CN111967132A - FET device electrical characteristic modeling method, system and storage medium - Google Patents
FET device electrical characteristic modeling method, system and storage medium Download PDFInfo
- Publication number
- CN111967132A CN111967132A CN202010651063.9A CN202010651063A CN111967132A CN 111967132 A CN111967132 A CN 111967132A CN 202010651063 A CN202010651063 A CN 202010651063A CN 111967132 A CN111967132 A CN 111967132A
- Authority
- CN
- China
- Prior art keywords
- electrical
- fet device
- model
- parameters
- modeling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000003860 storage Methods 0.000 title claims abstract description 7
- 238000004088 simulation Methods 0.000 claims abstract description 29
- 238000009792 diffusion process Methods 0.000 claims description 12
- 238000013508 migration Methods 0.000 claims description 12
- 230000005012 migration Effects 0.000 claims description 12
- 238000012546 transfer Methods 0.000 claims description 12
- INQLNSVYIFCUML-QZTLEVGFSA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2r,3s,4r,5r)-5-(4-carbamoyl-1,3-thiazol-2-yl)-3,4-dihydroxyoxolan-2-yl]methyl hydrogen phosphate Chemical compound NC(=O)C1=CSC([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=N1 INQLNSVYIFCUML-QZTLEVGFSA-N 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 5
- 230000006870 function Effects 0.000 claims description 5
- 230000008602 contraction Effects 0.000 claims description 4
- 230000005684 electric field Effects 0.000 claims description 4
- 238000005215 recombination Methods 0.000 claims description 4
- 230000006798 recombination Effects 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000005669 field effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011960 computer-aided design Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明公开了一种FET器件的电特性建模方法、系统和存储介质,应用在半导体仿真技术,方法包括:获取所述FET器件的固定参数;获取所述FET器件的目标电学指标参数;配置并初始化所述FET器件的变量参数;根据所述FET器件的固定参数和变量参数构建物理模型;选择仿真物理模型对所述物理模型进行电学性能仿真,得到仿真电学指标参数;根据所述目标电学指标参数和仿真电学指标参数修改所述变量参数的数值,直到修改后的所述变量参数对应的物理模型的仿真电学指标参数和所述目标电学指标参数的差的绝对值满足预设条件;根据修改后的所述变量参数和所述固定参数所构成的物理模型的电学性能仿真结果,得到所述FET器件的电特性模型。本发明可以提高了建模效率。
The invention discloses an electrical characteristic modeling method, system and storage medium of an FET device, which are applied to semiconductor simulation technology. The method includes: acquiring fixed parameters of the FET device; acquiring target electrical index parameters of the FET device; configuring and initialize the variable parameters of the FET device; build a physical model according to the fixed parameters and variable parameters of the FET device; select a simulated physical model to simulate the electrical performance of the physical model to obtain simulated electrical index parameters; The index parameter and the simulated electrical index parameter modify the value of the variable parameter until the absolute value of the difference between the simulated electrical index parameter of the physical model corresponding to the modified variable parameter and the target electrical index parameter satisfies a preset condition; The electrical performance simulation result of the physical model formed by the modified variable parameters and the fixed parameters is used to obtain the electrical characteristic model of the FET device. The present invention can improve the modeling efficiency.
Description
技术领域technical field
本发明涉及半导体仿真技术,尤其是一种FET器件电特性建模方法、系统和存储介质。The invention relates to semiconductor simulation technology, in particular to a method, system and storage medium for modeling the electrical characteristics of a FET device.
背景技术Background technique
为了不断实现摩尔定律,实现更高的晶体管性能和电路密度,先进的CMOS技术几十年来一直关注于器件几何尺寸的缩放。为了解决传统平面晶体管在20nm处的短通道效应问题,传统平面半导体场效应管架构向FinFET(Fin Field-Effect Transistor,中文名叫鳍式场效应晶体管)架构的转变。鳍型场效应晶体管有优秀的栅控能力以及与CMOS工艺良好的兼容性,成为了深纳米级工艺尺寸中最常用的核心器件。In order to continue to achieve Moore's Law and achieve higher transistor performance and circuit densities, advanced CMOS technology has focused on scaling device geometries for decades. In order to solve the short channel effect problem of traditional planar transistors at 20nm, the traditional planar semiconductor field effect transistor structure is transformed into a FinFET (Fin Field-Effect Transistor, Chinese name is fin field effect transistor) structure. Fin-type field effect transistors have excellent gate control capabilities and good compatibility with CMOS processes, and have become the most commonly used core devices in deep nanoscale process sizes.
然而过去在对器件进行研究时,通过制作器件后进行测量的方式来建立器件的电特性模型,这样的方式效率比较低。However, in the past when the device was studied, the electrical characteristic model of the device was established by measuring after the device was fabricated, which was relatively inefficient.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题的至少之一,本发明的目的在于:提供一种FET器件电特性建模方法、系统和存储介质,以提升建模效率。In order to solve at least one of the above technical problems, the purpose of the present invention is to provide a method, system and storage medium for modeling the electrical characteristics of a FET device, so as to improve the modeling efficiency.
第一方面,本发明实施例提供了:In the first aspect, the embodiments of the present invention provide:
一种FET器件的电特性建模方法,包括以下步骤:A method for modeling electrical characteristics of a FET device, comprising the following steps:
获取所述FET器件的固定参数;obtaining fixed parameters of the FET device;
获取所述FET器件的目标电学指标参数;obtaining the target electrical index parameters of the FET device;
配置并初始化所述FET器件的变量参数;configuring and initializing variable parameters of the FET device;
根据所述FET器件的固定参数和变量参数构建物理模型;constructing a physical model according to the fixed parameters and variable parameters of the FET device;
选择仿真物理模型对所述物理模型进行电学性能仿真,得到仿真电学指标参数;Selecting a simulation physical model to simulate the electrical performance of the physical model to obtain simulated electrical index parameters;
根据所述目标电学指标参数和仿真电学指标参数修改所述变量参数的数值,直到修改后的所述变量参数对应的物理模型的仿真电学指标参数和所述目标电学指标参数的差的绝对值满足预设条件;Modify the value of the variable parameter according to the target electrical index parameter and the simulated electrical index parameter, until the absolute value of the difference between the simulated electrical index parameter of the physical model corresponding to the modified variable parameter and the target electrical index parameter satisfies preset conditions;
根据修改后的所述变量参数和所述固定参数所构成的物理模型的电学性能仿真结果,得到所述FET器件的电特性模型。According to the electrical performance simulation result of the physical model formed by the modified variable parameters and the fixed parameters, an electrical characteristic model of the FET device is obtained.
进一步,所述FET器件为制程为14nm的FinFET器件,所述固定参数包括栅极长度、Fin高度、Fin宽度、等效栅氧化层厚度、栅极间隔、源/漏区掺杂浓度、体硅掺杂浓度、沟道掺杂浓度或源漏电阻的至少之一。Further, the FET device is a FinFET device with a manufacturing process of 14 nm, and the fixed parameters include gate length, Fin height, Fin width, equivalent gate oxide thickness, gate spacing, source/drain region doping concentration, bulk silicon at least one of doping concentration, channel doping concentration or source-drain resistance.
进一步,所述电学性能仿真采用Sentaurus TCAD器件仿真软件,所述FET器件的栅极使用金属材料TiN,所述FET器件的栅氧化层使用材料HfO2。Further, the electrical performance simulation adopts Sentaurus TCAD device simulation software, the gate of the FET device uses the metal material TiN, and the gate oxide layer of the FET device uses the material HfO 2 .
进一步,所述目标电学指标参数包括饱和电流、电特性转移曲线的至少之一。Further, the target electrical index parameter includes at least one of saturation current and electrical characteristic transfer curve.
进一步,所述仿真物理模型包括量子修正模型、费米模型、硅能带收缩模型、载流子复合模型、电场饱和迁移模型、Philips迁移模型、ThinLayer迁移模型、高k散射模型或Lombardi模型。Further, the simulated physical model includes quantum correction model, Fermi model, silicon band contraction model, carrier recombination model, electric field saturation migration model, Philips migration model, ThinLayer migration model, high-k scattering model or Lombardi model.
进一步,在进行电学性能仿真时采用载流子传输方程为移-扩散方程DriftDiffusion。Further, the carrier transport equation is adopted as the shift-diffusion equation DriftDiffusion when conducting the electrical performance simulation.
进一步,所述变量参数包括源漏垂直扩散深度、源漏横向扩散宽度、金属功函数或固定电荷浓度的至少之一。Further, the variable parameter includes at least one of source-drain vertical diffusion depth, source-drain lateral diffusion width, metal work function or fixed charge concentration.
进一步,所述电特性模型包括线性情况和饱和情况下的漏致势垒降低效应、亚阈值摆幅、阈值电压、饱和电流和电特性转移曲线的至少之一。Further, the electrical characteristic model includes at least one of a drain induced barrier reduction effect, a subthreshold swing, a threshold voltage, a saturation current and an electrical characteristic transfer curve in a linear case and a saturation case.
第二方面,本发明实施例提供了:In the second aspect, the embodiments of the present invention provide:
一种FET器件电特性建模系统,包括:A system for modeling electrical characteristics of a FET device, comprising:
存储器,用于存储程序;memory for storing programs;
处理器,用于加载所述程序以执行的方法。A processor for loading the program to execute the method.
第三方面,本发明实施例提供了:In a third aspect, the embodiments of the present invention provide:
一种存储介质,其存储有程序,所述程序被处理器执行时所述的方法。A storage medium storing a program, the method described when the program is executed by a processor.
本发明实施例的有益效果是:本发明基于仿真技术,通过调整FET器件的部分变量参数使得FET器件的部分电学指标参数和目标电学指标参数接近,进而确定出FET器件的变量参数,并基于根据固定参数和变量参数所构建的物理模型的电学性能仿真结果,得到FET器件的电学特性模型,本发明效率高,相对于制作器件再进行测试的方案更加节省人力物力。The beneficial effects of the embodiments of the present invention are: the present invention is based on the simulation technology, by adjusting some variable parameters of the FET device, so that some electrical index parameters of the FET device are close to the target electrical index parameters, and then the variable parameters of the FET device are determined, and based on the basis of The electrical performance simulation result of the physical model constructed with fixed parameters and variable parameters obtains the electrical characteristic model of the FET device.
附图说明Description of drawings
图1为根据本发明实施例提供的一种FET器件电特性建模方法的流程图;1 is a flowchart of a method for modeling electrical characteristics of a FET device according to an embodiment of the present invention;
图2为根据本发明实施例提供的一种FinFET器件电特性建模方法的流程图;2 is a flowchart of a method for modeling electrical characteristics of a FinFET device according to an embodiment of the present invention;
图3为根据本发明实施例提供的FinFET器件的物理模型示意图;3 is a schematic diagram of a physical model of a FinFET device provided according to an embodiment of the present invention;
图4为根据本发明实施例提供的FinFET器件的物理模型与电学指标的电特性转移曲线对比图4 is a comparison diagram of an electrical characteristic transfer curve between a physical model of a FinFET device and an electrical index provided according to an embodiment of the present invention
图5为根据本发明实施例提供的FinFET器件的物理模型的电学参数示意图。FIG. 5 is a schematic diagram of electrical parameters of a physical model of a FinFET device provided according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合说明书附图和具体的实施例对本发明进行进一步的说明。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
参照图1,本实施例公开了一种FET器件的电特性建模方法,包括以下步骤:Referring to FIG. 1 , the present embodiment discloses a method for modeling electrical characteristics of a FET device, including the following steps:
步骤110、获取所述FET器件的固定参数。Step 110: Acquire the fixed parameters of the FET device.
一般情况下固定参数是尺寸等表面可测或者相对固定的参数。例如,在一些实施例中,所述FET器件为制程为14nm的FinFET器件,所述固定参数包括栅极长度、Fin(鳍)高度、Fin宽度、等效栅氧化层厚度、栅极间隔、源/漏区掺杂浓度、体硅掺杂浓度、沟道掺杂浓度或源漏电阻的至少之一。In general, fixed parameters are surface-measurable or relatively fixed parameters such as size. For example, in some embodiments, the FET device is a FinFET device with a process of 14 nm, and the fixed parameters include gate length, Fin (fin) height, Fin width, equivalent gate oxide thickness, gate spacing, source /Drain region doping concentration, bulk silicon doping concentration, channel doping concentration or at least one of source-drain resistance.
步骤120、获取所述FET器件的目标电学指标参数。Step 120: Acquire target electrical index parameters of the FET device.
一般情况下,在本步骤会选择一些对于FET器件的影响比较显著的电学指标参数,例如,在一些实施例中,所述目标电学指标参数包括饱和电流或电特性转移曲线的至少之一。Generally, in this step, some electrical index parameters that have a significant impact on the FET device are selected. For example, in some embodiments, the target electrical index parameter includes at least one of saturation current or electrical characteristic transfer curve.
步骤130、配置并初始化所述FET器件的变量参数。Step 130: Configure and initialize variable parameters of the FET device.
在本实施例中,变量参数一般是不好测量的参数或者一些非尺寸参数。例如,在一些实施例中,所述变量参数包括源/漏垂直扩散深度、源/漏横向扩散宽度、金属功函数或固定电荷浓度的至少之一。In this embodiment, the variable parameters are generally parameters that are difficult to measure or some non-dimensional parameters. For example, in some embodiments, the variable parameter includes at least one of source/drain vertical diffusion depth, source/drain lateral diffusion width, metal work function, or fixed charge concentration.
步骤140、根据所述FET器件的固定参数和变量参数构建物理模型。Step 140: Build a physical model according to the fixed parameters and variable parameters of the FET device.
本步骤可以通过Sentaurus TCAD(Technology Computer Aided Design,指半导体工艺模拟以及器件模拟工具)器件仿真软件进行物理模型的构建。In this step, the physical model can be constructed by using Sentaurus TCAD (Technology Computer Aided Design, referring to a semiconductor process simulation and device simulation tool) device simulation software.
步骤150、选择仿真物理模型对所述物理模型进行电学性能仿真,得到仿真电学指标参数。在本步骤中,采用TCAD工具模拟FinFET结构,要深入探究器件的物理特性,需要添加适当的物理模型,依照先进FinFET器件的物理特性,确定其仿真物理模型,包括量子修正模型、费米模型、硅能带收缩模型、载流子复合模型、电场饱和迁移模型、Philips迁移模型、ThinLayer迁移模型、高k散射模型、Lombardi模型。在此模型的基础上进行器件电学特性仿真,使用的载流子传输方程为移-扩散方程DriftDiffusion。Step 150: Select a simulated physical model to perform electrical performance simulation on the physical model to obtain simulated electrical index parameters. In this step, the TCAD tool is used to simulate the FinFET structure. In order to deeply explore the physical characteristics of the device, it is necessary to add an appropriate physical model. According to the physical characteristics of the advanced FinFET device, determine its simulation physical model, including quantum correction model, Fermi model, Silicon band contraction model, carrier recombination model, electric field saturation migration model, Philips migration model, ThinLayer migration model, high-k scattering model, Lombardi model. On the basis of this model, the electrical characteristics of the device are simulated, and the carrier transport equation used is the shift-diffusion equation DriftDiffusion.
步骤160、根据所述目标电学指标参数和仿真电学指标参数修改所述变量参数的数值,直到修改后的所述变量参数对应的物理模型的仿真电学指标参数和所述目标电学指标参数的差的绝对值满足预设条件。Step 160: Modify the value of the variable parameter according to the target electrical index parameter and the simulated electrical index parameter, until the difference between the simulated electrical index parameter of the physical model corresponding to the modified variable parameter and the target electrical index parameter is equal to The absolute value satisfies the preset condition.
在本步骤中,可以按照预设的规律或者随机的方式,来改变变量参数的数值,直到仿真电学指标参数和目标电学指标参数的差的绝对值小于预设值。例如,对于曲线而言,可以要求对应位置的数值差的绝对值的平均值小于预设值。In this step, the value of the variable parameter can be changed according to a preset rule or in a random manner, until the absolute value of the difference between the simulated electrical index parameter and the target electrical index parameter is smaller than the preset value. For example, for a curve, the average value of the absolute values of the numerical differences at the corresponding positions may be required to be smaller than a preset value.
步骤170、根据修改后的所述变量参数和所述固定参数所构成的物理模型的电学性能仿真结果,得到所述FET器件的电特性模型。Step 170: Obtain an electrical characteristic model of the FET device according to the electrical performance simulation result of the physical model formed by the modified variable parameters and the fixed parameters.
在本步骤中最终获得的电特性模型包括多种电学特性。在一些实施例中,所述电特性模型包括线性情况和饱和情况下的漏致势垒降低效应、亚阈值摆幅、阈值电压、饱和电流和电特性转移曲线的至少之一。The electrical property model finally obtained in this step includes various electrical properties. In some embodiments, the electrical characteristic model includes at least one of a drain induced barrier lowering effect, a subthreshold swing, a threshold voltage, a saturation current, and an electrical characteristic transfer curve in a linear case and a saturation case.
根据上述实施例可以确定,本发明效率高,相对于制作器件再进行测试的方案更加节省人力物力。According to the above embodiments, it can be determined that the present invention has high efficiency, and saves manpower and material resources compared with the solution of manufacturing devices and then testing them.
参照图2-图5,本实施例公开了一种14nm尺寸先进FinFET器件电特性建模方法,该方法包括以下处理步骤:Referring to FIG. 2 to FIG. 5 , the present embodiment discloses a method for modeling electrical characteristics of an advanced FinFET device with a size of 14 nm. The method includes the following processing steps:
步骤1:确定14nm尺寸先进FinFET器件的关键参数,即固定参数;Step 1: Determine the key parameters of 14nm size advanced FinFET devices, i.e. fixed parameters;
步骤2:根据所述尺寸参数使用TCAD器件仿真建立14nm尺寸先进FinFET器件的物理模型;Step 2: Use TCAD device simulation to establish a physical model of an advanced FinFET device with a size of 14 nm according to the size parameters;
步骤3:确定14nm尺寸先进FinFET器件的目标电学指标;Step 3: Determine the target electrical specifications for 14nm size advanced FinFET devices;
步骤4:基于TCAD,确定模拟电特性的仿真物理模型;Step 4: Based on TCAD, determine the simulation physical model of the simulated electrical characteristics;
步骤5;根据所建立的14nm尺寸先进FinFET器件物理模型与目标电学指标拟合;Step 5: Fitting the established 14nm size advanced FinFET device physical model with the target electrical index;
步骤6:提取模型其他相关参数,建立完整的14nm尺寸先进FinFET器件模型;Step 6: Extract other relevant parameters of the model, and establish a complete 14nm size advanced FinFET device model;
在步骤1中,通过现有技术的经验数据确定14nm尺寸先进FinFET器件的关键尺寸参数,其中栅极长度为20nm、Fin高度为42nm、Fin宽度为8nm、等效栅氧化层厚度为0.5nm、栅极间隔为70nm、源/漏区掺杂浓度为1×10-21cm-3、体硅掺杂浓度1×10-18cm-3、沟道掺杂浓度1×10-15cm-3、源漏电阻1×10-9Ωcm2。In step 1, the key dimension parameters of the 14nm size advanced FinFET device are determined through the empirical data of the prior art, wherein the gate length is 20nm, the Fin height is 42nm, the Fin width is 8nm, the equivalent gate oxide thickness is 0.5nm, The gate spacing is 70nm, the source/drain doping concentration is 1×10 -21 cm -3 , the bulk silicon doping concentration is 1×10 -18 cm -3 , and the channel doping concentration is 1×10 -15 cm -3 , The source-drain resistance is 1×10 -9 Ωcm 2 .
在步骤2中,按照所述的14nm尺寸先进FinFET器件的关键参数,使用计算机辅助工具Sentaurus TCAD对其半导体器件进行器件建模仿真,如图3所示为器件模型图。器件整体主要由二氧化硅衬底306构成,源漏突起形成鳍型,源漏区域与沟道区域之间为间隔区域。源漏之上与金属钨接触形成漏电极301和源电极303,沟道区域之上于高K金属栅TiN接触形成栅电极302。在栅极与沟道区域之间放置栅氧化层305,其材料使用高K材料HfO2薄层与SiO2薄层相结合。在源漏电极与栅电极之间的间隔区域放置Si3N4层304以隔绝两电极的相互干扰。其中,高K是指电介质材料具有高介电常数使得栅极与沟道之间(源漏极之间)产生很好的场效应的特性并降低漏电流密度。In
在步骤3中,通过现有技术的经验数据确定电学指标,当Vd为0.05V时,饱和电流Isat为0.237mA/μM,当Vd为0.7V时,饱和电流Isat为1.04mA/μm。N型FinFET的DIBL为~60mV/V,以及电特性转移曲线。In
在步骤4中,采用TCAD工具模拟FinFET结构,要深入探究器件的物理特性,需要添加适当的物理模型。进入深纳米尺寸的半导体器件,电子和空穴的波动性质不可忽略,需要添加量子修正模型。Philips模型用来描述迁移率受温度的影响和电子空穴间的散射关系。使用Lombardi模型可以描述高电介质常数引起的迁移率变化及声子散射等影响。In
依照先进FinFET器件的物理特性,确定其仿真物理模型,包括量子修正模型、费米模型、硅能带收缩模型、载流子复合模型、电场饱和迁移模型、Philips迁移模型、ThinLayer迁移模型、高k散射模型、Lombardi模型。在此模型的基础上进行器件电学特性仿真,使用的载流子传输方程为移-扩散方程DriftDiffusion。According to the physical characteristics of advanced FinFET devices, determine their simulation physical models, including quantum correction model, Fermi model, silicon band contraction model, carrier recombination model, electric field saturation migration model, Philips migration model, ThinLayer migration model, high-k Scattering model, Lombardi model. On the basis of this model, the electrical characteristics of the device are simulated, and the carrier transport equation used is the shift-diffusion equation DriftDiffusion.
在步骤5中,根据已有的饱和电流Isat、电特性转移曲线,使用Sentautus TCAD软件校准物理模型。在FinFET器件中,沟道区域与体硅区域掺杂为均匀掺杂,源漏区域掺杂为高斯掺杂。改变源漏区域的掺杂的深度与扩散宽度可调整转移曲线,其中设置向下扩散深度为30nm。在软件中,栅极TiN材料的功函数设置为4.66,依据现有经验与拟合数据看,将功函数改成4.4可更好拟合。在沟道与栅氧化层之间注入固定电荷,改变其固定电荷浓度微调阈值电压和线性驱动电流。在用计算机辅助工具进行器件仿真时,其所有的漏极电流都被有效沟道宽度Weff归一化,其Weff=2Hfin+Wfin。In
将计算机辅助工具Sentautus TCAD模拟的电特性转移曲线与电学指标的电特性转移曲线进行比较。如图4所示,将纵坐标漏极电流取对数处理,可看出模拟的曲线与电学指标曲线大致拟合。通过测量模拟曲线的电特性得到,当Vd为0.05V时,饱和电流Isat为0.217mA/μm,与电学指标的相对误差为8.44%。当Vd为0.7V时,饱和电流Isat为1.08mA/μm,与电学指标的相对误差为3.82%。两种相对误差都小于10%,说明模拟曲线拟合准确。The electrical characteristic transfer curves simulated by the computer aided tool Sentautus TCAD were compared with the electrical characteristic transfer curves of electrical indicators. As shown in Fig. 4, taking the logarithm of the ordinate drain current, it can be seen that the simulated curve roughly fits the electrical index curve. By measuring the electrical characteristics of the simulated curve, when V d is 0.05V, the saturation current Isat is 0.217mA /μm, and the relative error with the electrical index is 8.44%. When V d is 0.7V, the saturation current Isat is 1.08mA /μm, and the relative error with the electrical index is 3.82%. Both relative errors are less than 10%, indicating that the simulation curve is accurate.
在步骤6中,提取已拟合好的仿真物理模型其他参数已构建完整的14nm尺寸先进FinFET器件模型,其中物理模型的Vdd的取值为0.7V。如图5所示,当Vd为0.05V时,泄露电流Ioff为2.59-9A/μm,饱和电流Isat为2.17-4A/μm,亚阈值摆幅SS为70.986V/dec,阈值电压Vth为0.195V。当Vd为0.7V时,泄露电流Ioff为4.27e-9A/μm,饱和电流Isat为1.08e-3A/μm,亚阈值摆幅SS为67.139V/dec,阈值电压Vth为0.173V。器件模型的DIBL为43.0769mV/V。In
在本实施例中,本发明基于先进的现有技术经验,借助TCAD仿真工具对14nm尺寸先进FinFET器件进行模拟仿真,根据FinFET物理特性确定电学特性仿真中物理特性模型,确定拟合电学指标后,调整模型参数拟合数据,结合器件仿真其他特性参数,建立完整的14nm尺寸先进FinFET器件模型。本发明的技术效果是能够准确反应新一代14nm尺寸先进FinFET器件性能,通过FinFET器件的物理器件建模,模拟结果与电学指标相对误差小于10%,能够准确反应新一代14nm尺寸先进FinFET器件性能,能够通过物理建模对新一代半导体器件器件进行特性分析,为对先进半导体器件的研发分析和优化提供研究基础。In this embodiment, based on the advanced prior art experience, the present invention simulates an advanced FinFET device with a size of 14 nm by means of a TCAD simulation tool, determines the physical characteristic model in the electrical characteristic simulation according to the physical characteristics of the FinFET, and determines the fitting electrical index. Adjust the model parameters to fit the data, and combine other characteristic parameters of device simulation to build a complete 14nm size advanced FinFET device model. The technical effect of the invention is that the performance of a new generation of advanced FinFET devices with a size of 14 nm can be accurately reflected. Through the modeling of the physical device of the FinFET device, the relative error between the simulation results and the electrical indicators is less than 10%, and the performance of the new generation of advanced FinFET devices with a size of 14 nm can be accurately reflected. It can analyze the characteristics of a new generation of semiconductor devices through physical modeling, and provide a research basis for the research and development analysis and optimization of advanced semiconductor devices.
本实施例公开了一种FET器件电特性建模系统,包括:This embodiment discloses a system for modeling electrical characteristics of a FET device, including:
存储器,用于存储程序;memory for storing programs;
处理器,用于加载所述程序以执行的方法。A processor for loading the program to execute the method.
本实施例公开了一种存储介质,其存储有程序,所述程序被处理器执行时所述的方法。This embodiment discloses a storage medium, which stores a program, and the method is described when the program is executed by a processor.
对于上述方法实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。The step numbers in the above-mentioned method embodiments are set only for the convenience of description, and the order between the steps is not limited, and the execution order of each step in the embodiments can be performed according to the understanding of those skilled in the art Adaptive adjustment.
以上是对本发明的较佳实施进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。The above is a specific description of the preferred implementation of the present invention, but the present invention is not limited to the described embodiments, and those skilled in the art can also make various equivalent deformations or replacements without departing from the spirit of the present invention, These equivalent modifications or substitutions are all included within the scope defined by the claims of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010651063.9A CN111967132B (en) | 2020-07-08 | 2020-07-08 | FET device electrical characteristic modeling method, system and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010651063.9A CN111967132B (en) | 2020-07-08 | 2020-07-08 | FET device electrical characteristic modeling method, system and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111967132A true CN111967132A (en) | 2020-11-20 |
CN111967132B CN111967132B (en) | 2024-10-18 |
Family
ID=73361431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010651063.9A Active CN111967132B (en) | 2020-07-08 | 2020-07-08 | FET device electrical characteristic modeling method, system and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111967132B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114118004A (en) * | 2021-11-30 | 2022-03-01 | 上海华虹宏力半导体制造有限公司 | How to make custom chips |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101740393A (en) * | 2008-11-27 | 2010-06-16 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and manufacture method thereof |
CN102184879A (en) * | 2011-05-03 | 2011-09-14 | 中国科学院上海微系统与信息技术研究所 | TCAD simulation calibration method of SOI field effect transistor |
CN102637215A (en) * | 2011-02-10 | 2012-08-15 | 上海宏力半导体制造有限公司 | Modeling method of semiconductor device |
CN104881520A (en) * | 2015-05-04 | 2015-09-02 | 复旦大学 | Tri-gate Fin FET (fin field effect transistor) potential and sub-threshold oscillation amplitude extracting method |
-
2020
- 2020-07-08 CN CN202010651063.9A patent/CN111967132B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101740393A (en) * | 2008-11-27 | 2010-06-16 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and manufacture method thereof |
CN102637215A (en) * | 2011-02-10 | 2012-08-15 | 上海宏力半导体制造有限公司 | Modeling method of semiconductor device |
CN102184879A (en) * | 2011-05-03 | 2011-09-14 | 中国科学院上海微系统与信息技术研究所 | TCAD simulation calibration method of SOI field effect transistor |
CN104881520A (en) * | 2015-05-04 | 2015-09-02 | 复旦大学 | Tri-gate Fin FET (fin field effect transistor) potential and sub-threshold oscillation amplitude extracting method |
Non-Patent Citations (2)
Title |
---|
孙俊雅: "14纳米节点FinFET器件自热效应及其建模研究", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》, no. 9, 15 September 2019 (2019-09-15), pages 3 * |
张燕: "三栅FinFET电学特性仿真分析与研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》, no. 2013, 15 December 2013 (2013-12-15), pages 3 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114118004A (en) * | 2021-11-30 | 2022-03-01 | 上海华虹宏力半导体制造有限公司 | How to make custom chips |
Also Published As
Publication number | Publication date |
---|---|
CN111967132B (en) | 2024-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pan et al. | A quasi-analytical model for double-gate tunneling field-effect transistors | |
Narang et al. | Drain current model for a gate all around (GAA) p–n–p–n tunnel FET | |
Chen et al. | Modeling and analysis of gate-all-around silicon nanowire FET | |
US20130152033A1 (en) | TCAD Emulation Calibration Method of SOI Field Effect Transistor | |
Bhuwalka et al. | Optimization and benchmarking FinFETs and GAA nanosheet architectures at 3-nm technology node: Impact of unique boosters | |
US10846451B1 (en) | Methods of modelling irregular shaped transistor devices in circuit simulation | |
Shukla et al. | Comparative simulation analysis of process parameter variations in 20 nm triangular FinFET | |
CN103837744A (en) | Method for measuring external parasitic resistance of MOS transistor | |
CN108563801A (en) | A kind of test structure and method of extraction FinFET dead resistance models | |
CN117252150A (en) | Calibration method, device and storage medium of SiC channel mobility TCAD simulation model | |
CN117688783A (en) | Transistor self-heating effect simulation method, device and electronic equipment | |
CN111967132A (en) | FET device electrical characteristic modeling method, system and storage medium | |
Singh et al. | Channel engineering assisted performance enhancement of metal gate sub-10nm ballistic SiNWFET for futuristic device applications | |
Prakash et al. | Impact of NBTI aging on self-heating in nanowire FET | |
Jansson et al. | Intrinsic performance of InAs nanowire capacitors | |
Sun et al. | Impact of process fluctuations on RF small-signal parameter of gate-all-around nanosheet transistor beyond 3 nm node | |
Su et al. | A systematic approach to correlation analysis of in-line process parameters for process variation effect on electrical characteristic of 16-nm HKMG bulk FinFET devices | |
Guerrieri et al. | A novel TCAD approach to temperature dependent DC FinFET variability analysis | |
Guo et al. | 3-D analytical model for short-channel triple-gate junctionless MOSFETs | |
CN113343501A (en) | FinFET device modeling simulation optimization method and system based on self-heating effect | |
Gossmann | Finfet and gate-all-around device design and performance/yield optimization | |
Sagar et al. | Benchmarking and optimization of circular double gate transistor (CDGT) for sub 10 nm nodes | |
Hemmat et al. | Study on the impact of device parameter variations on performance of III-V homojunction and heterojunction tunnel FETs | |
US20230274061A1 (en) | Method and system for modeling, simulating and optimizing finfet device based on self-heating effect | |
Loke et al. | FinFET Technology Considerations for Circuit Design |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |