CN111965482B - 一种配电网高阻接地故障保护选线启动算法 - Google Patents

一种配电网高阻接地故障保护选线启动算法 Download PDF

Info

Publication number
CN111965482B
CN111965482B CN202010690482.3A CN202010690482A CN111965482B CN 111965482 B CN111965482 B CN 111965482B CN 202010690482 A CN202010690482 A CN 202010690482A CN 111965482 B CN111965482 B CN 111965482B
Authority
CN
China
Prior art keywords
fault
zero sequence
sequence voltage
frequency
distribution network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010690482.3A
Other languages
English (en)
Other versions
CN111965482A (zh
Inventor
束洪春
刘俊杰
董俊
梁雨婷
于永波
朱亮
薄志谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202010690482.3A priority Critical patent/CN111965482B/zh
Publication of CN111965482A publication Critical patent/CN111965482A/zh
Application granted granted Critical
Publication of CN111965482B publication Critical patent/CN111965482B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors

Abstract

本发明涉及一种配电网高阻接地故障保护选线启动算法,属于电力系统继电保护技术领域。本发明首先分别采集各馈线发生高阻接地故障时与不同期合闸时的零序电压,再以母线侧为观测点,对观测到的零序电压波形,导入到MATLAB中,进行快速傅里叶分解并观察故障时和非同期合闸时频率的不同。本发明利用故障发生时与线路发生非同期合闸时包含高频分量的不同来区分是否发生了高阻接地故障,该原理简便有效,对复杂配电网线路高阻故障的选线启动大有好处,易于推广应用。

Description

一种配电网高阻接地故障保护选线启动算法
技术领域
本发明涉及一种配电网高阻接地故障保护选线启动算法,属于电力系统继电保护技术领域。
背景技术
高阻接地故障一般长时间存在,尤其是在不接地系统中,高阻接地故障的故障电流更小,故障点更不稳定,选线难度大。如果数值不大的故障电流长期存在而不能被发现,则会酿成严重的后果:故障点处产生电弧和高温现象,引发火灾;导致电气设备绝缘的破坏,从而导致人身触电等危害。高阻接地故障特征:1、故障电流微弱;2、故障呈现随机性;3、故障非线性畸变。
谐波和能量的检测方法是针对高阻接地故障检测方法的主流,其中主要包括:三次谐波算法、高频分量算法、偶次谐波算法、暂态功率方向算法、能量算法、小波变化算法、噪声检测算法、基于卡尔曼滤波算法。我主要看了利用零序电流波形畸变凹凸性的高阻接地故障检测方法和基于零序功率变化量的高阻接地保护。
针对高阻接地故障的检测和选线的方法很多,但是启动算法只是单纯的利用超过相电压幅值的15%启动,而高阻接地后,工频零序电压的变化量就很低,这种启动算法天然就不能在发生高阻接地故障时启动保护,选线的方法再多,保护装置不能启动,保护也无法出口动作。
发明内容
本发明要解决的技术问题是解决现有技术的不足,提供一种配电网高阻接地故障保护选线启动算法,运用傅里叶分解(FFT)算法分解出工频电压和其他频率的电压,判断故障与非故障的电压变化的区别,从而能可靠的选出故障支路
本发明的技术方案是:一种配电网高阻接地故障保护选线启动算法,具体步骤为:
Step1:分别采集配网母线下层的各馈线发生高阻接地故障时与不同期合闸时的零序电压。
Step2:以母线侧为观测点,对观测到的零序电压波形,导入到MATLAB中,进行快速傅里叶(FFT)分解并观察故障时和非同期合闸时频率的不同。
若分解后得到的各个频率段的零序电压,频率大于800Hz,零序电压幅值为0,则发生高阻接地故障。
对于频率高于800Hz的零序电压,其幅值大于0,则发生不同期合闸故障。
Step3:将得到的零序电压波形图经过快速傅里叶分解后,得到各个频段的电压幅值。
若接地故障带来的零序电压变化,经过分解后,工频零序电压的幅值U50为最大,下标50代表工频50Hz。
若不同期合闸故障带来的零序电压变化,经过分解后,25Hz零序电压幅值U25和工频的零序电压幅值U50的比值接近于1,且在900~1000Hz处,零序电压的幅值会在0V~100V的区间内变化。
Step4:根据上述规律,得到电压比值启动门槛值k:
Figure GDA0003619298730000021
即在25Hz与50Hz中的零序电压最大值比两者中的最小值。考虑一定的裕度,保证在电网中有波动时,有足够的的准确性,设k=1.3为边界,若k小于1.3,可判断为不同期合闸故障,否则为高阻接地故障。
零序电压U0的计算公式如下:
Figure GDA0003619298730000022
Ua、Ub、Uc分别表示三相电压。
采集故障后的零序电压与非同期合闸带来的零序电压,采样率为10kHz,即采样步长为10μs,就是每隔10μs采一个点,一个周期20ms,用10μs的采样步长可以不失真的还原波形,步长选的越小,波形还原度越高,占用内存越多,针对配电网,10μs的仿真步长足够保证精确度。通过傅里叶算法计算输入信号x(t),公式如下:
Figure GDA0003619298730000023
式中,X0为恒定直流分量,ω为基频角频率,Xn
Figure GDA0003619298730000024
分别为第n次谐波分量的幅值和相位,nωt中,n代表n次谐波,ω代表角速度,t是时间。
为了在数字计算中运算方便,将上式用实、虚部形式表示,有如下公式:
Figure GDA0003619298730000025
XRn、XIn分别为n次谐波分量的实部和虚部,在数字计算中,用采样值计算时,实部和虚部的计算公式如下:
Figure GDA0003619298730000031
N为每基频周期内的采样点数。因为nωt是针对连续变量做的计算,进行数字计算时,需将其离散化。
将nωt利用离散化公式进行离散,具体为:
Figure GDA0003619298730000032
每回馈出线的母线侧都要可测量,在每回馈出线的首端安装电压互感器。保证在任一馈出线发生故障后,均可测到零序电压数据。
本发明的有益效果是:
1、降低了保护启动的门坎值,大幅提高了故障选线的灵敏性,解决了工程上高阻接地故障不能启动的问题;同时也考虑了,提高灵敏性后,准确性下降的问题,以非同期合闸为代表,区分非同期合闸与故障的区别。
2、本发明利用故障发生时与线路发生非同期合闸时包含高频分量的不同来区分是否发生了高阻接地故障,该原理简便有效,对复杂配电网线路高阻故障的选线启动大有好处,易于推广应用。
附图说明
图1是本发明配电网馈出线结构电网系统结构图;
图2是本发明高阻接地故障后零序电压FFT分解图;
图3是本发明非同期合闸后零序电压FFT分解图。
具体实施方式
下面结合附图和具体实施方式,对本发明作进一步说明。
实施例1:一种配电网高阻接地故障保护选线启动算法,具体步骤为:
Step1:分别采集配网母线下层的各馈线发生高阻接地故障时与不同期合闸时的零序电压;对于配电网的故障选线启动算法,本发明选取以一条母线和6条馈出线为例,如附图1所示。
Step2:以母线侧为观测点,对观测到的零序电压波形,导入到MATLAB中,进行快速傅里叶(FFT)分解并观察故障时和非同期合闸时频率的不同。
若分解后得到的各个频率段的零序电压,频率大于800Hz,零序电压幅值为0,则发生高阻接地故障。
对于频率高于800Hz的零序电压,其幅值大于0,则发生不同期合闸故障。
Step3:将得到的零序电压波形图经过快速傅里叶分解后,得到各个频段的电压幅值。
若接地故障带来的零序电压变化,经过分解后,工频零序电压的幅值U50为最大,下标50代表工频50Hz。
若不同期合闸故障带来的零序电压变化,经过分解后,25Hz零序电压幅值U25和工频的零序电压幅值U50的比值接近于1,且在900~1000Hz处,零序电压的幅值会在0V~100V的区间内变化。
Step4:根据上述规律,得到电压比值启动门槛值k:
Figure GDA0003619298730000041
即在25Hz与50Hz中的零序电压最大值比两者中的最小值。考虑一定的裕度,保证在电网中有波动时,有足够的的准确性,设k=1.3为边界,若k小于1.3,可判断为不同期合闸故障,否则为高阻接地故障。
本发明抛弃了原有的只使用故障后工频零序电压超过相电压幅值的15%的启动方法,将启动值门坎降至9%,再利用快速傅里叶(FFT)算法分解出其余频率的分量。将启动值降低,可以保证保护的启动灵敏性,但是准确性则会降低,故而区分故障与非故障变得尤为重要。本发明利用故障发生时与线路发生非同期合闸时包含高频分量的不同来区分是否发生了高阻接地故障,该原理简便有效,对复杂配电网线路高阻故障的选线启动大有好处,易于推广应用。
实施例2:某110kV/10.5kV的6馈出线配电网仿真模型如图1所示,它的6条馈出线均可观测,馈出线1、3、5分别是长度为10km、9km、8km的架空线路,馈出线2、4分别是长度为5km、8km的电缆线路,馈出线6是线缆混合线路,5km的线路7km的电缆。导线型号选定为LGJ-185/30,三相导线水平排列结构。
(1)在配电网中的馈出线6上设置单相接地故障,并设置1200Ω的接地电阻,并在观测点的保护安装处分别获取线路的三相电压,并计算出故障点零压并导入数据进MATLAB中。
(2)在配电网中的馈出线6上设置三相不同期合闸,并在观测点的保护安装处分别获取线路的三相电压,并计算出故障点零压并导入数据进MATLAB中。
(3)利用MATLAB中的FFT算法,对导入的零序电压进行各个频率段的分解。提取出25Hz和工频下的电压幅值。
(4)设定故障开始时刻为182ms;采样频率为10kHz。设定不同期合闸A相在192ms合闸,B相在190ms合闸,C相在182ms合闸,合闸不同期的时刻最多相差10ms,满足IEC的不同期合闸要求。
(5)通过图2可以计算出k约为2.5,可以验证图2为高阻接地故障带来的零压波动,保护启动且出口动作;通过图3可以计算出k约为1.04,小于1.3,可以验证图3为非同期合闸带来的零压波动,保护启动而不动作。
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (3)

1.一种配电网高阻接地故障保护选线启动算法,其特征在于:
Step1:分别采集配网母线下层的各馈线发生高阻接地故障时与不同期合闸时的零序电压;
Step2:以母线侧为观测点,对观测到的零序电压波形,导入到MATLAB中,进行快速傅里叶分解并观察故障时和非同期合闸时频率的不同;
若分解后得到的各个频率段的零序电压,频率大于800Hz,零序电压幅值为0,则发生高阻接地故障;
对于频率高于800Hz的零序电压,其幅值大于0,则发生不同期合闸故障;
Step3:将得到的零序电压波形图经过快速傅里叶分解后,得到各个频段的电压幅值;
若接地故障带来的零序电压变化,工频零序电压的幅值U50为最大,下标50代表工频50Hz;
若不同期合闸故障带来的零序电压变化,25Hz零序电压幅值U25和工频的零序电压幅值U50的比值接近于1,且在900~1000Hz处,零序电压的幅值会在0V~100V的区间内变化;
Step4:根据上述规律,得到电压比值启动门槛值k:
Figure FDA0003619298720000011
设k=1.3为边界,若k小于1.3,可判断为不同期合闸故障,否则为高阻接地故障。
2.根据权利要求1所述的配电网高阻接地故障保护选线启动算法,其特征在于:零序电压U0的计算公式如下:
Figure FDA0003619298720000012
Ua、Ub、Uc分别表示三相电压。
3.根据权利要求1所述的配电网高阻接地故障保护选线启动算法,其特征在于:采集故障后的零序电压与非同期合闸带来的零序电压,通过傅里叶算法计算输入信号x(t),公式如下:
Figure FDA0003619298720000013
式中,X0为恒定直流分量,ω为基频角频率,Xn
Figure FDA0003619298720000021
分别为第n次谐波分量的幅值和相位,nωt中,n代表n次谐波,ω代表角速度,t是时间;
将nωt利用离散化公式进行离散,具体为:
Figure FDA0003619298720000022
CN202010690482.3A 2020-07-17 2020-07-17 一种配电网高阻接地故障保护选线启动算法 Active CN111965482B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010690482.3A CN111965482B (zh) 2020-07-17 2020-07-17 一种配电网高阻接地故障保护选线启动算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010690482.3A CN111965482B (zh) 2020-07-17 2020-07-17 一种配电网高阻接地故障保护选线启动算法

Publications (2)

Publication Number Publication Date
CN111965482A CN111965482A (zh) 2020-11-20
CN111965482B true CN111965482B (zh) 2022-06-21

Family

ID=73361656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010690482.3A Active CN111965482B (zh) 2020-07-17 2020-07-17 一种配电网高阻接地故障保护选线启动算法

Country Status (1)

Country Link
CN (1) CN111965482B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255295A (zh) * 2011-08-11 2011-11-23 中煤科工集团重庆研究院 基于补偿接地电抗支路电流原理的煤矿漏电保护方法
CN203942275U (zh) * 2014-06-27 2014-11-12 重庆大学 一种35kV中性点不接地配电网铁磁谐振抑制装置
CN106896294A (zh) * 2017-03-27 2017-06-27 国家电网公司 基于暂态放电量的非有效接地系统故障选线方法
CN208257430U (zh) * 2018-06-22 2018-12-18 国电大渡河流域水电开发有限公司龚嘴水力发电总厂 一种实现平稳并网的同期合闸系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884707B (zh) * 2017-09-30 2018-12-21 杨启蓓 高压断路器分合闸时间在线监测装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255295A (zh) * 2011-08-11 2011-11-23 中煤科工集团重庆研究院 基于补偿接地电抗支路电流原理的煤矿漏电保护方法
CN203942275U (zh) * 2014-06-27 2014-11-12 重庆大学 一种35kV中性点不接地配电网铁磁谐振抑制装置
CN106896294A (zh) * 2017-03-27 2017-06-27 国家电网公司 基于暂态放电量的非有效接地系统故障选线方法
CN208257430U (zh) * 2018-06-22 2018-12-18 国电大渡河流域水电开发有限公司龚嘴水力发电总厂 一种实现平稳并网的同期合闸系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Research on summation impedance relay with ability to identify high-resistance ground fault;Shan He 等;《2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)》;20140619;第1-5页 *
输电线路高阻接地故障检测的新方法研究;陈佳佳;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20070615(第6期);C042-216 *
高压直流输电线路故障识别的分形算法;束洪春 等;《电力系统自动化》;20120630;第36卷(第12期);第49-54+106页 *

Also Published As

Publication number Publication date
CN111965482A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
Dong et al. Implementation and application of practical traveling-wave-based directional protection in UHV transmission lines
Yadav et al. A single ended directional fault section identifier and fault locator for double circuit transmission lines using combined wavelet and ANN approach
Borghetti et al. Integrated use of time-frequency wavelet decompositions for fault location in distribution networks: Theory and experimental validation
Gilany et al. Traveling-wave-based fault-location scheme for multiend-aged underground cable system
Kulkarni et al. Incipient fault location algorithm for underground cables
CN109283428B (zh) 一种基于零序分量高阶差分变换的馈线出口处单相接地暂态量保护方法
Chu Unbalanced current analysis and novel differential protection for HVDC transmission lines based on the distributed parameter model
CN107179466A (zh) 小电流接地系统的单相接地故障选线方法
CN113484679B (zh) 小电阻接地系统高阻接地故障检测方法、系统及存储介质
Wang et al. Faulty feeder detection based on the integrated inner product under high impedance fault for small resistance to ground systems
CN107703416A (zh) 小电流接地系统继发性单相接地故障区段定位方法和系统
Sun et al. A distribution line fault location estimation algorithm based on electromagnetic time-reversal method calculated in the finite difference time domain
Liu et al. Robust traveling wave-based protection scheme for multiterminal dc grids
CN111965482B (zh) 一种配电网高阻接地故障保护选线启动算法
Shu et al. MMC-HVDC line fault identification scheme based on single-ended transient voltage information entropy
Zhu et al. High impedance grounding fault detection in resonance grounding system based on nonlinear distortion of zero-sequence current
Kale et al. Comparison of wavelet transform and Fourier transform based methods of phasor estimation for numerical relaying
Wu et al. A new single ended fault location technique using travelling wave natural frequencies
Peng et al. Fault Sensing of the Distribution Cable Feeders by Time-Domain Measurements
Nie et al. Convolution Based Time Domain Fault Location Method for Lines in MMC-HVDC Grids with Distributed and Frequency Dependent Line Model
Nucci et al. Lightning-induced voltages on overhead distribution lines: Theoretical and experimental investigation of related problems and their impact on power quality
Liu et al. Single-ended dc fault location method for mmc-based hvdc power system using adaptive multi-step levenberg-marquardt algorithm
Kulkarni Fault location and characterization in AC and DC power systems
Minullin Use of location probing to detect damage to the wires of high-voltage electric transmission lines
Cong et al. Ground Fault Identification and Key Feature Extraction Method for Distribution Network Based on Waveform Analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant