CN111951386B - 人像高浮雕建模方法及建模系统 - Google Patents

人像高浮雕建模方法及建模系统 Download PDF

Info

Publication number
CN111951386B
CN111951386B CN202010810156.1A CN202010810156A CN111951386B CN 111951386 B CN111951386 B CN 111951386B CN 202010810156 A CN202010810156 A CN 202010810156A CN 111951386 B CN111951386 B CN 111951386B
Authority
CN
China
Prior art keywords
vertex
portrait
normal
model
normal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010810156.1A
Other languages
English (en)
Other versions
CN111951386A (zh
Inventor
陈彦钊
周浩
张玉伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202010810156.1A priority Critical patent/CN111951386B/zh
Publication of CN111951386A publication Critical patent/CN111951386A/zh
Application granted granted Critical
Publication of CN111951386B publication Critical patent/CN111951386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本发明公开了一种人像高浮雕建模方法及建模系统,属于浮雕建模技术领域,要解决的技术问题为如何将3D人像模型贴合在背景面上形成人像高浮雕。该方法包括如下步骤:判断3D人像模型中顶点的可见性,并在3D人像模型的负向非遮挡区域中选取z坐标最大的顶点为背景点;计算增强后3D人像模型三角面片法向为目标法向,对于压缩后3D人像模型,将其三角面片法向与目标法向重叠、并计算重叠后3D人像模型每个顶点的梯度作为目标梯度;以背景点z坐标等于零为边界条件,求解能量方程对3D人像模型进行高度场优化,将优化后背景点约束到背景面上。建模系统,包括背景点提取模块、增强压缩模块和优化模块,用于通过人像高浮雕建模方法构建人像高浮雕。

Description

人像高浮雕建模方法及建模系统
技术领域
本发明涉及浮雕建模技术领域,具体地说是一种人像高浮雕建模方法及建模系统。
背景技术
人像高浮雕依附在背景面之上,厚度虽经过压缩处理,其结构仍为3D形态,具有强烈立体感和叙事性,在建筑装潢领域应用广泛。
现有人像高浮雕设计需要借助专业商业软件,专业性强、费时费力。近年来,随着3D扫描硬件设备的不断发展,3D模型获取更加方便,为高浮雕设计提供了丰富的素材。以3D模型为输入,同一模型可以变换不同的映射角度,极大提高了设计的多样性。但是,3D模型形态复杂,并不能直接贴合在背景面之上,映射时需要对其结构进行几何优化。
如何将3D人像模型贴合在背景面上形成人像高浮雕,是需要解决的技术问题。
发明内容
本发明的技术任务是针对以上不足,提供一种人像高浮雕建模方法及建模系统,来解决如何将3D人像模型贴合在背景面上形成人像高浮雕的问题。
第一方面,本发明提供一种人像高浮雕建模方法,以3D人像模型中选取的背景点为边界条件,对3D人像模型进行深度优化生成人像高浮雕,所述人像高浮雕与背景面紧密贴合,所述方法包括如下步骤:
基于3D人像模型的顶点法向量及选取的视线向量,判断3D人像模型中顶点的可见性,并在3D人像模型的负向非遮挡区域中选取z坐标最大的顶点为背景点;
对3D人像模型顶点进行法向细节增强,计算增强后3D人像模型三角面片法向为目标法向,对3D人像模型顶点z坐标进行线性压缩,对于压缩后3D人像模型,将其三角面片法向与目标法向重叠、并计算重叠后3D人像模型每个顶点的梯度作为目标梯度;
基于目标梯度以及模型深度构建包括梯度约束项和深度约束项的能量方程,以背景点z坐标等于零为边界条件,求解上述能量方程对3D人像模型进行高度场优化,并将优化后背景点约束到背景面上。
更优的,还包括通过如下步骤增补背景点:
在3D人像模型的顶点中,选取其法向与z轴负向夹角小于阈值ε、高斯曲率为正、且z坐标大于背景点的顶点作为种子点;
通过K-means聚类算法,将种子点在三维空间内聚类为若干区域;
对于每一个聚类后的区域,计算其邻域中心点的z坐标平均值,并基于所述区域相关的中心点z坐标与z坐标平均值之间的差值,得到所述区域对应的z坐标差值;
对z坐标差值进行归一化,选取一个阈值,从上述若干区域中排除大于阈值的区域,对于剩余的区域,选取区域内距离中心点最近的种子点为新的背景点。
作为优选,基于3D人像模型的顶点法向量及选取的视线向量,判断3D人像模型中顶点的可见性,包括如下步骤:
设定视线向量为v=[0,0,-1],3D人像模型顶点p对应的顶点法向量为n,如果视线向量v与顶点法向量n之间的点积v·n>0,即视线向量v与顶点法向量n之间夹角小于90度,顶点p判定为负向,否则顶点p判定为正向;
对于每个正向顶点,对其在z向上进行深度采样,如果有相同x坐标、y坐标的其它顶点将所述正向顶点遮挡,则所述正向顶点判定为正向遮挡点,否则所述正向顶点判定为为正向非遮挡点;
对于每个负向顶点,对其在z负向上进行深度采样,如果有相同x坐标、y坐标的其它顶点将所述负向顶点遮挡,则所述负向顶点判定为负向遮挡点,否则所述负向顶点判定为为负向非遮挡点。
作为优选,对3D人像模型顶点进行法向细节增强,计算增强后3D人像模型三角面片法向为目标法向,包括如下步骤:
通过拉普拉斯法向光顺算法对3D人像模型进行法向光顺,并基于法向光顺前后顶点法向的差值计算顶点法向细节,所述顶点法向细节计算公式为:
Figure BDA0002630661370000033
其中,ni表示法向光顺前3D人像模型的顶点法向,ni'表示法向光顺后3D人像模型的顶点法向;
对上述顶点法向细节进行尺度放大,得到尺度放大后顶点法向细节;
将尺度放大后顶点法向细节与上述法向光顺后顶点法向进行合并,得到细节增强后顶点法向,所述细节增强后顶点法向计算公式为:
Figure BDA0002630661370000031
其中,β表示细节增强系数;
对于增强后3D人像模型每个三角面片,计算相关三个顶点对应的细节增强后顶点法向的均值作为相应的三角面片法向。
作为优选,对于压缩后3D人像模型,通过如下步骤将其三角面片法向与目标法向重叠:
对于压缩后3D人像模型每个三角面片,沿其中心旋转所述三角面片,使得所述三角面片对应的三角面片法向与目标法向重叠。
作为优选,所述能量方程为:
所述能量方程为:
Figure BDA0002630661370000032
其中,argmin表示通过优化使上述能量方程取最小值;
i表示顶点序号;
▽zi'表示优化后3D人像模型第i个顶点在z方向的梯度;
gi表示第i个顶点对应的目标梯度;
μ表示能量平衡系数,用于平衡上述两个能量约束项;
z'i表示优化后3D人像模型中第i个顶点在z方向的顶点高度;
zi表示压缩后3D人像模型第i个顶点在z方向的模型深度。
作为优选,将优化后背景点约束到背景面上的同时,背景点附近的其它3D人像模型顶点在深度方向上偏移到背景面之外,对于背景面之外的3D人像模型通过布尔运算进行移除。
第二方面,本发明提供一种人像高浮雕建模系统,用于通过如第一方面任一项所述的人像高浮雕建模方法生成人像高浮雕并将人像高浮雕与背景面贴合,所述系统包括:
背景点提取模块,所述背景点提取模块用于基于3D人像模型的顶点法向量及选取的视线向量,判断3D人像模型中顶点的可见性,并在3D人像模型的负向非遮挡区域中选取z坐标最大的顶点为背景点,并用于增补背景点;
增强压缩模块,所述增强压缩模块用于对3D人像模型顶点进行法向细节增强,计算增强后3D人像模型三角面片法向为目标法向,对3D人像模型顶点z坐标进行线性压缩,对于压缩后3D人像模型,将其三角面片法向与目标法向重叠、并计算重叠后3D人像模型每个顶点的梯度作为目标梯度;
优化模块,所述优化模块用于基于目标梯度以及模型深度构建包括梯度约束项和深度约束项的能量方程,以背景点z坐标等于零为边界条件,求解上述能量方程对3D人像模型进行高度场优化,并将优化后背景点约束到背景面上。
作为优选,所述背景点提取模块用于通过如下步骤提取背景点:
设定视线向量为v=[0,0,-1],3D人像模型顶点p对应的顶点法向量为n,如果视线向量v与顶点法向量n之间的点积v·n>0,即视线向量v与顶点法向量n之间夹角小于90度,顶点p判定为负向,否则顶点p判定为正向;
对于每个正向顶点,对其在z向上进行深度采样,如果有相同x坐标、y坐标的其它顶点将所述正向顶点遮挡,则所述正向顶点判定为正向遮挡点,否则所述正向顶点判定为为正向非遮挡点;
对于每个负向顶点,对其在z负向上进行深度采样,如果有相同x坐标、y坐标的其它顶点将所述负向顶点遮挡,则所述负向顶点判定为负向遮挡点,否则所述负向顶点判定为为负向非遮挡点;
并用于通过如下步骤增补背景点:
在3D人像模型的顶点中,选取其法向与z轴负向夹角小于阈值ε、高斯曲率为正、且z坐标大于背景点的顶点作为种子点;
通过K-means聚类算法,将种子点在三维空间内聚类为若干区域;
对于每一个聚类后的区域,计算其邻域中心点的z坐标平均值,并基于所述区域相关的中心点z坐标与z坐标平均值之间的差值,得到所述区域对应的z坐标差值;
对z坐标差值进行归一化,选取一个阈值,从上述若干区域中排除大于阈值的区域,对于剩余的区域,选取区域内距离中心点最近的种子点为新的背景点。
作为优选,所述增强压缩模块用于通过如下步骤计算目标法向:
通过拉普拉斯法向光顺算法对3D人像模型进行法向光顺,并基于法向光顺前后顶点法向的差值计算顶点法向细节,所述顶点法向细节计算公式为:
Figure BDA0002630661370000051
其中,ni表示法向光顺前3D人像模型的顶点法向,ni'表示法向光顺后3D人像模型的顶点法向;
对上述顶点法向细节进行尺度放大,得到尺度放大后顶点法向细节;
将尺度放大后顶点法向细节与上述法向光顺后顶点法向进行合并,得到细节增强后顶点法向,所述细节增强后顶点法向计算公式为:
Figure BDA0002630661370000052
其中,β表示细节增强系数;
对于增强后3D人像模型每个三角面片,计算相关三个顶点对应的细节增强后顶点法向的均值作为相应的三角面片法向;
对于压缩后3D人像模型,用于通过如下步骤将其三角面片法向与目标法向重叠:
对于压缩后3D人像模型每个三角面片,沿其中心旋转所述三角面片,使得所述三角面片对应的三角面片法向与目标法向重叠;
将优化后背景点约束到背景面上的同时,背景点附近的其它3D人像模型顶点在深度方向上偏移到背景面之外,所述优化模块还用于对于背景面之外的3D人像模型通过布尔运算进行移除;
所述能量方程为:
Figure BDA0002630661370000061
其中,argmin表示通过优化使上述能量方程取最小值;
i表示顶点序号;
▽z'i表示优化后3D人像模型第i个顶点在z方向的梯度;
gi表示第i个顶点对应的目标梯度;
μ表示能量平衡系数,用于平衡上述两个能量约束项;
z'i表示优化后3D人像模型中第i个顶点在z方向的顶点高度;
zi表示压缩后3D人像模型第i个顶点在z方向的模型深度。
本发明的人像高浮雕建模方法及建模系统具有以下优点:
1、对输入的3D人像模型进行深度优化,使得生成的人像高浮雕与背景面紧密贴合,同时保持原有3D人像模型的几何外观;
2、同一输入3D人像模型可以变换不同的映射角度,进行快速人像高浮雕建模,极大提高了设计的多样性和建模效率;
3、在提取背景点时,通过聚类算法在3D模型上选取一系列增补背景点,使生成的人像高浮雕与背景面贴合更为可靠;
4、能量方程中包含梯度约束项和深度约束项,左侧梯度约束项使优化后3D模型在z方向的梯度▽z'i尽量接近目标梯度gi,从而保持原有3D模型的几何细节,右侧深度约束项以压缩后的模型深度zi为约束,使优化后的模型顶点高度z'i尽可能接近zi,从而保持深度层次的合理性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
下面结合附图对本发明进一步说明。
图1为实施例1人像高浮雕建模方法的流程框图;
图2为实施例1人像高浮雕建模方法中3D人像模型顶点可见性判断示意图;
图3为实施例1人像高浮雕建模方法中人像模型生成示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定,在不冲突的情况下,本发明实施例以及实施例中的技术特征可以相互结合。
在本发明实施例中的“多个”,是指两个或两个以上。
本发明实施例提供人像高浮雕建模方法及建模系统,用于解决如何将3D人像模型贴合在背景面上形成人像高浮雕的技术问题。
实施例1:
本发明的人像高浮雕建模方法,以3D人像模型中选取的背景点为边界条件,对3D人像模型进行深度优化生成人像高浮雕,该人像高浮雕与背景面紧密贴合。
该建模方法包括如下步骤:
S100、基于3D人像模型的顶点法向量及选取的视线向量,判断3D人像模型中顶点的可见性,并在3D人像模型的负向非遮挡区域中选取z坐标最大的顶点为背景点;
S200、对3D人像模型顶点进行法向细节增强,计算增强后3D人像模型三角面片法向为目标法向,对3D人像模型顶点z坐标进行线性压缩,对于压缩后3D人像模型,将其三角面片法向与目标法向重叠、并计算重叠后3D人像模型每个顶点的梯度作为目标梯度;
S300、基于目标梯度以及模型深度构建包括梯度约束项和深度约束项的能量方程,以背景点z坐标等于零为边界条件,求解上述能量方程对3D人像模型进行高度场优化,并将优化后背景点约束到背景面上。
如图2所示,本实施例中步骤S100中,基于3D人像模型的顶点法向量及选取的视线向量,判断3D人像模型中顶点的可见性,包括如下步骤:
(1)设定视线向量为v=[0,0,-1],3D人像模型顶点p对应的顶点法向量为n,如果视线向量v与顶点法向量n之间的点积v·n>0,即视线向量v与顶点法向量n之间夹角小于90度,顶点p判定为负向,如图2曲线B、E上的顶点,否则顶点p判定为正向,如图2曲线A、C、D上的顶点;
(2)对于每个正向顶点,对其在z向上进行深度采样,如果有相同x坐标、y坐标的其它顶点将所述正向顶点遮挡,则该正向顶点判定为正向遮挡点,如图2曲线C上的顶点,否则所述正向顶点判定为为正向非遮挡点,如图2曲线A、D上的顶点;
(3)对于每个负向顶点,对其在z负向上进行深度采样,如果有相同x坐标、y坐标的其它顶点将所述负向顶点遮挡,则所述负向顶点判定为负向遮挡点,如图2曲线B上的顶点,否则所述负向顶点判定为为负向非遮挡点,如图2曲线E上的顶点。
在所有负向非遮挡顶点中,选择z坐标最大顶点为背景点,如图2中的p点。将3D人像模型所有顶点z坐标减去p点z坐标,即可使背景点z坐标置零,该点放置背景面。
获取背景点后,对3D人像模型进行厚度压缩和几何优化。
步骤S200中,对3D人像模型顶点进行法向细节增强,计算增强后3D人像模型三角面片法向为目标法向,包括如下步骤:
(1)通过拉普拉斯法向光顺算法对3D人像模型进行法向光顺,并基于法向光顺前后顶点法向的差值计算顶点法向细节,所述顶点法向细节计算公式为:
Figure BDA0002630661370000091
其中,ni表示法向光顺前3D人像模型的顶点法向,n'i表示法向光顺后3D人像模型的顶点法向;
(2)对上述顶点法向细节进行尺度放大,得到尺度放大后顶点法向细节;
(3)将尺度放大后顶点法向细节与上述法向光顺后顶点法向进行合并,得到细节增强后顶点法向,所述细节增强后顶点法向计算公式为:
Figure BDA0002630661370000092
其中,β表示细节增强系数,本实施例中β=2.0;
(4)对于增强后3D人像模型每个三角面片,计算相关三个顶点对应的细节增强后顶点法向的均值作为相应的三角面片法向
Figure BDA0002630661370000093
三角面片法向
Figure BDA0002630661370000094
作为目标法向。
本实施例中取压缩系数α=0.3,基于该压缩系数对3D人像模型顶点z坐标进行线性压缩,对于压缩后3D人像模型每个三角面片,沿其中心旋转该三角面片,使得该三角面片对应的三角面片法向与目标法向
Figure BDA0002630661370000095
重叠,进一步计算重叠后3D人像模型中每个顶点的梯度作为目标梯度gi
本实施例中构建的能量方程为:
Figure BDA0002630661370000101
其中,argmin表示通过优化使上述能量方程取最小值;
i表示顶点序号;
▽z'i表示优化后3D人像模型第i个顶点在z方向的梯度;
gi表示第i个顶点对应的目标梯度;
μ表示能量平衡系数,用于平衡上述两个能量约束项;
z'i表示优化后3D人像模型中第i个顶点在z方向的顶点高度;
zi表示压缩后3D人像模型第i个顶点在z方向的模型深度。
该能量方程包含梯度约束项和深度约束项,左侧梯度约束项使优化后的3D人像模型在z方向的梯度▽z'i尽量接近目标梯度gi,从而保持原有3D人像模型的几何细节;右侧深度约束项以压缩后的3D人像模型的模型深度zi为约束,使优化后的3D人像模型顶点高度z'i与压缩后的高度zi尽可能接近,从而保持深度层次的合理性。
求解上述能量方程时,3D人像模型背景点z坐标等于零为边界条件,优化后的背景点将严格约束到背景面上,结果如图3(d)-(e)所示。另外,背景点约束到背景面的同时,背景点附近的其它顶点在深度方向上偏移到背景面之外。
为了方便安装人像高浮雕,背景面之外的模型部分通过布尔运算进行移除,截切面区域如图3(f)所示。
实施例2:
本发明的一种人像高浮雕建模系统,包括背景点提取模块、增强压缩模块和优化模块,背景点提取模块用于基于3D人像模型的顶点法向量及选取的视线向量,判断3D人像模型中顶点的可见性,并在3D人像模型的负向非遮挡区域中选取z坐标最大的顶点为背景点,并用于增补背景点;增强压缩模块用于对3D人像模型顶点进行法向细节增强,计算增强后3D人像模型三角面片法向为目标法向,对3D人像模型顶点z坐标进行线性压缩,对于压缩后3D人像模型,将其三角面片法向与目标法向重叠、并计算重叠后3D人像模型每个顶点的梯度作为目标梯度;优化模块用于基于目标梯度以及模型深度构建包括梯度约束项和深度约束项的能量方程,以背景点z坐标等于零为边界条件,求解上述能量方程对3D人像模型进行高度场优化,并将优化后背景点约束到背景面上。
本实施例中,背景点提取模块用于通过如下步骤提取背景点:
(1)设定视线向量为v=[0,0,-1],3D人像模型顶点p对应的顶点法向量为n,如果视线向量v与顶点法向量n之间的点积v·n>0,即视线向量v与顶点法向量n之间夹角小于90度,顶点p判定为负向,否则顶点p判定为正向;
(2)对于每个正向顶点,对其在z向上进行深度采样,如果有相同x坐标、y坐标的其它顶点将所述正向顶点遮挡,则所述正向顶点判定为正向遮挡点,否则所述正向顶点判定为为正向非遮挡点;
(3)对于每个负向顶点,对其在z负向上进行深度采样,如果有相同x坐标、y坐标的其它顶点将所述负向顶点遮挡,则所述负向顶点判定为负向遮挡点,否则所述负向顶点判定为为负向非遮挡点。
并用于通过如下步骤增补背景点:
(1)在3D人像模型的顶点中,选取其法向与z轴负向夹角小于阈值ε、高斯曲率为正、且z坐标大于背景点的顶点作为种子点;
(2)通过K-means聚类算法,将种子点在三维空间内聚类为若干区域;
(3)对于每一个聚类后的区域,计算其邻域中心点的z坐标平均值,并基于所述区域相关的中心点z坐标与z坐标平均值之间的差值,得到所述区域对应的z坐标差值;
(4)对z坐标差值进行归一化,选取一个阈值,从上述若干区域中排除大于阈值的区域,对于剩余的区域,选取区域内距离中心点最近种子点为新的背景点。
增强压缩模块用于通过如下步骤计算目标法向:
(1)通过拉普拉斯法向光顺算法对3D人像模型进行法向光顺,并基于法向光顺前后顶点法向的差值计算顶点法向细节,所述顶点法向细节计算公式为:
Figure BDA0002630661370000121
其中,ni表示法向光顺前3D人像模型的顶点法向,n'i表示法向光顺后3D人像模型的顶点法向;
(2)对上述顶点法向细节进行尺度放大,得到尺度放大后顶点法向细节;
(3)将尺度放大后顶点法向细节与上述法向光顺后顶点法向进行合并,得到细节增强后顶点法向,所述细节增强后顶点法向计算公式为:
Figure BDA0002630661370000122
其中,β表示细节增强系数;
(4)对于增强后3D人像模型每个三角面片,计算相关三个顶点对应的细节增强后顶点法向的均值作为相应的三角面片法向。
对于压缩后3D人像模型,通过如下步骤将其三角面片法向与目标法向重叠:对于压缩后3D人像模型每个三角面片,沿其中心旋转所述三角面片,使得所述三角面片对应的三角面片法向与目标法向重叠。
将优化后背景点约束到背景面上的同时,背景点附近的其它3D人像模型顶点在深度方向上偏移到背景面之外,上述优化模块还用于对于背景面之外的3D人像模型通过布尔运算进行移除。
能量方程为:
Figure BDA0002630661370000123
其中,argmin表示通过优化使上述能量方程取最小值;
i表示顶点序号;
▽z'i表示优化后3D人像模型第i个顶点在z方向的梯度;
gi表示第i个顶点对应的目标梯度;
μ表示能量平衡系数,用于平衡上述两个能量约束项;
z'i表示优化后3D人像模型中第i个顶点在z方向的顶点高度;
zi表示压缩后3D人像模型第i个顶点在z方向的模型深度。
本发明的一种人像高浮雕建模系统可通过实施例1公开的人像高浮雕建模方法生成人像高浮雕并将人像高浮雕与背景面贴合。
需要说明的是,上述各流程和各系统结构图中不是所有的步骤和模块都是必须的,可以根据实际的需要忽略某些步骤或模块。各步骤的执行顺序不是固定的,可以根据需要进行调整。上述各实施例中描述的系统结构可以是物理结构,也可以是逻辑结构,即,有些模块可能由同一物理实体实现,或者,有些模块可能分由多个物理实体实现,或者,可以由多个独立设备中的某些部件共同实现。
上文通过附图和优选实施例对本发明进行了详细展示和说明,然而本发明不限于这些已揭示的实施例,基与上述多个实施例本领域技术人员可以知晓,可以组合上述不同实施例中的代码审核手段得到本发明更多的实施例,这些实施例也在本发明的保护范围之内。

Claims (9)

1.人像高浮雕建模方法,其特征在于以3D人像模型中选取的背景点为边界条件,对3D人像模型进行深度优化生成人像高浮雕,所述人像高浮雕与背景面紧密贴合,所述方法包括如下步骤:
基于3D人像模型的顶点法向量及选取的视线向量,判断3D人像模型中顶点的可见性,并在3D人像模型的负向非遮挡区域中选取z坐标最大的顶点为背景点;
对3D人像模型顶点进行法向细节增强,计算增强后3D人像模型三角面片法向为目标法向,对3D人像模型顶点z坐标进行线性压缩,对于压缩后3D人像模型,将其三角面片法向与目标法向重叠、并计算重叠后3D人像模型每个顶点的梯度作为目标梯度;
基于目标梯度以及模型深度构建包括梯度约束项和深度约束项的能量方程,以背景点z坐标等于零为边界条件,求解上述能量方程对3D人像模型进行高度场优化,并将优化后背景点约束到背景面上;
还包括通过如下步骤增补背景点:
在3D人像模型的顶点中,选取其法向与z轴负向夹角小于阈值ε、高斯曲率为正、且z坐标大于背景点的顶点作为种子点;
通过K-means聚类算法,将种子点在三维空间内聚类为若干区域;
对于每一个聚类后的区域,计算其邻域中心点的z坐标平均值,并基于所述区域相关的中心点z坐标与z坐标平均值之间的差值,得到所述区域对应的z坐标差值;
对z坐标差值进行归一化,选取一个阈值,从上述若干区域中排除大于阈值的区域,对于剩余的区域,选取区域内距离中心点最近种子点为新的背景点。
2.根据权利要求1所述的人像高浮雕建模方法,其特征在于基于3D人像模型的顶点法向量及选取的视线向量,判断3D人像模型中顶点的可见性,包括如下步骤:
设定视线向量为v=[0,0,-1],3D人像模型顶点p对应的顶点法向量为n,如果视线向量v与顶点法向量n之间的点积v·n>0,即视线向量v与顶点法向量n之间夹角小于90度,顶点p判定为负向,否则顶点p判定为正向;
对于每个正向顶点,对其在z向上进行深度采样,如果有相同x坐标、y坐标的其它顶点将所述正向顶点遮挡,则所述正向顶点判定为正向遮挡点,否则所述正向顶点判定为为正向非遮挡点;
对于每个负向顶点,对其在z负向上进行深度采样,如果有相同x坐标、y坐标的其它顶点将所述负向顶点遮挡,则所述负向顶点判定为负向遮挡点,否则所述负向顶点判定为为负向非遮挡点。
3.根据权利要求1所述的人像高浮雕建模方法,其特征在于对3D人像模型顶点进行法向细节增强,计算增强后3D人像模型三角面片法向为目标法向,包括如下步骤:
通过拉普拉斯法向光顺算法对3D人像模型进行法向光顺,并基于法向光顺前后顶点法向的差值计算顶点法向细节,所述顶点法向细节计算公式为:
Figure FDA0002985657290000021
其中,ni表示法向光顺前3D人像模型的顶点法向,n′i表示法向光顺后3D人像模型的顶点法向;
对上述顶点法向细节进行尺度放大,得到尺度放大后顶点法向细节;
将尺度放大后顶点法向细节与上述法向光顺后顶点法向进行合并,得到细节增强后顶点法向,所述细节增强后顶点法向计算公式为:
Figure FDA0002985657290000031
其中,β表示细节增强系数;
对于增强后3D人像模型每个三角面片,计算相关三个顶点对应的细节增强后顶点法向的均值作为相应的三角面片法向。
4.根据权利要求1所述的人像高浮雕建模方法,其特征在于对于压缩后3D人像模型,通过如下步骤将其三角面片法向与目标法向重叠:
对于压缩后3D人像模型每个三角面片,沿其中心旋转所述三角面片,使得所述三角面片对应的三角面片法向与目标法向重叠。
5.根据权利要求1所述的人像高浮雕建模方法,其特征在于所述能量方程为:
Figure FDA0002985657290000032
其中,argmin表示通过优化使上述能量方程取最小值;
i表示顶点序号;
▽z′i表示优化后3D人像模型第i个顶点在z方向的梯度;
gi表示第i个顶点对应的目标梯度;
μ表示能量平衡系数,用于平衡上述两个能量约束项;
z′i表示优化后3D人像模型中第i个顶点在z方向的顶点高度;
zi表示压缩后3D人像模型第i个顶点在z方向的模型深度。
6.根据权利要求1所述的人像高浮雕建模方法,其特征在于将优化后背景点约束到背景面上的同时,背景点附近的其它3D人像模型顶点在深度方向上偏移到背景面之外,对于背景面之外的3D人像模型通过布尔运算进行移除。
7.人像高浮雕建模系统,其特征在于用于通过如权利要求1-6任一项所述的人像高浮雕建模方法生成人像高浮雕并将人像高浮雕与背景面贴合,所述系统包括:
背景点提取模块,所述背景点提取模块用于基于3D人像模型的顶点法向量及选取的视线向量,判断3D人像模型中顶点的可见性,并在3D人像模型的负向非遮挡区域中选取z坐标最大的顶点为背景点,并用于增补背景点;
增强压缩模块,所述增强压缩模块用于对3D人像模型顶点进行法向细节增强,计算增强后3D人像模型三角面片法向为目标法向,对3D人像模型顶点z坐标进行线性压缩,对于压缩后3D人像模型,将其三角面片法向与目标法向重叠、并计算重叠后3D人像模型每个顶点的梯度作为目标梯度;
优化模块,所述优化模块用于基于目标梯度以及模型深度构建包括梯度约束项和深度约束项的能量方程,以背景点z坐标等于零为边界条件,求解上述能量方程对3D人像模型进行高度场优化,并将优化后背景点约束到背景面上;
背景点提取模块用于通过如下步骤增补背景点:
在3D人像模型的顶点中,选取其法向与z轴负向夹角小于阈值ε、高斯曲率为正、且z坐标大于背景点的顶点作为种子点;
通过K-means聚类算法,将种子点在三维空间内聚类为若干区域;
对于每一个聚类后的区域,计算其邻域中心点的z坐标平均值,并基于所述区域相关的中心点z坐标与z坐标平均值之间的差值,得到所述区域对应的z坐标差值;
对z坐标差值进行归一化,选取一个阈值,从上述若干区域中排除大于阈值的区域,对于剩余的区域,选取区域内距离中心点最近的种子点为新的背景点。
8.根据权利要求7所述的人像高浮雕建模系统,其特征在于所述背景点提取模块用于通过如下步骤提取背景点:
设定视线向量为v=[0,0,-1],3D人像模型顶点p对应的顶点法向量为n,如果视线向量v与顶点法向量n之间的点积v·n>0,即视线向量v与顶点法向量n之间夹角小于90度,顶点p判定为负向,否则顶点p判定为正向;
对于每个正向顶点,对其在z向上进行深度采样,如果有相同x坐标、y坐标的其它顶点将所述正向顶点遮挡,则所述正向顶点判定为正向遮挡点,否则所述正向顶点判定为为正向非遮挡点;
对于每个负向顶点,对其在z负向上进行深度采样,如果有相同x坐标、y坐标的其它顶点将所述负向顶点遮挡,则所述负向顶点判定为负向遮挡点,否则所述负向顶点判定为为负向非遮挡点。
9.根据权利要求7或8所述的人像高浮雕建模系统,其特征在于所述增强压缩模块用于通过如下步骤计算目标法向:
通过拉普拉斯法向光顺算法对3D人像模型进行法向光顺,并基于法向光顺前后顶点法向的差值计算顶点法向细节,所述顶点法向细节计算公式为:
Figure FDA0002985657290000061
其中,ni表示法向光顺前3D人像模型的顶点法向,n′i表示法向光顺后3D人像模型的顶点法向;
对上述顶点法向细节进行尺度放大,得到尺度放大后顶点法向细节;
将尺度放大后顶点法向细节与上述法向光顺后顶点法向进行合并,得到细节增强后顶点法向,所述细节增强后顶点法向计算公式为:
Figure FDA0002985657290000062
其中,β表示细节增强系数;
对于增强后3D人像模型每个三角面片,计算相关三个顶点对应的细节增强后顶点法向的均值作为相应的三角面片法向;
对于压缩后3D人像模型,用于通过如下步骤将其三角面片法向与目标法向重叠:
对于压缩后3D人像模型每个三角面片,沿其中心旋转所述三角面片,使得所述三角面片对应的三角面片法向与目标法向重叠;
将优化后背景点约束到背景面上的同时,背景点附近的其它3D 人像模型顶点在深度方向上偏移到背景面之外,所述优化模块还用于对于背景面之外的3D人像模型通过布尔运算进行移除;
所述能量方程为:
Figure FDA0002985657290000071
其中,argmin表示通过优化使上述能量方程取最小值;
i表示顶点序号;
▽z′i表示优化后3D人像模型第i个顶点在z方向的梯度;
gi表示第i个顶点对应的目标梯度;
μ表示能量平衡系数,用于平衡上述两个能量约束项;
z′i表示优化后3D人像模型中第i个顶点在z方向的顶点高度;
zi表示压缩后3D人像模型第i个顶点在z方向的模型深度。
CN202010810156.1A 2020-08-13 2020-08-13 人像高浮雕建模方法及建模系统 Active CN111951386B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010810156.1A CN111951386B (zh) 2020-08-13 2020-08-13 人像高浮雕建模方法及建模系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010810156.1A CN111951386B (zh) 2020-08-13 2020-08-13 人像高浮雕建模方法及建模系统

Publications (2)

Publication Number Publication Date
CN111951386A CN111951386A (zh) 2020-11-17
CN111951386B true CN111951386B (zh) 2021-06-01

Family

ID=73332968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010810156.1A Active CN111951386B (zh) 2020-08-13 2020-08-13 人像高浮雕建模方法及建模系统

Country Status (1)

Country Link
CN (1) CN111951386B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112561797B (zh) * 2020-12-09 2022-12-13 齐鲁工业大学 花卉浮雕模型构建方法及基于线条图的花卉浮雕重建方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108492373A (zh) * 2018-03-13 2018-09-04 齐鲁工业大学 一种人脸浮雕几何建模方法
CN109191563A (zh) * 2018-07-23 2019-01-11 齐鲁工业大学 一种2.5d人像浅浮雕建模方法及系统
US10198534B2 (en) * 2014-05-30 2019-02-05 Caterpillar Of Australia Pty. Ltd. Illustrating elevations associated with a mine worksite
CN110751665A (zh) * 2019-10-23 2020-02-04 齐鲁工业大学 一种由人像浮雕重建3d人像模型的方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106504322A (zh) * 2016-07-11 2017-03-15 合肥工业大学 一种基于高度估计的浮雕提取方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10198534B2 (en) * 2014-05-30 2019-02-05 Caterpillar Of Australia Pty. Ltd. Illustrating elevations associated with a mine worksite
CN108492373A (zh) * 2018-03-13 2018-09-04 齐鲁工业大学 一种人脸浮雕几何建模方法
CN109191563A (zh) * 2018-07-23 2019-01-11 齐鲁工业大学 一种2.5d人像浅浮雕建模方法及系统
CN110751665A (zh) * 2019-10-23 2020-02-04 齐鲁工业大学 一种由人像浮雕重建3d人像模型的方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Portrait Relief Modeling from a Single Image;Yu-Wei Zhang等;《IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS》;20200706;第2659-2670页 *
浅浮雕数字建模技术研究;张玉伟;《中国博士学位论文全文数据库 信息科技辑》;20141015;全文 *

Also Published As

Publication number Publication date
CN111951386A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
CN107833270B (zh) 基于深度相机的实时物体三维重建方法
CN109544456B (zh) 基于二维图像和三维点云数据融合的全景环境感知方法
CN104616286B (zh) 快速的半自动多视图深度修复方法
CN105205808B (zh) 基于多特征多约束的多视影像密集匹配融合方法及系统
CN109493372A (zh) 大数据量、少特征的产品点云数据快速全局优化配准方法
CN109118574A (zh) 一种基于三维特征提取的快速逆向建模方法
CN103955945B (zh) 基于双目视差和活动轮廓的自适应彩色图像分割方法
CN107730587B (zh) 一种基于图片快速三维化交互式建模方法
CN106060509B (zh) 引入颜色校正的自由视点图像合成方法
KR101759188B1 (ko) 2d 얼굴 이미지로부터 3d 모델을 자동 생성하는 방법
CN110097588B (zh) 一种航发叶片陶瓷型芯点云模型的修型边缘提取方法
CN106952292B (zh) 基于6自由度场景流聚类的3d运动目标检测方法
CN111951386B (zh) 人像高浮雕建模方法及建模系统
CN111462030A (zh) 多图像融合的立体布景视觉新角度构建绘制方法
CN108416801B (zh) 一种面向立体视觉三维重建的Har-SURF-RAN特征点匹配方法
CN104809457A (zh) 一种基于区域化隐函数特征的三维人脸识别方法及系统
CN109859249A (zh) Rgbd序列中基于自动分层的场景流估计方法
CN113160129A (zh) 组合式精简点云数据的快速配准方法
CN110136146A (zh) 基于正弦spf分布和水平集模型的sar图像水域分割方法
CN114170402A (zh) 隧洞结构面提取方法、装置
CN107274448B (zh) 一种基于水平树结构的可变权重代价聚合立体匹配算法
CN107122782B (zh) 一种均衡的半密集立体匹配方法
CN112509014A (zh) 金字塔遮挡检测块匹配的鲁棒插值光流计算方法
CN110232692A (zh) 一种基于改进种子填充算法的电气设备热源区域分离方法
CN113808006B (zh) 一种基于二维图像重建三维网格模型的方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant