用下,漂浮式双叶轮风电机组各自机舱的侧向力增大且它们的侧向运动无法协调一致造成浮台横摇运动明显(roll rotation),塔架的低频疲劳载荷和系泊系统的疲劳载荷明显增加。如图1所示,漂浮式双叶轮风电机组具体是两台风机通过Y形塔架共用一个浮台,两台风机通过各自偏航驱动系统分别装于Y形塔架的两个端部上,Y形塔架的底部固定于浮台上,两台风机的叶轮旋转方向相反,以抵消两台风机的离心力。
为了抑制浮台的横摇运动,本实施例所提供的抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法考虑在两台风机的机舱上施加一个与浮台横摇运动周期相一致的电磁转矩扰动量,并叠加在转矩指令上再下发到各自变频器去执行,以确保在整个机组运行的有效风速段内能够抑制浮台的横摇运动,使浮台运动更加平稳。图2为浮台横摇运动整体控制逻辑图,转矩控制的逻辑为测量转速与转速设定值的差值经过一系列滤波之后送到转矩控制器(Generator Torque Controller)并输出转矩令值(Torque Demand)。
上述抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法的具体实施如下:
首先,要在两台风机的机舱上分别安装倾角传感器,即在机舱1和机舱2上安装倾角传感器,用于测量机舱的横滚角度;然后将机舱1测量得到的横滚角1和机舱2测量得到的横滚角2传送到机组的主控系统做加权平均处理,得到横滚角均值并送入浮台横摇运动控制器,图3为浮台横摇运动控制器逻辑框图(Platform roll controller),所述浮台横摇运动控制器由伪微分器、一阶低通滤波器、带阻滤波器和比例环节(即P控制器)组成,横滚角均值在浮台横摇运动控制器中的处理过程是:横滚角均值经过伪微分器得到横滚角速度,横滚角速度依次经过一阶低通滤波器和带阻滤波器滤波后,再经过P控制器得到与浮台横摇运动周期相一致的电磁转矩扰动量δT,即所述浮台横摇运动控制器会输出与浮台横摇运动周期相一致的电磁转矩扰动量δT,而后再由机组的主控系统同时下发到两台风机的转矩控制器中,并叠加到各自的转矩指令上,最终由各自的变频器来执行。
其中,所述伪微分器的传递函数为:
Figure GDA0002961566710000041
式中,G为缩放系数,T为时间常数,s为拉普拉斯算子。
所述一阶低通滤波器的传递函数为:
Figure GDA0002961566710000051
式中,T为时间常数,s为拉普拉斯算子。
所述带阻滤波器的传递函数为:
Figure GDA0002961566710000052
式中,ξ1和ξ2为带阻滤波器阻尼比,ω1和ω2为带阻滤波器中心频率,s为拉普拉斯算子。
以上所述实施例只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (5)

1.一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法,所述漂浮式双叶轮风电机组为两台风机通过Y形塔架共用一个浮台,两台风机通过各自偏航驱动系统分别装于Y形塔架的两个端部上,Y形塔架的底部固定于浮台上,两台风机的叶轮旋转方向相反,以抵消两台风机的离心力;其特征在于:该方法是通过采集机舱的横滚角作为控制的输入量,经处理后分别在两台风机的机舱上施加一个与浮台横摇运动周期相一致的电磁转矩扰动量,并叠加在转矩指令上再下发到各自变频器去执行,以确保在整个机组运行的有效风速段内能够抑制浮台的横摇运动,使浮台运动更加平稳。
2.根据权利要求1所述的一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法,其特征在于:首先,要在两台风机的机舱上分别安装倾角传感器,用于测量机舱的横滚角度;然后将两台风机的机舱测量得到的横滚角传送到机组的主控系统做加权平均处理,得到横滚角均值并送入浮台横摇运动控制器,所述浮台横摇运动控制器由伪微分器、一阶低通滤波器、带阻滤波器和比例环节即P控制器组成,横滚角均值在浮台横摇运动控制器中的处理过程是:横滚角均值经过伪微分器得到横滚角速度,横滚角速度依次经过一阶低通滤波器和带阻滤波器滤波后,再经过P控制器得到与浮台横摇运动周期相一致的电磁转矩扰动量,即所述浮台横摇运动控制器会输出与浮台横摇运动周期相一致的电磁转矩扰动量,而后再由机组的主控系统同时下发到两台风机的转矩控制器中,并叠加到各自的转矩指令上,最终由各自的变频器来执行。
3.根据权利要求2所述的一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法,其特征在于,所述伪微分器的传递函数为:
Figure FDA0002665011360000011
式中,G为缩放系数,T为时间常数,s为拉普拉斯算子。
4.根据权利要求2所述的一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法,其特征在于,所述一阶低通滤波器的传递函数为:
Figure FDA0002665011360000021
式中,T为时间常数,s为拉普拉斯算子。
5.根据权利要求2所述的一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法,其特征在于,所述带阻滤波器的传递函数为:
Figure FDA0002665011360000022
式中,ξ1和ξ2为带阻滤波器阻尼比,ω1和ω2为带阻滤波器中心频率,s为拉普拉斯算子。
CN202010915931.XA 2020-09-03 2020-09-03 一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法 Active CN111980870B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010915931.XA CN111980870B (zh) 2020-09-03 2020-09-03 一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010915931.XA CN111980870B (zh) 2020-09-03 2020-09-03 一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法

Publications (2)

Publication Number Publication Date
CN111980870A CN111980870A (zh) 2020-11-24
CN111980870B true CN111980870B (zh) 2021-07-06

Family

ID=73447471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010915931.XA Active CN111980870B (zh) 2020-09-03 2020-09-03 一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法

Country Status (1)

Country Link
CN (1) CN111980870B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112796956B (zh) * 2020-12-31 2022-03-29 上海电气风电集团股份有限公司 漂浮式风机的平台的稳定控制方法、装置、设备和介质
CN113266523B (zh) * 2021-04-25 2022-05-03 明阳智慧能源集团股份公司 漂浮式双叶轮风电机组波浪扰动的前馈控制方法与系统
CN113464379B (zh) * 2021-07-19 2024-03-26 陕西中科启航科技有限公司 一种漂浮式海上风电机组运行状态监控方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE1450889A1 (sv) * 2014-07-11 2016-01-12 Hexicon Ab Multi-turbine wind power platform for off-shore applications
CN104533732B (zh) * 2015-01-23 2017-07-14 中船重工(重庆)海装风电设备有限公司 一种抑制风力发电机组塔架左右振动的控制方法及装置
DE102016110290B4 (de) * 2016-06-03 2021-11-25 Aerodyn Consulting Singapore Pte Ltd Schwimmende Windenergieanlage mit einer Mehrzahl von Energiewandlungseinheiten
ES2694449B2 (es) * 2017-06-20 2020-06-02 Exponential Renewables S L Estructura flotante para aerogenerador marino
KR102038024B1 (ko) * 2018-02-20 2019-10-29 두산중공업 주식회사 부유식 풍력 발전기 및 이의 제어방법

Also Published As

Publication number Publication date
CN111980870A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
CN111980870B (zh) 一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法
CN110195686B (zh) 一种水平轴风力机舱两点悬浮式超低速偏航控制方法
Ren et al. Active tugger line force control for single blade installation
CN109751187B (zh) 一种风力发电机组基于机舱加速度的变速率顺桨停机方法
CN103742357B (zh) 一种风力发电机组风轮非对称载荷控制方法
CN108256210B (zh) 一种地震作用下的海上风机整体耦合分析方法
CN109812382B (zh) 一种风电机组塔架振动控制方法及系统
CN103244349A (zh) 风机塔架振动抑制系统和提高风机切出风速的控制系统
CN102966488A (zh) 降低海上风力发电机组载荷的方法和系统
CN203420825U (zh) 风机塔架振动抑制系统和提高风机切出风速的控制系统
CN105179168A (zh) 一种大型风电机组塔架虚拟阻尼控制方法
CN110439747B (zh) 一种降低风电塔筒左右方向振动及载荷的ipc控制方法
CN111980868B (zh) 一种抑制漂浮式双叶轮风电机组基础平台俯仰运动的方法
CN112523941B (zh) 一种防止风力发电机组超速的控制方法与模块
Girsang et al. Collective pitch control of wind turbines using stochastic disturbance accommodating control
CN113212678A (zh) 一种浮式海上风电结构的主-被动联合控制系统及实现方法
CN111963388A (zh) 一种海上风电机组的多场耦合高精度整机模型建立方法
CN109193778A (zh) 一种基于风功率估计的惯量响应转速恢复控制方法
CN112523948B (zh) 一种基于独立变桨的风电机组轮毂极限载荷降载控制方法
KR102515403B1 (ko) 풍력 터빈용 블레이드 피치 제어기
CN206319995U (zh) 一种风电机组的载荷降低系统
CN103334876A (zh) 风机叶片在叶轮旋转平面的三阶频率振动抑制系统及方法
JP7432215B2 (ja) ロバスト制御に基づく風力発電ユニットの空力アンバランス負荷制御方法
CN112628070B (zh) 一种海上漂浮式风电机组浮台纵摇加阻控制方法与模块
CN115750205A (zh) 海上双风轮漂浮式风电机组的推力平衡控制方法与系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant