CN111952400B - 一种混合等离子体波导的光电探测器 - Google Patents

一种混合等离子体波导的光电探测器 Download PDF

Info

Publication number
CN111952400B
CN111952400B CN202010641914.1A CN202010641914A CN111952400B CN 111952400 B CN111952400 B CN 111952400B CN 202010641914 A CN202010641914 A CN 202010641914A CN 111952400 B CN111952400 B CN 111952400B
Authority
CN
China
Prior art keywords
metal electrode
phosphorus
graphene
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010641914.1A
Other languages
English (en)
Other versions
CN111952400A (zh
Inventor
黄旭光
张新
梁勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202010641914.1A priority Critical patent/CN111952400B/zh
Publication of CN111952400A publication Critical patent/CN111952400A/zh
Application granted granted Critical
Publication of CN111952400B publication Critical patent/CN111952400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种混合等离子体波导的光电探测器,包括:衬底,所述衬底的上表面铺设有硅波导和第一金属电极,所述硅波导的上表面设有由黑砷磷薄膜和石墨烯薄膜相接触组成的异质结,所述异质结的上表面设有第二金属电极,所述石墨烯薄膜的一部分延伸离开硅波导,并与第一金属电极的上表面接触。待测光沿着硅波导进行长距离传输,在进行传输的过程中,待测光的消逝波会进入到石墨烯薄膜和黑砷磷薄膜所形成的异质结,从而被所述异质结吸收并进行光电转换。通过这样的结构使得整个光电探测器响应灵敏度高,具有高探测效率。本发明用于光电探测器技术领域。

Description

一种混合等离子体波导的光电探测器
技术领域
本发明涉及光电器件技术领域,特别涉及一种混合等离子体波导的光电探测器。
背景技术
在石墨烯、过渡金属硫族化合物、黑磷和黑砷磷等二维材料光探测器研究中,绝大部分探测光都是垂直照射二维材料超薄平面,仅纳米级的膜厚对光束的直接吸收极小。虽然有部分工作利用金属等各种纳米阵列结构的光场局域共振效应或反射干涉法用以部分增强二维材料表面光场、间接增大二维材料光吸收,但不仅其增强效果有限、纳米阵列结构本身会损耗掉一部分光能量,而且只限于特定波长的共振或干涉增强,难以取得高探测效率,并造成较大的探测器极间电容和较长的响应时间。
发明内容
本发明目的在于提供一种混合等离子体波导的光电探测器,以解决现有技术中所存在的一个或多个技术问题,至少提供一种有益的选择或创造条件。
为解决上述技术问题所采用的技术方案:一种混合等离子体波导的光电探测器,包括:衬底,所述衬底的上表面铺设有硅波导和第一金属电极,所述硅波导的上表面设有由黑砷磷薄膜和石墨烯薄膜相接触组成的异质结,所述异质结的上表面设有第二金属电极,所述石墨烯薄膜的一部分延伸离开硅波导,并与第一金属电极的上表面接触。
进一步,所述石墨烯薄膜的下表面与硅波导的上表面接触,所述石墨烯薄膜的上表面与黑砷磷薄膜的下表面接触,所述黑砷磷薄膜的上表面与第二金属电极接触。
进一步,所述第一金属电极的材质为金、银或者铜。
进一步,所述第二金属电极的材质为金、银或者铜。
进一步,所述第一金属电极与第二金属电极之间的距离大于等于10nm且小于等于100nm。
进一步,所述黑砷磷薄膜的禁带宽度≤0.15eV。
进一步,所述衬底为二氧化硅。
进一步,所述石墨烯薄膜为单层石墨烯。
本发明的有益效果:通过一种混合等离子体波导的光电探测器,包括:衬底,所述衬底的上表面铺设有硅波导和第一金属电极,所述硅波导的上表面设有由黑砷磷薄膜和石墨烯薄膜相接触组成的异质结,所述异质结的上表面设有第二金属电极,所述石墨烯薄膜的一部分延伸离开硅波导,并与第一金属电极的上表面接触。待测光沿着硅波导进行长距离传输,在进行传输的过程中,待测光的消逝波会进入到石墨烯薄膜和黑砷磷薄膜所形成的异质节,从而被所述异质结吸收并进行光电转换。而且,由于黑砷磷薄膜和石墨烯薄膜接触组成异质结构成混合等离子体波导,光波进入到硅波导时,由于表面等离子体的作用,光波得到增强,进而通过混合波导的亚波长光场局域作用使待测光的能量束缚在纳米半导体薄膜区域内。因此,待测光在长距离传输的过程中全部逐渐被吸收并进行光电转换。通过这样的结构使得整个光电探测器响应灵敏度高,具有高探测效率。
附图说明
下面结合附图和实施例对本发明做进一步的说明;
图1是光电探测器的截面结构示意图;
图2是光电探测器的立体结构示意图。
具体实施方式
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,如果具有“若干”之类的词汇描述,其含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参照图1和图2,一种混合等离子体波导的光电探测器,包括:衬底600,所述衬底600的上表面铺设有硅波导500和第一金属电极200,所述硅波导500的上表面设有由黑砷磷薄膜400和石墨烯薄膜300相接触组成的异质结,所述异质结的上表面设有第二金属电极100,所述石墨烯薄膜300的一部分延伸离开硅波导500,并与第一金属电极200的上表面接触。其中,所述衬底600为二氧化硅。所述硅波导500是通过硅层与所述异质结和衬底所构成的波导形式。当然,所述硅波导500也可以是独立的一个波导部件。
其中,对于石墨烯薄膜300与黑砷磷薄膜400之间的层叠方式,在一些优选的实施例中,所述石墨烯薄膜300的下表面与硅波导500的上表面接触,所述石墨烯薄膜300的上表面与黑砷磷薄膜400的下表面接触,所述黑砷磷薄膜400的上表面与第二金属电极100接触。所述黑砷磷薄膜400的禁带宽度≤0.15eV。所述第一金属电极200与第二金属电极100之间的距离大于等于10nm且小于等于100nm。
本光电探测器的工作原理为:待测光经过耦合进入硅波导500。待测光沿着硅波导500进行传输,在进行传输的过程中,待测光的消逝波会进入到石墨烯薄膜300和黑砷磷薄膜400所形成的异质结,从而被所述异质结吸收并进行光电转换。而且,由于黑砷磷薄膜400和石墨烯薄膜300接触组成异质结构成混合等离子体波导,光波进入到硅波导500时,由于表面等离子体的作用,光波得到增强,进而通过混合波导的亚波长光场局域作用使待测光的能量束缚在纳米半导体薄膜区域内。因此,待测光在长距离传输的过程中全部逐渐被吸收并进行光电转换。具体为:待测光不断沿着硅波导500进行长距离传输并被全部吸收用于光电转换。同时,由于第二金属电极100、石墨烯薄膜300和黑砷磷薄膜400形成层叠结构,使得异质结的非对称能带弯曲结构和功函数差异,进一步增强了内建电场对电子空穴对的分离作用,使黑砷磷薄膜400的光生热空穴迁移至黑砷磷薄膜400与第二金属电极100接触面,部分光生热电子直接迁移到石墨烯薄膜300和部分热电子在快速冷却过程中迁移到石墨烯薄膜300。通过这样的结构使得整个光电探测器响应灵敏度高,具有高探测效率。在光电探测器的制作的时候,整个光电探测器会有一定的长度。理论上,光电探测器的尺度越长,其效果越好。
在一些优选的实施例中,由于黑砷磷薄膜400的禁带宽度小于等于0.15eV,在光场局域区形成材料对光子的吸收,进而产生电子空穴对。由于黑砷磷薄膜400和石墨烯薄膜300组成的异质结的非对称(金属/黑砷磷/石墨烯)能带弯曲结构和功函数差异。该非对称能带弯曲结构和功函数差异打破了传统的金属/二维材料/金属结构中同种材料电极产生的内建电场镜像对称性,进一步增强了内建电场对电子空穴对的分离作用。使得黑砷磷薄膜400的光生热空穴迁移至黑砷磷薄膜400/第二金属电极100的一侧、部分光生热电子直接迁移到石墨烯薄膜300和部分热电子在快速冷却过程中迁移到石墨烯薄膜300。而且,由于第二金属电极100与第一金属电极200仅仅相隔10或数十纳米量级的极短距离,使得分离的空穴和电子在重新复合或被俘获、散射之前就能够几乎瞬间到达各自的电极,即电子–空穴被迅速分离和高效接收。第二金属电极100同时作为混合波导等离子体极化激元的电子云激发振荡层和探测器源电极,使探测光在半导体芯层传输的同时高效产生光生载流子对。
通过上述实施例的结构,使得本光电探测器具有宽波段吸收和低暗电流的光探测能力。光波沿着混合等离子体波导传输至所述异质结处,黑砷磷薄膜400吸收光子产生电子空穴对,由于所述异质结的非对称能带弯曲结构和功函数差异,光电探测器的内建电场不再具有对称性,这个不对称性对电子空穴对有更好的分离作用。黑砷磷薄膜400和石墨烯薄膜300分别快速捕获光生空穴和分离并传送光生电子,并使得分离的正负电荷高效、极短距离和瞬间分别迁移到仅相隔纳米薄层的第二金属电极100和第一金属电极200,实现高效率宽带光电流和低暗电流的光探测。
在一些优选的实施例中,所述第一金属电极200的材质为金、银或者铜。所述第二金属电极100的材质为金、银或者铜。所述石墨烯薄膜300为单层石墨烯。
在本光电探测器中,黑砷磷薄膜400和石墨烯薄膜300是本光电探测器的主要材料,在制作前首先对光电探测器的主要材料进行准备是关键。首先采用短程运输反应法制备块状黑砷磷晶体材料。具体步骤如下,把一定量的高纯度黑磷和砷原料放入石英管,经抽真空处理后放进管式炉中进行双温区的热处理与合成,最后随炉缓冷到室温。然后分别对块状黑砷磷晶体和石墨材料进行多次机械剥离降低材料厚度,制成黑砷磷二维材料和石墨烯二维材料薄片。具体步骤如下,将合成好的块状黑砷磷晶体置于盛有丙酮的烧杯中浸泡五分钟左右,然后取出后再放入盛有异丙醇的烧杯中浸泡十分钟左右,更好的去除体材料表面吸附的杂质。将清洗好的黑砷磷晶体用纯氮气彻底吹干后取少量晶体粘在洁净的透明胶带上,接着对折胶带和轻轻按压,使得胶带与黑砷磷晶体充分接触。此时注意不能用手或者其他表面碰触胶带的粘贴面,避免黑砷磷晶体受到二次污染,透明胶带粘连住黑砷磷晶体后,快速扯拉胶带,黑砷磷晶体会从胶带的粘连处撕裂,然后重复对折、快速撕开胶带的动作五到十次左右,最终在胶带上出现少层的黑砷磷纳米材料,最后使用显微镜对二维材料薄片品质、厚度进行筛选,得到黑砷磷二维材料和石墨烯二维材料。然后,采用干法转移法转移多层、单层二维材料,具体步骤如下,取一小块聚二甲基硅氧烷(PDMS),面积约5×5mm左右,粘连在载玻片上。接着利用洁净的透明胶带将黑砷磷薄膜转移到PDMS上,利用光学显微镜与移动平台将选择好的黑砷磷薄膜与硅基底在竖直方向上对准,在对准的过程中,黑砷磷薄膜始终与基底在竖直方向上保持一些距离。载玻片始终与水平面呈微小角度,对准后慢慢降低PDMS的高度,使载玻片上的PDMS的一边首先与电极接触;继续降低PDMS的位置,载玻片的倾角给黑砷磷样品一定压力,使黑砷磷薄膜与基底表面充分接触。等待三分钟后缓满抬起PDMS,黑砷磷薄膜在范德华力的作用下吸附在基底上。进而制得初级多层黑砷磷与初级单层石墨烯薄片材料。初级黑砷磷与石墨烯表面有吸附的羟基和氧气等污染物,为了去除污染物从而使表面的原子重新分布减少空位,降低缺陷态和其它杂质对电荷的俘获和散射影响。对初级黑砷磷与石墨烯薄片进一步处理,采用三氟甲烷-磺酰亚胺有机酸对其进行化学处理,进而提高探测量子产率,得到最终黑砷磷与石墨烯薄片材料成功将黑砷磷二维材料转移到PDMS上。
黑砷磷晶体的制备方法如下,简单地说,灰砷和红磷按照摩尔体积比从5:5到2:8混合形成的前驱体。添加预先合成的作为矿化剂的碘化铅(PbI2,每500mg需要10mg)。然后将混合物放置在一个10cm的二氧化硅玻璃安瓿瓶中,并将该瓶水平放置在加热炉中。混合物在8个小时左右的时间加热到550℃,保持这个温度20到80个小时,最后在20个小时内缓慢冷却到室温状态。在此过程中,加热炉的加热元件配置在炉内。反应材料的混合物置于加热端,安瓿瓶的空端部分朝向较冷的中心区域。
以上对本发明的较佳实施方式进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (8)

1.一种混合等离子体波导的光电探测器,其特征在于:包括:衬底,所述衬底的上表面铺设有硅波导和第一金属电极,所述硅波导的上表面设有由黑砷磷薄膜和石墨烯薄膜相接触组成的异质结,所述石墨烯薄膜的一部分与黑砷磷薄膜相接触,所述异质结的上表面设有第二金属电极,所述石墨烯薄膜的一部分延伸离开硅波导,并与第一金属电极的上表面接触。
2.根据权利要求1所述的一种混合等离子体波导的光电探测器,其特征在于:所述石墨烯薄膜的下表面与硅波导的上表面接触,所述石墨烯薄膜的上表面与黑砷磷薄膜的下表面接触,所述黑砷磷薄膜的上表面与第二金属电极接触。
3.根据权利要求1所述的一种混合等离子体波导的光电探测器,其特征在于:所述第一金属电极的材质为金、银或者铜。
4.根据权利要求1所述的一种混合等离子体波导的光电探测器,其特征在于:所述第二金属电极的材质为金、银或者铜。
5.根据权利要求1所述的一种混合等离子体波导的光电探测器,其特征在于:所述第一金属电极与第二金属电极之间的距离大于等于10nm且小于等于100nm。
6.根据权利要求1所述的一种混合等离子体波导的光电探测器,其特征在于:所述黑砷磷薄膜的禁带宽度≤0.15eV。
7.根据权利要求1所述的一种混合等离子体波导的光电探测器,其特征在于:所述衬底为二氧化硅。
8.根据权利要求1所述的一种混合等离子体波导的光电探测器,其特征在于:所述石墨烯薄膜为单层石墨烯。
CN202010641914.1A 2020-07-06 2020-07-06 一种混合等离子体波导的光电探测器 Active CN111952400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010641914.1A CN111952400B (zh) 2020-07-06 2020-07-06 一种混合等离子体波导的光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010641914.1A CN111952400B (zh) 2020-07-06 2020-07-06 一种混合等离子体波导的光电探测器

Publications (2)

Publication Number Publication Date
CN111952400A CN111952400A (zh) 2020-11-17
CN111952400B true CN111952400B (zh) 2022-04-08

Family

ID=73340203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010641914.1A Active CN111952400B (zh) 2020-07-06 2020-07-06 一种混合等离子体波导的光电探测器

Country Status (1)

Country Link
CN (1) CN111952400B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118016768A (zh) * 2024-03-12 2024-05-10 国科大杭州高等研究院 一种波导集成的范德华异质结器件制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489693A (zh) * 2015-12-31 2016-04-13 南京大学 基于二维层状薄膜材料p-g-n异质结光电子器件
CN206628490U (zh) * 2017-02-21 2017-11-10 缪峰 一种基于黑砷磷的用于红外探测的器件
CN111180537A (zh) * 2020-01-17 2020-05-19 淮阴工学院 集成有多端口光波导的低维材料异质结光电探测器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070104441A1 (en) * 2005-11-08 2007-05-10 Massachusetts Institute Of Technology Laterally-integrated waveguide photodetector apparatus and related coupling methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489693A (zh) * 2015-12-31 2016-04-13 南京大学 基于二维层状薄膜材料p-g-n异质结光电子器件
CN206628490U (zh) * 2017-02-21 2017-11-10 缪峰 一种基于黑砷磷的用于红外探测的器件
CN111180537A (zh) * 2020-01-17 2020-05-19 淮阴工学院 集成有多端口光波导的低维材料异质结光电探测器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Highly efficient and air-stable infrared photodetector based on 2D layered graphne-black phosphorus heterostructure";Yan Liu et al.;《Appl. Mater. Interfaces》;20170926;正文第36137页-36143页及图1 *
"Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus";Mingsheng Long et al.;《Science Advances》;20170630;第3卷(第6期);正文第e1700589-1页至e1700589-6页 *
Nikolaus Flöry et al.."Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity".《Nature nanotechnology》.2020,第15卷 *

Also Published As

Publication number Publication date
CN111952400A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
Cheng et al. 2D materials enabled next‐generation integrated optoelectronics: from fabrication to applications
Hu et al. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band
Wu et al. The interaction between quantum dots and graphene: the applications in graphene‐based solar cells and photodetectors
Tian et al. Low‐dimensional nanomaterial/Si heterostructure‐based photodetectors
Wang et al. Two dimensional materials based photodetectors
Zhang et al. High-performance AlGaN metal–semiconductor–metal solar-blind ultraviolet photodetectors by localized surface plasmon enhancement
Zhan et al. Self-powered, visible-light photodetector based on thermally reduced graphene oxide–ZnO (rGO–ZnO) hybrid nanostructure
Brongersma Plasmonic photodetectors, photovoltaics, and hot-electron devices
Varghese et al. Enhanced photon management of thin-film silicon solar cells using inverse opal photonic crystals with 3D photonic bandgaps
CN107316915A (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
US20160190370A1 (en) Wavelength converting structure for near-infrared rays and solar cell comprising the same
Fallahazad et al. Improved photovoltaic performance of graphene-based solar cells on textured silicon substrate
CN111952400B (zh) 一种混合等离子体波导的光电探测器
Antoine Moulin et al. Plasmon-induced photoexcitation of “hot” electrons and “hot” holes in amorphous silicon photosensitive devices containing silver nanoparticles
Chaliyawala et al. Role of nanowire length on the performance of a self-driven NIR photodetector based on mono/bi-layer graphene (camphor)/Si-nanowire Schottky junction
Han et al. A novel flexible broadband photodetector based on flower-like MoS2 microspheres
Moulin et al. Photoresponse enhancement in the near infrared wavelength range of ultrathin amorphous silicon photosensitive devices by integration of silver nanoparticles
Huang et al. Recent progress in waveguide-integrated photodetectors based on 2D materials for infrared detection
Sett et al. Engineering sensitivity and spectral range of photodetection in van der Waals materials and hybrids
Liu et al. Enhanced light trapping in Ge-on-Si-on-insulator photodetector by guided mode resonance effect
Dubey et al. Hybrid metal nanoantenna 2D-material photovoltaic device
Xu et al. An ultra-flexible silicon substrate with light-trapping structures: The application for visible-NIR photodetectors
Tiwari et al. ZnSe nanoflakes/ZnO quantum dots heterojunction-based bandgap engineered, flexible broadband photodetector on paper substrate
Zhao et al. Photovoltaic high-performance broadband photodetector based on the heterojunction of MoS2/silicon nanopillar arrays
Howlader et al. Hybrid plasma bonding of germanium and glass wafers at low temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant