CN111945101A - 提高零件表面形变强化层热稳定性的复合表层改性方法 - Google Patents

提高零件表面形变强化层热稳定性的复合表层改性方法 Download PDF

Info

Publication number
CN111945101A
CN111945101A CN202010727599.4A CN202010727599A CN111945101A CN 111945101 A CN111945101 A CN 111945101A CN 202010727599 A CN202010727599 A CN 202010727599A CN 111945101 A CN111945101 A CN 111945101A
Authority
CN
China
Prior art keywords
layer
thermal stability
strengthening
improve
modifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010727599.4A
Other languages
English (en)
Inventor
王欣
罗学昆
许春玲
宋颖刚
王强
马世成
汤智慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN202010727599.4A priority Critical patent/CN111945101A/zh
Publication of CN111945101A publication Critical patent/CN111945101A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F3/00Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Abstract

本发明属于属于表面改性技术领域,涉及一种提高零件表面形变强化层热稳定性的复合表层改性方法,所述复合表层改性方法包含以下步骤:首先在机械加工的基础上,完成零件的表面强化;强化后,利用表面光整的方法对强化表面进行前处理;光整后,对强化部位进行离子氮化或氮离子注渗。在表面形变强化的基础上,采用离子注渗或离子渗的方法引入一层高渗入原子密度层。在一定温度(低于回火或退火温度),渗入原子将占据晶体点阵间隙(如四面体、八面体间隙等),对滑移、攀移等微观形变产生钉扎作用,从而提高形变强化层的热稳定性,使得强化层组织更不容易在温度和外载作用下产生松弛问题。

Description

提高零件表面形变强化层热稳定性的复合表层改性方法
技术领域
本发明属于表面改性技术领域,涉及一种提高零件表面形变强化层热稳定性的复合表层改性方法,用于提高航空钛合金和齿轮钢零件表面形变强化层热稳定性。
背景技术
当前,以喷丸、激光冲击强化和冷挤压强化为代表的表面强化技术是航空发动机和燃气轮机转子部件采用的主要表面改性方法。其目的是通过表面形变强化,在构件表层引入残余压应力场和梯度形变组织强化作用,抵抗外加载荷,提高疲劳性能。然而,航机和燃机的转子部件在中高温和外载作用下服役,在热力耦合作用下,形变强化层存在松弛演化的情况,可能导致构件变形和疲劳强化效果削弱。
在相关文献方面,文献主要分为2类。
第一类研究表面强化热稳定性表征,但不涉及采用工艺方法提高热稳定性。文献“TC6钛合金激光喷丸纳米组织特性及热稳定性研究”((英文)王学德,李应红,李启鹏等,南京航空航天大学学报,2012.)认为TC6激光喷丸纳米组织和显微硬度在623K温度下具有较好的热稳定性,从而突破了美国规范AMS2546中关于钛合金只能在589K温度下应用的限制。文献“激光喷丸A356铝合金的热稳定性实验研究”(谢小江,周建忠,陈寒松等激光技术,2014.)对激光冲击强化后的A356铝合金开展了220℃退火研究,认为激光冲击强化提高了合金的热稳定性,经过退火后强化层发生一定松弛。文献“激光喷丸A356铝合金的热稳定性实验研究”(柳文波,张弛,杨志刚等.金属学报,2013.)研究了在550℃不同时效时间处理后表面纳米化组织的变化。文献“Al-Zn-Mg合金的表面纳米晶化及其热稳定性研究”(胡兰青,马晋芳,许并社.材料热处理学报,2007)研究了Al-Zn-Mg合金纳米化经过250℃热时效后,产生纳米级析出相,显示出较好的热稳定性。此类文章较多。
第二类研究了表面强化和渗层工艺复合,但主要目的是提高耐磨性或疲劳性能,也不涉及提高热稳定性的工艺。这一类里,分两种工艺组合。第一种是渗层后采用形变强化。文献“渗碳与喷丸复合处理对18Cr2Ni4WA钢表面完整性及疲劳性能的影响”(常晓东,刘道新,崔腾飞.机械科学与技术,2013.)采用渗层后喷丸的复合方法,以提高18Cr2Ni4W齿轮钢的疲劳性能。文献“等离子渗氮与喷丸强化复合改进钛合金抗微动损伤性能”(刘道新,陈华,何家文.材料热处理学报,2013)、“离子渗ZrN与喷丸复合对TC4合金疲劳行为的影响”(刘道新,汤金钢,张晓化等.稀有金属材料与工程,2018)与之类似,渗氮(或ZrN)后,利用喷丸的压应力协调作用,提高齿轮钢或钛合金的耐磨性能。这类渗层后进行表面形变强化的工艺文献较多。另一种是形变强化后进行渗层处理。文献“热锻模表面喷丸及多元氮碳共渗复合强化工艺”(余盈燕,周杰,李梦瑶等.金属热处理,2014.)采用喷丸后进行碳氮共渗,喷丸加多元氮碳共渗复合强化处理得到的渗氮白亮层的平均厚度比只经多元氮碳共渗的增加了一倍,渗层深度增加2倍,显著提高了齿轮的耐磨性。与之类似的文献如“强力喷丸对4Cr5MoSiVl钢离子渗氮的影响”(汪新衡,李淑英,匡建新.材料热处理技术,2010)、“ST12钢高能喷丸后表面等离子渗钛”(王虎,詹肇麟,吴云霞等.材料热处理学报,2015)等。上述两种工艺路线均未涉及提高表面强化热稳定性的原理、工艺方法。
在相关专利方面,主要分为两类。第一类是利用两种或以上表面改性方法复合处理,达到某种目的。专利201911141279.4(一种表面纳米化高能离子注渗复合处理方法)和201510547238.0(一种Cr4Mo4V钢轴承强力喷丸和升温注渗复合表面强化方法)利用表面强化与注渗或化学表面改性结合,更好地提高构件的硬度;专利201611141451.2(一种水射流喷丸和等离子渗氮的复合处理表面改性方法)采用高压水射流喷丸和等离子渗氮复合处理方法来显著提高试样渗氮层的质量和厚度,并有效解决了单一采用等离子渗氮技术存在的部分氮化层不均匀,甚至氮化层缺失,氮化深度不够等问题。专利201711197792.6(一种航天钛合金TC4表面减摩耐磨强化层的制备方法)将离子渗氮技术和激光表面织构技术结合,应用于TC4钛合金,既解决了钛合金耐磨性差的问题,又解决了渗氮后钛合金的摩擦系数大,磨粒磨损严重的问题。以上几种表面改性工艺的复合处理方法没有涉及到提高表面改性层的热稳定性。第二类是利用一种技术提高构件的某种表面性能,使之达到较好的稳定性的方法。专利201611165588.1(一种锆钛合金双辉等离子渗氮的表面强化方法)和201610187497.1(一种钛合金超声刀表面强化方法)采用等离子渗氮的方法,是钛合金表面产生氮化层,提高硬度;专利201110104730.2(一种制备TiC/Al3Ti金属间化合物基表面复合涂层的方法)采用Ti-C-Al体系的Al、Ti、C粉末为原料在铸钢表面产生包覆型硬质层。以上方法不涉及热稳定性,也不是采用复合表面改性工艺制造强化层。
综上,现有技术中均未出现与本申请相关技术。
发明内容
本发明的目的是:提出一种提高零件表面形变强化层热稳定性的复合表层改性方法,用于提高航空钛合金和齿轮钢零件表面形变强化层热稳定性。
为解决此技术问题,本发明的技术方案是:
一种提高零件表面形变强化层热稳定性的复合表层改性方法,所述复合表层改性方法包含以下步骤:
步骤一、首先在机械加工的基础上,完成零件的表面强化,工艺方法可以是喷丸强化和激光冲击强化;
步骤二、强化后,利用表面光整的方法对强化表面进行前处理,保障后续注渗和离子渗工艺实现;
步骤三、光整后,对强化部位进行离子氮化或氮离子注渗,利用渗入原子占据点阵间隙,对强化组织起到钉扎作用,提高强化层的热稳定性。
步骤一表面强化采用喷丸强化工艺,具体参数为:采用铸钢丸、陶瓷弹丸或玻璃丸,喷丸强度不小于0.05mmA,覆盖率不小于100%。
步骤一表面强化采用激光冲击强化,具体参数为:功率密度不小于2GW/cm2,光斑直径不小于1mm,光束能量不小于2J。
步骤三离子氮化处理工艺参数包括:极间距为30~100mm,阴极偏压不大于1000V,离子氮化炉内填充气体介质为NH3,气体流量不小于300L/h,氮化温度不高于650℃(钛合金)和550℃(齿轮钢),氮化时间不大于5h。
步骤三注渗处理工艺参数包括:注渗电压不低于10kV,炉内填充气体介质为NH3,渗入温度不高于650℃(钛合金)和550℃(齿轮钢),渗层深度不小于10μm。
步骤二表面光整的方法为振动光饰或研磨抛光。
零件为航空钛合金零件时,步骤三离子氮化处理工艺中氮化温度不高于650℃。
零件为齿轮钢零件时,步骤三离子氮化处理工艺中氮化温度不高于550℃。
零件为航空钛合金零件时,步骤三注渗处理工艺中渗入温度不高于650℃。
零件为齿轮钢零件时,步骤三注渗处理工艺中渗入温度不高于550℃。
本发明的有益效果是:
本发明提出了一种提高表面形变强化层热稳定性的方法,在表面形变强化的基础上,采用离子注渗或离子渗的方法引入一层高渗入原子密度层。在一定温度(低于回火或退火温度),渗入原子将占据晶体点阵间隙(如四面体、八面体间隙等),对滑移、攀移等微观形变产生钉扎作用,从而提高形变强化层的热稳定性,使得强化层组织更不容易在温度和外载作用下产生松弛问题。
与现有技术相比,本发明工艺处理后,航空钛合金零件表面强化层在服役温度(不超过200℃)下300h松弛减少37%,此外,由于表层氮化后硬度显著上升,使得零件耐磨损能力提高10倍以上,具有高热稳定性、高耐磨性等优点。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明的实施例对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域的普通技术人员在没有做出创造性劳动的前提下,所获得的所有其他实施例,都属于本发明保护的范围。
下面将详细描述本发明实施例的各个方面的特征。在下面的详细描述中,提出了许多具体的细节,以便对本发明的全面理解。但是,对于本领域的普通技术人员来说,很明显的是,本发明也可以在不需要这些具体细节的情况下就可以实施。下面对实施例的描述仅仅是为了通过示出本发明的示例对本发明更好的理解。本发明不限于下面所提供的任何具体设置和方法,而是覆盖了不脱离本发明精神的前提下所覆盖的所有的产品结构、方法的任何改进、替换等。
在下面的描述中,没有示出公知的结构和技术,以避免对本发明造成不必要的模糊。
本发明的提高零件表面形变强化层热稳定性的复合表层改性方法主要为:喷丸强化或激光冲击表面强化;振动光饰或研磨抛光;离子氮化或氮离子注渗。具体步骤如下:
(1)零件应基本加工到位,待强化表面尺寸余量不大于0.01μm。
(2)采用喷丸强化或激光冲击强化的方法对零件待强化表面进行处理。喷丸强化采用气动式喷丸机执行,参数包括:采用铸钢丸、陶瓷弹丸或玻璃丸,喷丸强度不小于0.05mmA,覆盖率不小于100%。激光冲击强化采用机器人控制的脉冲激光冲击强化设备执行,参数包括:功率密度不小于2GW/cm2,光斑直径不小于1mm,光束能量不小于2J。
(3)强化后零件进行光整,方法为振动光饰和研磨抛光。
(4)光整后零件采用丙酮浸泡,完成超声波表面清洗。
(5)完成表面清洗后,零件放入腔室,进行离子渗氮或者氮离子注渗。氮化处理工艺参数包括:极间距为30~100mm,阴极偏压不大于1000V,离子氮化炉内填充气体介质为NH3,气体流量不小于300L/h,氮化温度不高于650℃(钛合金)和550℃(齿轮钢),氮化时间不大于5h。注渗处理工艺参数包括:注渗电压不低于10kV,炉内填充气体介质为NH3,渗入温度不高于650℃(钛合金)和550℃(齿轮钢),渗层深度不小于10μm。注渗前采用Ar离子清洗表面。
本方法适用于在中温下服役的航空钛合金和齿轮钢零件。设计了强化、强化+渗层在中温下残余压应力场的对比性试验。钛合金TA15强化后,经过200℃/300h热时效,表面残余压应力由初始的-704MPa,降低到-280MPa,降低幅度为60.2%;残余压应力场深度由初始的150μm减少到70μm。钛合金TA15强化+渗层后,经过200℃/300h热时效,表面残余压应力由初始的-704MPa,降低到-540MPa,降低幅度为23.3%;残余压应力场深度由初始的150μm减少到130μm。由此可见,与现有技术相比,本发明工艺处理后,航空钛合金零件表面强化层在服役温度(不超过200℃)下300h松弛减少37%,此外,由于表层氮化后硬度显著上升,使得零件耐磨损能力提高10倍以上,具有高热稳定性、高耐磨性等优点。
最后应该说明的是:以上实施例仅用以说明本发明的技术方案,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明揭露的技术范围内,可以轻易想到各种等效的修改或者替换,这些修改或者替换都应该涵盖在本发明的保护范围之内。

Claims (10)

1.一种提高零件表面形变强化层热稳定性的复合表层改性方法,其特征在于:所述复合表层改性方法包含以下步骤:
步骤一、首先在机械加工的基础上,完成零件的表面强化;
步骤二、强化后,利用表面光整的方法对强化表面进行前处理;
步骤三、光整后,对强化部位进行离子氮化或氮离子注渗。
2.根据权利要求1所述的提高零件表面形变强化层热稳定性的复合表层改性方法,其特征在于:步骤一表面强化采用喷丸强化工艺,具体参数为:采用铸钢丸、陶瓷弹丸或玻璃丸,喷丸强度不小于0.05mmA,覆盖率不小于100%。
3.根据权利要求1所述的提高零件表面形变强化层热稳定性的复合表层改性方法,其特征在于:步骤一表面强化采用激光冲击强化,具体参数为:功率密度不小于2GW/cm2,光斑直径不小于1mm,光束能量不小于2J。
4.根据权利要求1所述的提高零件表面形变强化层热稳定性的复合表层改性方法,其特征在于:步骤三离子氮化处理工艺参数包括:极间距为30~100mm,阴极偏压不大于1000V,离子氮化炉内填充气体介质为NH3,气体流量不小于300L/h,氮化温度不高于550℃,氮化时间不大于5h。
5.根据权利要求1所述的提高零件表面形变强化层热稳定性的复合表层改性方法,其特征在于:步骤三氮离子注渗处理工艺参数包括:注渗电压不低于10kV,炉内填充气体介质为NH3,渗入温度不高于550℃,渗层深度不小于10μm。
6.根据权利要求1所述的提高零件表面形变强化层热稳定性的复合表层改性方法,其特征在于:步骤二表面光整的方法为振动光饰或研磨抛光。
7.根据权利要求4所述的提高零件表面形变强化层热稳定性的复合表层改性方法,其特征在于:零件为航空钛合金零件时,氮化温度不高于650℃。
8.根据权利要求4所述的提高零件表面形变强化层热稳定性的复合表层改性方法,其特征在于:零件为齿轮钢零件时,氮化温度不高于550℃。
9.根据权利要求5所述的提高零件表面形变强化层热稳定性的复合表层改性方法,其特征在于:零件为航空钛合金零件时,渗入温度不高于650℃。
10.根据权利要求5所述的提高零件表面形变强化层热稳定性的复合表层改性方法,其特征在于:零件为齿轮钢零件时,渗入温度不高于550℃。
CN202010727599.4A 2020-07-24 2020-07-24 提高零件表面形变强化层热稳定性的复合表层改性方法 Pending CN111945101A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010727599.4A CN111945101A (zh) 2020-07-24 2020-07-24 提高零件表面形变强化层热稳定性的复合表层改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010727599.4A CN111945101A (zh) 2020-07-24 2020-07-24 提高零件表面形变强化层热稳定性的复合表层改性方法

Publications (1)

Publication Number Publication Date
CN111945101A true CN111945101A (zh) 2020-11-17

Family

ID=73338110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010727599.4A Pending CN111945101A (zh) 2020-07-24 2020-07-24 提高零件表面形变强化层热稳定性的复合表层改性方法

Country Status (1)

Country Link
CN (1) CN111945101A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287559A (zh) * 2022-07-14 2022-11-04 武汉大学 利用高压水射流的钛合金材料梯度微纳结构的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959875A (ja) * 1982-09-30 1984-04-05 Nippon Parkerizing Co Ltd 鉄系金属部品の表面処理方法
WO2012169305A1 (ja) * 2011-06-07 2012-12-13 日本発條株式会社 チタン合金部材およびその製造方法
CN105177256A (zh) * 2015-08-31 2015-12-23 哈尔滨工业大学 一种Cr4Mo4V钢轴承强力喷丸和升温注渗复合表面强化方法
CN106755860A (zh) * 2016-12-12 2017-05-31 贵州大学 一种水射流喷丸和等离子渗氮的复合处理表面改性方法
CN108441625A (zh) * 2018-02-07 2018-08-24 常州大学 一种提高离子渗氮效率的激光冲击工艺
CN110423955A (zh) * 2019-07-29 2019-11-08 中国航发北京航空材料研究院 表层超硬化型超高强度耐热齿轮轴承钢及制备方法
CN110983242A (zh) * 2019-12-10 2020-04-10 中国航发贵州黎阳航空动力有限公司 一种航空发动机钛合金零件TiN涂层制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959875A (ja) * 1982-09-30 1984-04-05 Nippon Parkerizing Co Ltd 鉄系金属部品の表面処理方法
WO2012169305A1 (ja) * 2011-06-07 2012-12-13 日本発條株式会社 チタン合金部材およびその製造方法
CN105177256A (zh) * 2015-08-31 2015-12-23 哈尔滨工业大学 一种Cr4Mo4V钢轴承强力喷丸和升温注渗复合表面强化方法
CN106755860A (zh) * 2016-12-12 2017-05-31 贵州大学 一种水射流喷丸和等离子渗氮的复合处理表面改性方法
CN108441625A (zh) * 2018-02-07 2018-08-24 常州大学 一种提高离子渗氮效率的激光冲击工艺
CN110423955A (zh) * 2019-07-29 2019-11-08 中国航发北京航空材料研究院 表层超硬化型超高强度耐热齿轮轴承钢及制备方法
CN110983242A (zh) * 2019-12-10 2020-04-10 中国航发贵州黎阳航空动力有限公司 一种航空发动机钛合金零件TiN涂层制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHOGO TAKESUE ET.AL: "Effect of pre-treatment with fine particle peening on surface properties and wear resistance of gas blow induction heating nitrided titanium alloy", 《SURFACE & COATINGS TECHNOLOGY》 *
唐磊等: "激光冲击催渗快速离子渗氮技术", 《中国表面工程》 *
国家职业资格培训教材编审委员会等: "《热处理工 中级》", 31 July 2016, 机械工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287559A (zh) * 2022-07-14 2022-11-04 武汉大学 利用高压水射流的钛合金材料梯度微纳结构的制备方法

Similar Documents

Publication Publication Date Title
Liu et al. On the influence of ultrasonic surface rolling process on surface integrity and fatigue performance of Ti-6Al-4V alloy
Nezhadfar et al. Fatigue behavior and microstructural evolution of additively manufactured Inconel 718 under cyclic loading at elevated temperature
KR100939799B1 (ko) 티타늄 합금으로부터 마모-저항성 및 피로-저항성의엣지층을 생성하기 위한 방법, 및 그 생성된 구성요소
Farrahi et al. An investigation into the effect of various surface treatments on fatigue life of a tool steel
CN110042339B (zh) 一种降温增速的真空渗碳方法
CN112609068B (zh) 一种提高轻质合金应力腐蚀抗力的复合强化方法
Yi et al. A study for pre-processing of Nb diffusion in Nb–N layer by double-glow plasma alloying
CN101956198B (zh) 一种沉淀硬化不锈钢的表面复合强化工艺及沉淀硬化不锈钢材料
Zhao et al. Improving plain and fretting fatigue resistance of A100 steel using ultrasonic nanocrystal surface modification
Mitelea et al. Ultrasonic cavitation erosion of a duplex treated 16MnCr5 steel
Hu et al. Rolling contact fatigue behaviors of 25CrNi2MoV steel combined treated by discrete laser surface hardening and ultrasonic surface rolling
CN111945101A (zh) 提高零件表面形变强化层热稳定性的复合表层改性方法
Wang et al. Effect of shot peening and nitrogen ion implantation on the fatigue behavior of TA15 titanium alloys
Chen et al. Effect of Cooling and Shot Peening on Residual Stresses and fatigue performance of milled inconel 718
Molian Fatigue characteristics of laser surface-hardened cast irons
Zhang et al. Effect of Ultrasonic Rolling on Properties of GCr15 Bearing Steel
CN113118463B (zh) 一种提高激光选区熔化成形模具钢性能的后处理方法
Petan et al. Potential Improvements of Mechanical Properties of Maraging Steels After Laser Shock Peening (LSP).
Behera et al. Comparative study of cryo-treated steel
CN114934247A (zh) 一种适用于规则轮廓tc4钛合金的表面高频感应处理硬化方法
Wang et al. Study on Fretting Wear Properties of GCr15 Steel Via Ultrasonic Surface Rolling Process
Chen et al. Surface nanocrystallization of C45E4 steel by ultrafast electropulsing-ultrasonic surface treatment
Pandey et al. Shot peening and its impact on fatigue life of engineering components
Huang et al. On the role of thermal exposure on the stress controlled fatigue behaviour of an intermediate strength γ-TiAl based alloy
Yu et al. Surface characteristics and high cycle fatigue behaviors of Ti47Al2Cr2Nb alloy subjected to different surface processes and thermal exposure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201117

RJ01 Rejection of invention patent application after publication