CN111980824A - 气体涡轮引擎 - Google Patents

气体涡轮引擎 Download PDF

Info

Publication number
CN111980824A
CN111980824A CN202010433187.XA CN202010433187A CN111980824A CN 111980824 A CN111980824 A CN 111980824A CN 202010433187 A CN202010433187 A CN 202010433187A CN 111980824 A CN111980824 A CN 111980824A
Authority
CN
China
Prior art keywords
engine
fan
compressor
turbine
spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010433187.XA
Other languages
English (en)
Inventor
C.W.贝门特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Publication of CN111980824A publication Critical patent/CN111980824A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/06Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages
    • F02C3/073Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages the compressor and turbine stages being concentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本公开涉及用于飞行器的气体涡轮引擎(10),该气体涡轮引擎包括:引擎核心(11),该引擎核心包括涡轮(19)、压缩机(14)以及将该涡轮连接到该压缩机的芯轴(26),该引擎核心具有位于该压缩机的上游的入口(29)和位于该涡轮(19)的下游的出口(20);风扇(23),该风扇位于引擎核心的上游并包括多个风扇叶片;齿轮箱(30),该齿轮箱接收来自芯轴(26)的输入并将驱动输出至风扇,以便以比该芯轴低的旋转速度来驱动该风扇;和短舱(21),该短舱(21)围绕引擎核心(11)并限定旁路管道(22)和旁路排气喷嘴(18),其中该气体涡轮引擎被构造使得在最大起飞条件下,该引擎核心入口处的轴向马赫数乘以来自该旁路排气喷嘴(18)的排气气流的轴向马赫数在约0.30至约0.56的范围内,其中在最大起飞条件下,该引擎核心入口处的该轴向马赫数小于约0.7。

Description

气体涡轮引擎
本公开涉及用于飞行器的气体涡轮引擎。
用于飞行器推进的涡轮风扇气体涡轮引擎具有许多影响整体效率和功率输出或推力的设计因素。为了以高效率启用更高推力,可使用直径更大的风扇。然而,随着该风扇的直径增加,风扇所需的较低速度倾向于与芯轴连接的涡轮部件(通常为低压涡轮)的要求发生冲突。通过在该风扇和该芯轴之间包括齿轮箱可实现更优化的组合,这允许该风扇以更高的效率和减小的旋转速度工作,并且因此启用更大尺寸的风扇,同时保持用于该低压涡轮的高旋转速度,从而使得该涡轮的总直径减小并且以较少的级实现更大的效率。
通过穿过该引擎的高质量流量可实现用于齿轮转动气体涡轮引擎的高推进效率。这可通过增加该引擎的旁路比率来部分地实现,该旁路比率是旁路流的质量流率与进入该引擎核心的质量流率的比率。为了在保持最佳齿轮齿数比率和风扇速度的同时实现带有较大风扇的高旁路比率,该引擎核心的尺寸、具体地该低压涡轮的尺寸,可能需要增加,这将使得更大的风扇引擎在机翼下面的集成更困难。因此,要解决的一般问题是如何在使得该引擎与飞行器成一体的同时实现用于较大齿轮传动气体涡轮引擎的高推进效率。
随着该引擎的风扇直径增加,并且同时该引擎的旁路比率保持高,该引擎的旁路喷嘴出口速度在更宽的范围内变化,这会增加失速的可能性。除非将可变截面喷嘴(VAN)装配到该引擎上,否则防止失速可能很难克服。然而,VAN将给引擎增加极大的重量、复杂性和成本,同时降低性能。
具体地讲,齿轮传动气体涡轮引擎的总体目标是:随着风扇直径增大,能够设计具有高推进效率、从而具有低特定燃料燃烧的引擎,并且能够在安装代价最低的情况下(即,必需对整个飞行器设计作出的更改最小)有效地使引擎与飞行器集成。另一个目标是提供一种能够在宽泛的旁路喷嘴出口速度范围内操作的引擎。
根据第一方面,提供了一种用于飞行器的气体涡轮引擎,该气体涡轮引擎包括:
引擎核心,其包括涡轮、压缩机和将所述涡轮连接到所述压缩机的芯轴,所述引擎核心具有位于所述压缩机的上游的入口和位于所述涡轮的下游的出口;
风扇,该风扇位于该引擎核心的上游,该风扇包括多个风扇叶片;
齿轮箱,所述齿轮箱接收来自所述芯轴的输入并将驱动输出至所述风扇,以便以比所述芯轴低的旋转速度来驱动所述风扇;和
短舱,该短舱围绕引擎核心并限定旁路管道和旁路排气喷嘴,
其中所述气体涡轮引擎被构造成使得在最大起飞条件下,所述引擎核心入口处的轴向马赫数乘以来自所述旁路排气喷嘴的排气气流的轴向马赫数在约0.30至约0.56的范围内,其中在最大起飞条件下,所述引擎核心入口处的所述轴向马赫数小于约0.7。
在最大起飞条件下,引擎核心入口处的轴向马赫数可大于约0.4。
根据第一方面的气体涡轮引擎通过在引擎核心入口处保持较低的气流速度并且随着风扇速度在例如起飞条件和巡航条件之间变化而允许冷喷嘴速度的较大变化,从而实现风扇可操作性的改善。主要由风扇的根部部分控制的引擎核心入口处的气流速度可通过相对于风扇根部保持较低角度与相对于风扇顶端保持较高角度组合而保持在较低水平。
另一个优点是,在巡航条件下或在具有如下定义的范围内的值(例如70NKgs-1至90NKgs-1)下,能够实现引擎的较低特定推力,例如介于约100Nkg-1和约70Nkg-1之间,这可在不需要可变截面喷嘴的情况下实现。对于上文定义的多个值中低于0.3的值,降低的风扇压力比将趋于导致需要可变截面喷嘴,这增加了引擎的重量和复杂性。由于风扇根部速度较高,大于0.56的倍数的增加值将趋于导致燃料燃烧增加,特定推力更高和/或风扇无法操作。因此,所定义的范围表示可实现更优化引擎设计的区域。
引擎的最大起飞(MTO)条件可定义为在国际标准大气海平面压力和温度条件+15℃下在跑道尽头以最大起飞推力操作引擎,这通常在约0.25Mn,或介于约0.24和0.27Mn之间的飞行器速度下定义。因此,引擎的最大起飞条件可定义为在ISA海平面压力和温度+15℃下以最大起飞推力操作引擎,其中风扇入口速度为0.25Mn。
引擎核心入口处的轴向速度可定义为横跨引擎核心入口(即紧邻引擎支撑结构(ESS)上游)的平均流速。相似地,来自旁路排气喷嘴的排气气流的轴向速度可被定义为横跨旁路排气喷嘴(即紧邻旁路管道下游)的平均流速。轴向速度可另选地表示为轴向马赫数。
气体涡轮引擎可被构造成使得在MTO推力下来自旁路排气喷嘴的排气气流的完全膨胀的轴向喷射速度与在巡航条件下(当喷嘴通常被堵塞时)来自旁路排气喷嘴的排气气流的完全膨胀的轴向喷射速度之间的速度比小于约0.82。速度比可为约0.6或更大,因为较低的比率将趋于导致阻力增大,从而导致对管道风扇构造的优势较低。为实现上述范围内的旁路喷嘴排气速度,需要将引擎设计成具有大于约8的旁路比率,即,其中与引擎核心相比,风扇引导约8倍或更多的气流穿过旁路排气管。
根据第二方面,提供了一种用于操作飞行器的气体涡轮引擎的方法,该气体涡轮引擎包括:
引擎核心,其包括涡轮、压缩机和将所述涡轮连接到所述压缩机的芯轴,所述引擎核心具有位于所述压缩机的上游的入口和位于所述涡轮的下游的出口;
风扇,该风扇位于该引擎核心的上游,该风扇包括多个风扇叶片;和
短舱,该短舱围绕引擎核心并限定旁路管道和旁路排气喷嘴,
其中所述方法包括操作所述气体涡轮引擎以为所述飞行器提供推进力,使得在最大起飞条件下,所述引擎核心入口处的轴向马赫数乘以来自旁路排气喷嘴的排气气流的轴向马赫数在约0.30至约0.56的范围内,其中在最大起飞条件下,所述引擎核心入口处的轴向马赫数小于约0.7。
以上关于第一方面描述的可选和有利特征也可以应用于根据第二方面的方法。
如本文所述和/或所要求保护的气体涡轮引擎可具有任何合适的通用架构。例如,气体涡轮引擎可具有将涡轮和压缩机连接的任何所需数量的轴,例如一个轴、两个轴或三个轴。仅以举例的方式,连接到芯轴的涡轮可以是第一涡轮,连接到芯轴的压缩机可以是第一压缩机,并且芯轴可以是第一芯轴。该引擎核心还可包括第二涡轮、第二压缩机和将第二涡轮连接到第二压缩机的第二芯轴。该第二涡轮、第二压缩机和第二芯轴可被布置成以比第一芯轴高的旋转速度旋转。
在此类布置结构中,第二压缩机可轴向定位在第一压缩机的下游。该第二压缩机可被布置成(例如直接接收,例如经由大致环形的管道)从第一压缩机接收流。
齿轮箱可被布置成由被构造成(例如在使用中)以最低旋转速度旋转的芯轴(例如上述示例中的第一芯轴)来驱动。例如,该齿轮箱可被布置成仅由被构造成(例如在使用中)以最低旋转速度旋转的芯轴(例如,在上面的示例中,仅第一芯轴,而不是第二芯轴)来驱动。另选地,该齿轮箱可被布置成由任何一个或多个轴驱动,该任何一个或多个轴例如为上述示例中的第一轴和/或第二轴。
该齿轮箱可以是减速齿轮箱(因为风扇的输出比来自芯轴的输入的旋转速率低)。可以使用任何类型的齿轮箱。例如,齿轮箱可以是“行星式”或“星形”齿轮箱,如本文别处更详细地描述。该齿轮箱可以具有任何期望的减速比(定义为输入轴的旋转速度除以输出轴的旋转速度),例如大于2.5,例如在3到4.2、或3.2到3.8的范围内,例如,大约或至少3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1或4.2。例如,齿数比可以在前一句中的任何两个值之间。仅以举例的方式,齿轮箱可以是“星形”齿轮箱,其具有在3.1或3.2到3.8的范围内的齿数比。在一些布置结构中,齿数比可在这些范围之外。
在如本文所述和/或所要求保护的任何气体涡轮引擎中,燃烧器可被轴向设置在风扇和一个或多个压缩机的下游。例如,在提供第二压缩机的情况下,燃烧器可直接位于第二压缩机的下游(例如在其出口处)。以另一个示例的方式,在提供第二涡轮的情况下,可将燃烧器出口处的流提供至第二涡轮的入口。该燃烧器可设置在一个或多个涡轮的上游。
该压缩机或每个压缩机(例如,如上所述的第一压缩机和第二压缩机)可包括任何数量的级,例如多个级。每一级可包括一排转子叶片和一排定子叶片,该排定子叶片可为可变定子叶片(因为该排定子叶片的入射角可以是可变的)。该排转子叶片和该排定子叶片可彼此轴向偏移。
该涡轮或每个涡轮(例如,如上所述的第一涡轮和第二涡轮)可包括任何数量的级,例如多个级。每一级可包括一排转子叶片和一排定子叶片。该排转子叶片和该排定子叶片可彼此轴向偏移。
每个风扇叶片可被限定为具有径向跨度,该径向跨度从径向内部气体洗涤位置或0%跨度位置处的根部(或毂部)延伸到100%跨度位置处的尖端。该毂部处的风扇叶片的半径与尖端处的风扇叶片的半径的比率可小于(或大约为)以下中的任何一个:0.4、0.39、0.38、0.37、0.36、0.35、0.34、0.33、0.32、0.31、0.3、0.29、0.28、0.27、0.26或0.25。该毂部处的风扇叶片的半径与尖端处的风扇叶片的半径的比率可在由前一句中的任何两个值限定的包含范围内(即,这些值可形成上限或下限),例如,在0.28到0.32的范围内。这些比率通常可称为毂部-尖端比率。毂部处的半径和尖端处的半径都可以在叶片的前缘(或轴向最前)部分处测量。当然,毂部-尖端比率指的是风扇叶片的气体洗涤部分,即径向地在任何平台外部的部分。
可在引擎中心线和风扇叶片的前缘处的尖端之间测量该风扇的半径。风扇直径(可能只是风扇半径的两倍)可大于(或大约为)以下中的任何一者:220cm、230cm、240cm、250cm(约100英寸)、260cm、270cm(约105英寸)、280cm(约110英寸)、290cm(约115英寸)、300cm(约120英寸)、310cm、320cm(约125英寸)、330cm(约130英寸)、340cm(约135英寸)、350cm、360cm(约140英寸)、370cm(约145英寸)、380cm(约150英寸)、390cm(约155英寸)、400cm、410cm(约160英寸)或420cm(约165英寸)。风扇直径可在由前一句中的任何两个值限定的包含范围内(即,这些值可形成上限或下限),例如在240cm至280cm或330cm至380cm的范围内。
风扇的旋转速度可以在使用中变化。一般来讲,对于具有较大直径的风扇,旋转速度较低。仅以非限制性示例的方式,风扇在巡航条件下的旋转速度可小于2500rpm,例如小于2300rpm。仅以另外的非限制性示例的方式,对于风扇直径在220cm至300cm(例如240cm至280cm或250cm至270cm)范围内的引擎,在巡航条件下风扇的旋转速度可在1700rpm至2500rpm的范围内,例如在1800rpm至2300rpm的范围内,例如在1900rpm至2100rpm的范围内。仅以另外的非限制性示例的方式,对于风扇直径在330cm至380cm范围内的引擎,在巡航条件下风扇的旋转速度可在1200rpm至2000rpm的范围内,例如在1300rpm至1800rpm的范围内,例如在1400rpm至1800rpm的范围内。
在使用气体涡轮引擎时,(具有相关联的风扇叶片的)风扇围绕旋转轴线旋转。该旋转导致风扇叶片的尖端以速度U尖端移动。风扇叶片13对流所做的功导致流的焓升dH。风扇尖端负载可被定义为dH/Utip 2,其中dH是跨风扇的焓升(例如1-D平均焓升),并且Utip是风扇尖端的(平移)速度,例如在尖端的前缘处(可被定义为前缘处的风扇尖端半径乘以角速度)。在巡航条件下的风扇尖端负载可大于(或大约为)以下中的任何一者:0.28、0.29、0.3、0.31、0.32、0.33、0.34、0.35、0.36、0.37、0.38、0.39或0.4(本段中的所有单位为Jkg-1K-1/(ms-1)2)。风扇尖端负载可在由前一句中的任何两个值限定的包含范围内(即,这些值可形成上限或下限),例如在0.28至0.31或0.29至0.3的范围内。
根据本公开的气体涡轮引擎可具有任何期望的旁路比率,其中该旁路比率被定义为在巡航条件下穿过旁路管道的流的质量流率与穿过核心的流的质量流率的比率。在一些布置结构中,该旁路比率可大于(或大约为)以下中的任何一者:10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5或20。该旁路比率可在由前一句中的任何两个值限定的包含范围内(即,这些值可形成上限或下限),例如在13至16的范围、或13至15的范围、或13至14的范围内。该旁路管道可以是基本上环形的。该旁路管道可位于核心引擎的径向外侧。旁路管道的径向外表面可以由短舱和/或风扇壳体限定。
本文中描述和/或要求保护的气体涡轮引擎的总压力比可被定义为风扇上游的滞止压力与最高压力压缩机出口处的滞止压力(进入燃烧器之前)之比。以非限制性示例的方式,如本文所述和/或所要求保护的气体涡轮引擎在巡航时的总压力比可大于(或大约为)以下中的任何一个:35、40、45、50、55、60、65、70、75。总压力比可在由前一句中的任何两个值限定的包含范围内(即,这些值可形成上限或下限),例如在50至70的范围内。
引擎的特定推力可被定义为引擎的净推力除以穿过引擎的总质量流量。在巡航条件下,本文中描述和/或要求保护的引擎的比推力可小于(或大约为)以下中的任何一者:110Nkg-1s、105Nkg-1s、100Nkg-1s、95Nkg-1s、90Nkg-1s、85Nkg-1s、80Nkg-1s或70Nkg-1s。该特定推力可在由前一句中的任何两个值限定的包含范围内(即,这些值可形成上限或下限),例如在80Nkg-1s至100Nkg-1s,或85Nkg-1s至95Nkg-1s的范围内。与传统的气体涡轮引擎相比,此类引擎可能特别高效。
如本文所述和/或所要求保护的气体涡轮引擎可具有任何期望的最大推力。仅以非限制性示例的方式,如本文所述和/或所要求保护的气体涡轮可以产生至少(或大约为)为以下中的任何一个的最大推力:160kN、170kN、180kN、190kN、200kN、250kN、300kN、350kN、400kN、450kN、500kN或550kN。最大推力可在由前一句中的任何两个值限定的包含范围内(即,这些值可形成上限或下限)。仅以举例的方式,如本文所述和/或受权利要求书保护的气体涡轮可能够产生在330kN至420kN,例如350kN至400kN范围内的最大推力。上述推力可为海平面标准大气条件和+15℃(环境压力101.3kPa,温度30℃)下的最大净推力,引擎为静态,或者另选地在跑道尽头在0.25Mn条件下的最大净推力(在本文中可称为最大起飞推力)。
在使用中,高压涡轮的入口处的流的温度可能特别高。该温度,可被称为TET,可在燃烧器的出口处测量,例如紧接在可被称为喷嘴导向叶片的第一涡轮叶片的上游。在巡航时,该TET可至少为(或大约为)以下中的任何一者:1400K、1450K、1500K、1550K、1600K或1650K。巡航时的TET可在由前一句中的任何两个值限定的包含范围内(即,这些值可形成上限或下限)。引擎在使用时的最大TET可以是,例如,至少为(或大约为)以下中的任何一者:1700K、1750K、1800K、1850K、1900K、1950K或2000K。最大TET可在由前一句中的任何两个值限定的包含范围内(即,这些值可形成上限或下限),例如在1800K至1950K的范围内。可以例如在高推力条件下发生最大TET,例如在最大起飞(MTO)条件下发生最大TET。
本文中描述和/或要求保护的风扇叶片和/或风扇叶片的翼面部分可由任何合适的材料或材料组合来制造。例如,风扇叶片和/或翼面的至少一部分可至少部分地由复合材料来制造,该复合材料为例如金属基质复合材料和/或有机基质复合材料,诸如碳纤维。以另外的示例的方式,风扇叶片和/或翼面的至少一部分可以至少部分地由金属来制造,该金属为诸如基于钛的金属或基于铝的材料(诸如铝锂合金)或基于钢的材料。风扇叶片可包括使用不同材料制造的至少两个区域。例如,风扇叶片可具有保护性前缘,该保护性前缘可使用比叶片的其余部分更好地抵抗(例如,来自鸟类、冰或其他物料的)冲击的材料来制造。此类前缘可以例如使用钛或基于钛的合金来制造。因此,仅以举例的方式,该风扇叶片可具有碳纤维或具有带钛前缘的基于铝的主体(诸如铝锂合金)。
如本文所述和/或所要求保护的风扇可包括中央部分,风扇叶片可从该中央部分例如沿径向方向延伸。该风扇叶片可以任何期望的方式附接到中央部分。例如,每个风扇叶片可包括固定件,该固定件可与毂部(或盘状部)中的对应狭槽接合。仅以举例的方式,此类固定件可以是燕尾形式的,其可以插入和/或接合毂部/盘状部中对应的狭槽,以便将风扇叶片固定到毂部/盘状部。以另外的示例的方式,该风扇叶片可与中央部分一体地形成。此类布置结构可被称为叶盘或叶环。可使用任何合适的方法来制造此类叶盘或叶环。例如,风扇叶片的至少一部分可由块状物来加工而成,以及/或者风扇叶片的至少部分可通过焊接(诸如线性摩擦焊接)来附接到毂部/盘状部。
本文中描述和/或要求保护的气体涡轮引擎可能或可能不设有可变面积喷嘴(VAN)。此类可变面积喷嘴可允许旁路管道的出口面积在使用中变化。本公开的一般原理可应用于具有或不具有VAN的引擎。
如本文所述和/或要求保护的气体涡轮的风扇可具有任何期望数量的风扇叶片,例如14、16、18、20、22、24或26个风扇叶片。
如本文所用,巡航条件具有常规含义并且将易于被技术人员理解。因此,对于飞行器的给定气体涡轮引擎,技术人员将立即识别巡航条件是指该气体涡轮引擎被设计用于附接到飞行器的引擎在给定任务(其在行业中可被称为“经济任务”)的中间巡航的操作点。就这一点而言,中间巡航是飞行器飞行周期中的关键点,在该点处,在上升最高点和开始降落之间燃烧的总燃料的50%已燃烧(其在时间和/或距离方面可近似于上升最高点和开始降落之间的中点)。因此,巡航条件定义气体涡轮引擎的操作点,该操作点在考虑提供给该飞行器的引擎数量的情况下,提供将确保气体涡轮引擎被设计用于附接到的飞行器在中间巡航时的稳态操作(即,保持恒定的高度和恒定的马赫数)的推力。例如,如果引擎被设计为附接到具有两个相同类型的引擎的飞行器上,则在巡航条件下,引擎提供该飞行器在中间巡航时稳态运行所需的总推力的一半。
换句话讲,对于飞行器的给定气体涡轮引擎,巡航条件被定义为在中间巡航大气条件(在中间巡航高度下由根据ISO 2533的国际标准大气定义)下提供指定推力的引擎的操作点(需要在给定中间巡航马赫数下,与飞行器上的任何其他引擎相结合,提供气体涡轮引擎被设计用于附接到的飞行器的稳态操作)。对于飞行器的任何给定气体涡轮引擎而言,中间巡航推力、大气条件和马赫数是已知的,因此在巡航条件下,引擎的操作点是明确定义的。
仅以举例的方式,巡航条件下的前进速度可为从0.7马赫至0.9马赫的范围内的任何点,例如0.75至0.85、例如0.76至0.84、例如0.77至0.83、例如0.78至0.82、例如0.79至0.81、例如大约0.8马赫、大约0.85马赫或0.8至0.85。这些范围内的任何单一速度可以是巡航条件的一部分。对于某些飞行器,巡航条件可能超出这些范围,例如低于0.7马赫或高于0.9马赫。
仅以举例的方式,巡航条件可对应于在以下范围内的高度处的标准大气条件(根据国际标准大气ISA):10000m至15000m,例如在10000m至12000m的范围内、例如在10400m至11600m(约38000英尺)的范围内、例如在10500m至11500m的范围内、例如在10600m至11400m的范围内、例如在10700m(约35000英尺)至11300m的范围内,例如在10800m至11200m的范围内、例如在10900m至11100m的范围内、例如大约11000m。巡航条件可对应于这些范围内的任何给定高度处的标准大气条件。
仅以举例的方式,巡航条件可对应于提供在前向马赫数0.8下的已知的所需推力水平(例如,在30kN到35kN范围内的值)和在38000ft(11582m)的高度下的标准大气条件(根据国际标准大气)的引擎的操作点。仅以另外示例的方式,巡航条件可对应于提供前向马赫数为0.85的已知的所需推力水平(例如,在50kN到65kN范围内的值)和高度为35000ft(10668m)的标准大气条件(根据国际标准大气)的引擎的操作点。
在使用中,本文中描述和/或要求保护的气体涡轮引擎可在本文别处定义的巡航条件下操作。此类巡航条件可通过飞行器的巡航条件(例如,巡航中期条件)来确定,至少一个(例如2个或4个)气体涡轮引擎可以安装在该飞行器上以提供推进推力。
根据一个方面,提供了一种飞行器,该飞行器包括如本文所述和/或受权利要求书保护的气体涡轮引擎。根据该方面的飞行器为气体涡轮引擎已被设计用于附接到的飞行器。因此,根据该方面的巡航条件对应于本文其他地方所定义的飞行器的中间巡航,并且/或者最大起飞条件与飞行器的最大起飞条件相关。
根据一个方面,提供了一种操作包括如本文所述和/或受权利要求书保护的气体涡轮引擎的飞行器的方法。根据该方面的操作可包括(或可以是)在飞行器的中间巡航处和/或最大起飞处的操作,如本文其他地方所定义的。
本领域的技术人员将理解,除非相互排斥,否则关于任何一个上述方面描述的特征或参数可应用于任何其他方面。此外,除非相互排斥,否则本文中描述的任何特征或参数可应用于任何方面以及/或者与本文中描述的任何其他特征或参数组合。
现在将参考附图仅以举例的方式来描述实施方案,其中:
图1是气体涡轮引擎的截面侧视图;
图2是气体涡轮引擎的上游部分的特写截面侧视图;
图3是用于气体涡轮引擎的齿轮箱的局部剖视图;
图4是其上安装有气体涡轮引擎的飞行器的示意图;
图5是示出完全膨胀的喷射速度的概念的示意图;并且
图6是旁路喷嘴马赫数作为旁路喷嘴压力比的函数的示例性曲线图。
图1示出了具有主旋转轴线9的气体涡轮引擎10。引擎10包括进气口12和推进式风扇23,该推进式风扇产生两股气流:核心气流A和旁路气流B。气体涡轮引擎10包括具有接收核心气流A的入口29的核心11。引擎核心11以轴流式串联包括低压压缩机14、高压压缩机15、燃烧设备16、高压涡轮17、低压涡轮19和核心排气喷嘴20。短舱21围绕气体涡轮引擎10并限定旁路管道22和旁路排气喷嘴18。旁路气流B流过旁路管道22。风扇23经由轴26和周转齿轮箱30附接到低压涡轮19并由该低压涡轮驱动。
在使用中,核心气流A由低压压缩机14加速和压缩,并被引导至高压压缩机15中以进行进一步的压缩。从高压压缩机15排出的压缩空气被引导至燃烧设备16中,在该燃烧设备中压缩空气与燃料混合,并且混合物被燃烧。然后,所得的热燃烧产物在通过喷嘴20排出之前通过高压涡轮和低压涡轮17、19膨胀,从而驱动高压涡轮和低压涡轮17、19以提供一些推进推力。高压涡轮17通过合适的互连轴27来驱动高压压缩机15。风扇23通常提供大部分推进推力。周转齿轮箱30是减速齿轮箱。
图2中示出了齿轮传动风扇气体涡轮引擎10的示例性布置结构。低压涡轮19(参见图1)驱动轴26,该轴26联接到周转齿轮布置结构30的太阳轮或太阳齿轮28。在太阳齿轮28的径向向外处并与该太阳齿轮相互啮合的是多个行星齿轮32,该多个行星齿轮通过行星架34联接在一起。行星架34约束行星齿轮32以同步地围绕太阳齿轮28进动,同时使每个行星齿轮32绕其自身轴线旋转。行星架34经由连杆36联接到风扇23,以便驱动该风扇围绕引擎轴线9旋转。在行星齿轮32的径向向外处并与该行星齿轮相互啮合的是齿圈或环形齿轮38,其经由连杆40联接到固定引擎支撑结构(ESS)24。
需注意,本文中使用的术语“低压涡轮”和“低压压缩机”可分别表示最低压力涡轮级和最低压力压缩机级(即,不包括风扇23),和/或通过在引擎中具有最低旋转速度的互连轴26(即,不包括驱动风扇23的齿轮箱输出轴)连接在一起的涡轮级和压缩机级。在一些文献中,本文中提到的“低压涡轮”和“低压压缩机”可被另选地称为“中压涡轮”和“中压压缩机”。在使用此类另选命名的情况下,风扇23可被称为第一或最低压力的压缩级。
在图3中以举例的方式更详细地示出了周转齿轮箱30。太阳齿轮28、行星齿轮32和环形齿轮38中的每一者包括围绕其周边以用于与其他齿轮相互啮合的齿。然而,为清楚起见,图3中仅示出了齿的示例性部分。示出了四个行星齿轮32,但是对本领域的技术人员显而易见的是,可以在要求保护的发明的范围内提供更多或更少的行星齿轮32。行星式周转齿轮箱30的实际应用通常包括至少三个行星齿轮32。
在图2和图3中以举例的方式示出的周转齿轮箱30是行星式的,其中行星架34经由连杆36联接到输出轴,其中齿圈38被固定。然而,可使用任何其他合适类型的周转齿轮箱30。以另一个示例的方式,周转齿轮箱30可以是星形布置结构,其中行星架34保持固定,允许环形齿轮(或齿圈)38旋转。在此类布置结构中,风扇23由环形齿轮38驱动。以另一个另选示例的方式,齿轮箱30可以是差速齿轮箱,其中环形齿轮38和行星架34均被允许旋转。
应当理解,图2和图3中所示的布置结构仅是示例性的,并且各种另选方案都在本公开的范围内。仅以举例的方式,可使用任何合适的布置结构来将齿轮箱30定位在引擎10中和/或用于将齿轮箱30连接到引擎10。以另外示例的方式,齿轮箱30与引擎10的其他部分(诸如输入轴26、输出轴和固定结构24)之间的连接件(诸如图2示例中的连杆36、40)可具有任何期望程度的刚度或柔性。以另外示例的方式,可使用引擎的旋转部分和固定部分之间(例如,在来自齿轮箱的输入轴和输出轴与固定结构诸如齿轮箱壳体之间)的轴承的任何合适布置结构,并且本公开不限于图2的示例性布置结构。例如,在齿轮箱30具有星形布置结构(如上所述)的情况下,技术人员将容易理解,输出连杆和支撑连杆以及轴承位置的布置结构通常不同于图2中以举例的方式示出的布置结构。
因此,本公开延伸到具有齿轮箱类型(例如星形或行星齿轮)、支撑结构、输入和输出轴布置结构以及轴承位置中的任何布置结构的气体涡轮引擎。
任选地,齿轮箱可驱动附加的和/或另选的部件(例如,中压压缩机和/或增压压缩机)。
本公开可应用的其他气体涡轮引擎可具有另选配置。例如,此类引擎可具有另选数量的压缩机和/或涡轮和/或另选数量的互连轴。以另外的示例的方式,图1中所示的气体涡轮引擎具有分流喷嘴18、20,这意味着穿过旁路管道22的流具有自己的喷嘴18,该喷嘴与核心引擎喷嘴20分开并径向地在该核心引擎喷嘴的外部。然而,这不是限制性的,并且本公开的任何方面也可应用于如下引擎,在该引擎中,穿过旁路管道22的流和穿过核心11的流在可被称为混流喷嘴的单个喷嘴之前(或上游)混合或组合。一个或两个喷嘴(无论是混合的还是分流的)可具有固定的或可变的面积。
气体涡轮引擎10的几何形状及其部件由传统的轴系限定,包括轴向(与旋转轴9对准)、径向(在图1中从下到上的方向)和周向(垂直于图1视图中的页面)。轴向、径向和周向相互垂直。
图4示出了示例性飞行器40,其具有附接到其每个翼部41a、41b的气体涡轮引擎10。在引擎10以最大起飞(MTO)推力操作的情况下,在最大起飞推力下,每个引擎核心入口处的轴向马赫数乘以每个引擎核心出口处的轴向马赫数在约0.30至约0.53的范围内,其中每个引擎核心入口处的轴向马赫数小于约0.7。
图5示出了气体涡轮引擎的示例性排气喷嘴50。排气喷嘴50的出口或喉部51处的压力Pj大于该引擎周围的环境压力Pa。在远离喷嘴出口51的一些距离处,该喷射压力将等于该环境压力,即Pj=Pa。完全膨胀的喷射速度被定义为此时的喷射速度52,即在压力等于环境压力的情况下,沿离该排气喷嘴最小距离的引擎的轴线的喷射速度。图6是示出旁路排气喷嘴18(参见图1)处的马赫数与旁路喷嘴压力比(即,旁路排气喷嘴处的总压力与环境压力之间的比率)之间的关系的示例性图。随着旁路喷嘴压力比增加,旁路喷嘴马赫数的增量达到声速的渐近值,即马赫1,通常理解为喷嘴在较高的旁路喷嘴压力比下“堵塞”。如果引擎(例如,齿轮传动引擎)在巡航条件下操作,例如在约2.2的压力比下操作,则旁路喷嘴可能被堵塞。然而,在起飞条件下,喷嘴可能不会被堵塞,例如其具有约0.8的马赫数。在此类条件下,风扇可操作性变得更成问题,因为风扇需要针对给定的流量以较高的压力比操作。在风扇根部(即,风扇的将进入的空气驱动到ESS入口29中的部分(参见图1))处具有较低的马赫数,使得风扇能够在变化的条件下操作而不出现颤振或失速。
可被调节以实现上述范围内的核心速度比率的参数可以包括风扇叶片出口角度、LPT叶片出口角度、ESS入口面积、LPT出口面积、ESS入口面积与LPT出口面积的比率、风扇转速和LPT转速。
下表示出了两个引擎示例的示例参数,示例1用于相对较小或较低功率的引擎,示例2用于相对较大或较高功率的引擎。小型引擎可以例如具有介于约200和280cm之间的风扇直径和/或介于约160kN和250kN之间的最大净推力或如本文其他地方所定义的。大型引擎可以例如具有介于约310cm和380cm之间的风扇直径和/或介于约310kN和450kN之间的最大净推力或如本文其他地方所定义的。
Figure BDA0002500175140000141
与最大流量下LPT出口总压力、最大LPT出口质量流量和LPT最终转子面积相关的上述参数一起确定LPT的出口流速,即引擎核心出口处的流速。最大流量下的ESS入口总压力、最大ESS入口质量流量和ESS入口转子面积一起确定引擎核心入口处的速度(以及因此马赫数)。来自旁路排气喷嘴的轴向排气流速(以及因此马赫数)可以至少部分地由旁路排气喷嘴出口的面积确定。
为了减小入口马赫数,可以增加ESS入口平均半径,这可以在保持给定的ESS入口跨度的同时完成。这样做的另一个优点是为齿轮箱创造了额外的空间。另选地或除此之外,可以调节风扇空气动力学设计以降低风扇根部压力比率,这具有改善风扇可操作性的优点。风扇根部可以被定义为风扇的一部分,其驱动进入的空气进入ESS入口。
应当理解,本发明不限于上述实施方案,并且在不脱离本文中描述的概念的情况下可进行各种修改和改进。除非相互排斥,否则任何特征可以单独使用或与任何其他特征组合使用,并且本公开扩展到并包括本文中描述的一个或多个特征的所有组合和子组合。

Claims (15)

1.一种用于飞行器的气体涡轮引擎(10),所述气体涡轮引擎包括:
引擎核心(11),所述引擎核心包括涡轮(19)、压缩机(14)和将所述涡轮连接到所述压缩机的芯轴(26),所述引擎核心具有位于所述压缩机的上游的入口(29)和位于所述涡轮(19)的下游的出口(20);
风扇(23),所述风扇位于所述引擎核心(11)的上游并包括多个风扇叶片;
齿轮箱(30),所述齿轮箱接收来自所述芯轴(26)的输入并将驱动输出至所述风扇,以便以比所述芯轴低的旋转速度来驱动所述风扇;和
短舱(21),所述短舱围绕所述引擎核心(11)并限定旁路管道(22)和旁路排气喷嘴(18),
其中所述气体涡轮引擎被构造使得在最大起飞条件下,所述引擎核心入口处的轴向马赫数乘以来自所述旁路排气喷嘴(18)的排气气流的轴向马赫数在约0.30至约0.56的范围内,其中在最大起飞条件下,所述引擎核心入口(29)处的所述轴向马赫数小于约0.7。
2.根据权利要求1所述的气体涡轮引擎(10),其中在最大起飞条件下,所述引擎核心入口(29)处的所述轴向马赫数大于约0.4。
3.根据权利要求1或权利要求2所述的气体涡轮引擎(10),其中在最大起飞条件下来自所述旁路排气喷嘴(18)的所述排气气流的第一完全膨胀的轴向喷射速度与在巡航条件下来自所述旁路排气喷嘴(18)的所述排气气流的第二完全膨胀的轴向喷射速度之间的速度比小于约0.82,并且任选地大于约0.6或0.7。
4.根据权利要求1或权利要求2所述的气体涡轮引擎(10),其中在巡航条件下,所述引擎的旁路比率在10至20的范围内,任选地在13至18的范围内。
5.根据权利要求1或权利要求2所述的气体涡轮引擎(10),其中所述风扇的外直径在240cm至380cm,任选地330cm至380cm、或335cm至365cm的范围内。
6.根据权利要求1或权利要求2所述的气体涡轮引擎,其中:
所述涡轮是第一涡轮(19),所述压缩机是第一压缩机(14),并且所述芯轴是第一芯轴(26);
所述引擎核心还包括第二涡轮(17)、第二压缩机(15)和将所述第二涡轮连接到所述第二压缩机的第二芯轴(27);并且
所述第二涡轮、所述第二压缩机和所述第二芯轴被布置成以比所述第一芯轴高的旋转速度旋转。
7.根据权利要求1或权利要求2所述的气体涡轮引擎,其中所述齿轮箱具有在3.2至3.8的范围内,任选地在3.3至3.7的范围内的减速比。
8.一种操作飞行器(40)上的气体涡轮引擎(10)的方法,所述气体涡轮引擎(10)包括:
引擎核心(11),所述引擎核心包括涡轮(19)、压缩机(14)和将所述涡轮连接到所述压缩机的芯轴(26),所述引擎核心具有位于所述压缩机的上游的入口(29)和位于所述涡轮(19)的下游的出口(20);
风扇(23),所述风扇位于所述引擎核心的上游并包括多个风扇叶片;和
短舱(21),所述短舱围绕所述引擎核心(11)并限定旁路管道(22)和旁路排气喷嘴(18),
其中所述方法包括操作所述气体涡轮引擎(10)以为所述飞行器提供推进力,使得在最大起飞条件下,所述引擎核心入口处的轴向马赫数乘以来自所述旁路排气喷嘴(18)的排气气流的轴向马赫数在约0.30至约0.56的范围内,其中在最大起飞条件下,所述引擎核心入口处的所述轴向马赫数小于约0.7。
9.根据权利要求8所述的方法,其中在最大起飞条件下,所述引擎核心入口处的所述轴向马赫数为约0.5或更大。
10.根据权利要求8或权利要求9所述的方法,其中在MTO推力下来自所述旁路排气喷嘴(18)的所述排气气流的第一完全膨胀的轴向喷射速度与在巡航条件下来自所述旁路排气喷嘴(18)的所述排气气流的第二完全膨胀的轴向喷射速度之间的速度比小于约0.82,并且任选地大于0.6或0.7。
11.根据权利要求8或权利要求9所述的方法,其中在巡航条件下,所述引擎的旁路比率在10至20的范围内,任选地在13至18的范围内。
12.根据权利要求8或权利要求9所述的方法,其中所述风扇的外直径在240cm至390cm,任选地330cm至380cm、或335cm至365cm的范围内。
13.根据权利要求8或权利要求9所述的方法,其中:
所述涡轮是第一涡轮(19),所述压缩机是第一压缩机(14),并且所述芯轴是第一芯轴(26);
所述引擎核心还包括第二涡轮(17)、第二压缩机(15)和将所述第二涡轮连接到所述第二压缩机的第二芯轴(27);并且
所述第二涡轮、所述第二压缩机和所述第二芯轴被布置成以比所述第一芯轴高的旋转速度旋转。
14.根据权利要求8或权利要求9所述的方法,其中所述齿轮箱具有在3.2至3.8的范围内,任选地在3.3至3.7的范围内的减速比。
15.根据权利要求1所述的气体涡轮引擎或根据权利要求8所述的方法,其中最大起飞条件在ISA海平面压力和温度+15℃下的最大起飞推力下被定义,其中风扇入口速度为0.25Mn。
CN202010433187.XA 2019-05-23 2020-05-20 气体涡轮引擎 Pending CN111980824A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB1907255.2A GB201907255D0 (en) 2019-05-23 2019-05-23 Gas turbine engine
GB1907255.2 2019-05-23

Publications (1)

Publication Number Publication Date
CN111980824A true CN111980824A (zh) 2020-11-24

Family

ID=67385585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010433187.XA Pending CN111980824A (zh) 2019-05-23 2020-05-20 气体涡轮引擎

Country Status (4)

Country Link
US (1) US20200370511A1 (zh)
EP (1) EP3741974A1 (zh)
CN (1) CN111980824A (zh)
GB (1) GB201907255D0 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4148250A1 (en) * 2021-09-08 2023-03-15 Rolls-Royce plc An improved gas turbine engine
EP4148263A1 (en) 2021-09-08 2023-03-15 Rolls-Royce plc An improved gas turbine engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816442B2 (en) * 2012-01-31 2017-11-14 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section

Also Published As

Publication number Publication date
GB201907255D0 (en) 2019-07-10
US20200370511A1 (en) 2020-11-26
EP3741974A1 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
CN211950675U (zh) 气体涡轮引擎
CN212296627U (zh) 气体涡轮引擎
CN213574368U (zh) 用于飞行器的气体涡轮引擎
CN112483276A (zh) 气体涡轮引擎
CN113446117A (zh) 高压力比气体涡轮引擎
CN112459922A (zh) 有效喷射
CN213510751U (zh) 用于飞行器的气体涡轮引擎
CN111692011A (zh) 高效气体涡轮引擎安装和操作
CN111980824A (zh) 气体涡轮引擎
US11994075B2 (en) Geared gas turbine engine
CN111322157B (zh) 行星架和组装行星架的方法
CN111456853A (zh) 齿轮传动式涡轮风扇中的高负荷入口管道
CN111237252A (zh) 风扇叶片保持组件
CN111692012A (zh) 用于飞行器的气体涡轮引擎
CN111140358A (zh) 气体涡轮引擎
CN111322158A (zh) 用于气体涡轮引擎的冰晶体防护
CN212717365U (zh) 用于飞行器的气体涡轮引擎
CN110700962B (zh) 齿轮传动涡轮风扇气体涡轮机引擎安装布置
CN112459923A (zh) 涡轮风扇核心和旁路布置结构
CN110667861A (zh) 飞行器引擎可操作性
CN111608953A (zh) 用于气体涡轮引擎的冰晶体防护
CN110486167B (zh) 气体涡轮引擎
CN111980802A (zh) 气体涡轮引擎
CN113217190A (zh) 气体涡轮引擎

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201124