CN111935040A - 一种基于usrp和神经网络的无线信号调制方式识别系统 - Google Patents

一种基于usrp和神经网络的无线信号调制方式识别系统 Download PDF

Info

Publication number
CN111935040A
CN111935040A CN202010647887.9A CN202010647887A CN111935040A CN 111935040 A CN111935040 A CN 111935040A CN 202010647887 A CN202010647887 A CN 202010647887A CN 111935040 A CN111935040 A CN 111935040A
Authority
CN
China
Prior art keywords
usrp
neural network
upper computer
digital
wireless signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010647887.9A
Other languages
English (en)
Other versions
CN111935040B (zh
Inventor
周俊鹤
顾禹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202010647887.9A priority Critical patent/CN111935040B/zh
Publication of CN111935040A publication Critical patent/CN111935040A/zh
Application granted granted Critical
Publication of CN111935040B publication Critical patent/CN111935040B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0012Modulated-carrier systems arrangements for identifying the type of modulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明涉及一种基于USRP和神经网络的无线信号调制方式识别系统,包括分别用于发射和接收无线信号的第一USRP和第二USRP,所述第一USRP与发送端上位机连接,所述第二USRP与接收端上位机连接,所述接收端上位机中设有基于神经网络的软件平台,所述软件平台用于识别无线信号的调制方式。与现有技术相比,本发明将自组织映射神经网络、支持向量机和软件无线电技术结合应用于信号调制格式自动识别中,具有识别种类多、识别准确度高、贴近实际通信环境、升级部署方便等优势。

Description

一种基于USRP和神经网络的无线信号调制方式识别系统
技术领域
本发明涉及无线信号调制技术领域,尤其是涉及一种基于USRP和神经网络的无线信号调制方式识别系统。
背景技术
5G移动通信网络的快速部署,带来了移动通信的大发展,与此同时,以往的2-4G网络依然共存。在测试中,要兼容各个通信标准存在很大困难,采用软件无线电的方法能够很好地解决这个问题。软件无线电利用硬件平台和软件编程相结合的方式实现各种无线通信系统,很好地解决兼容性的问题:不同的通信标准只需采用不同的软件配置。当前常用的软件无线电平台有:NI公司开发的USRP(Universal Software Defined Radio Peripheral,通用软件无线电外设)和USRP-RIO系列,Michael Ossmann开发的Hackrf等。其中以USRP带宽最大,采样率最高,功能最强。
在一个复杂通信网络中,调制格式的识别具有重要的意义。不同的调制格式需要采用不同的接收机进行解调,其解决方法自然成为研究热点之一。由于人工格式判决费时且难以实时操作,自动调制格式识别(AMC,Automatic modulation classification)是信号探测和信号解调之间的重要步骤。AMC的设计主要分为两步:信号预处理和识别算法的选择。信号预处理又包括但不限于降低噪声、载波频率估计、均衡等。根据第二步识别算法的选择,AMC可以被分为两类:基于似然估计(LB,likelihood-based)的方法和基于特征(FB,feature-based)的方法。不同的识别算法对第一步信号参数估计准确度的要求不同。
例如文献“Survey of automatic modulation classification techniques:classical approaches and new trends”(O.A.Dobre,A.Abdi,Y.Bar-Ness and W.Su,IETCommunications,vol.1,no.2,pp.137-156,April 2007.)中对已有调制格式自动识别方法进行了详细介绍,并对技术发展进行了展望。
文章介绍了基于似然估计的AMC中的三种方法:
ALRT(average likelihood ratio test)将未知量当作具有一定概率密度函数的随机过程处理;
GLRT(generalized likelihood ratio test)将未知量当作未知常量处理;
HLRT(hybrid likelihood ratio test)是ALRT和GLRT两种方法的结合。
由于ALRT需要提前知道未知量的概率分布函数且需要计算大量未知量的多维融合,ALRT在实际应用中一般难以实现。而GLRT在面对相互包含的星座图(如BPSK,QPSK,16-QAM,64-QAM)时,其似然函数值可能相同,导致无法正确识别。综上,基于似然估计的AMC尽管在未知量较少的情况下可以得到比较好的结果,但随着调制格式未知量的增加,其实现将会变得非常困难。
文章也介绍了基于特征的AMC。常用的特征有归一化信号幅值、相位、频率等的方差。常用的决策方法有基于概率分布函数的方法,基于海灵格距离的方法,基于欧式距离的方法,基于无监督聚类的方法等。基于特征的AMC虽然实现较为简单,但它的效果往往不能做到最好。
神经网络是当前的研究热点之一,历经几十年的发展,神经网络领域不断涌现出优秀的研究与理论,如1958年Rosenblatt等人提出的感知机将神经网络应用到模式识别领域;1974年Werbos提出了著名的BP(Back Propagation)算法,借助链式法则计算复合函数的偏导数,根据输出值与实际值之间的误差对权重和偏置项进行更新,解决了多层神经网络的训练问题。在此基础上出现的卷积神经网络(CNN)等已广泛应用于计算机视觉、信号处理等领域,极大地改变了当今的科技生活。
例如文献“Feature Image-Based Automatic Modulation ClassificationMethod Using CNN Algorithm,”(J.H.Lee,K.Kim and Y.Shin,2019InternationalConference on Artificial Intelligence in Information and Communication(ICAIIC),Okinawa,Japan,2019,pp.1-4.)就将卷积神经网络应用到AMC中,文中方法首先从接收到的信号中提取特征值并将其转化为二维图像,再使用卷积神经网络的方法进行分类,实现了分类准确度的提升。
1982年,芬兰科学家Kohonen提出了自组织映射(Self-Organizing Map,SOM)神经网络,它由输入层和输出层构成,其中输入层与输入向量维度相同,输出层是一个二维网格神经元。SOM神经网络的特点在于引入了竞争学习规则,即神经元在训练时存在侧向抑制;能够在不改变样本间拓扑结构的同时,将高维输入数据映射到低维空间中;作为一种无监督学习,它不需要大量标签过的训练数据,结果也不受标签质量的影响;输出是反复竞争的结果,相较于其他聚类方法,噪声对于SOM神经网络的影响微乎其微,具有很强的抗干扰能力。因而SOM神经网络成为了当今降维和聚类的经典方法。
支持向量机(SVM)模型是Cortes和Vapnik于1995年提出的一种二值分类器。其基本思想是在高维空间中找到一个超平面使平面到数据的最小距离尽可能大,即:
Figure BDA0002573822370000031
其中xi是所有训练数据向量;w,b决定了超平面;yi是xi所对应的类别,其取值范围为{1,-1}。
由于SVM通过核方法(kernel methods)、软间隔、一对多(one-against-all,OAA)策略等技巧能实现强大的线性或非线性多分类,且具有强大的数学理论基础,SVM在通信领域也得到了广泛的应用:
例如文献《基于SVM的载波通信调制信号识别方法研究》(董重重,何行,孙秉宇,谢玮,蔡兵兵,王先培.中国测试,2019,45(11):101-107.)中利用SVM对低压电力线载波通信的调制格式进行识别,取得了98%以上的准确率,且相较于神经网络收敛更快,分类效果更好。但其研究依然停留在仿真阶段,且只对常用的三种调制格式进行了识别,与现实需要仍有很大差距。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于USRP和神经网络的无线信号调制方式识别系统。
本发明的目的可以通过以下技术方案来实现:
一种基于USRP和神经网络的无线信号调制方式识别系统,包括分别用于发射和接收无线信号的第一USRP和第二USRP,所述第一USRP与发送端上位机连接,所述第二USRP与接收端上位机连接,所述接收端上位机中设有基于神经网络的软件平台,所述软件平台用于识别无线信号的调制方式。
优选的,所述软件平台的实现方法包括:将自组织映射神经网络与支持向量机相结合,先通过自组织映射神经网络提取基带信号特征,再使用支持向量机实现调制格式的识别。
优选的,所述第一USRP和第二USRP均包括主板和子板。
优选的,所述主板设有可编程逻辑门阵列、模数/数模转换器和射频模块。
优选的,所述子板使用整数阶调谐的方式实现中频与射频之间的转换。
优选的,所述第一USRP、第二USRP、发送端上位机、接收端上位机均设有USRP硬件驱动程序,所述USRP硬件驱动程序包括使能上位机与USRP之间通信,控制USRP实现高性能的调谐,以及射频信号与基带信号之间的转换的程序。
优选的,所述支持向量机采用RBF核函数,使用软间隔,并采用一对多的多分类器策略。
优选的,所述系统的信号处理过程包括:
①发送端上位机生成待发送的数据并进行编码、调制和脉冲成型;
②将脉冲成型过后的待发射信号传送给第一USRP;
③第一USRP对基带信号进行数字上变频及数模转换,再将中频信号调制到载波上形成射频信号发射出去;
④第二USRP接收到射频信号先转换到中频,再进行模数转换和数字下变频,形成数字基带信号;
⑤第二USRP将数字基带信号传送给接收端上位机;
⑥接收端上位机首先对基带信号进行匹配滤波,然后送入训练好的自组织映射神经网络处理,将高维空间的基带信号数据投影到低维空间,最后应用支持向量机实现对无线信号调制格式的识别。
优选的,所述第一USRP与发送端上位机之间、所述第二USRP与接收端上位机之间均通过网线连接。
优选的,所述软件平台通过局域网控制多台第二USRP。
与现有技术相比,本发明针对仿真环境而非实际信道环境的问题,将识别算法和软件无线电技术相结合,实现在实际信道环境下的信号调制格式识别,具有识别种类多,识别准确度高,贴近实际通信环境,升级部署方便等优势;针对识别精度不高、识别种类不多、计算量过大的问题,本发明将自组织神经网络和支持向量机相结合,先将高维数据降维到低维,再运用有强大数学理论基础,收敛迅速的支持向量机进行识别,实现减少计算量,提高识别精度,提升识别能力。
附图说明
图1为本发明的系统框图;
图2为本发明的信号处理流程图;
图3为USRP硬件结构示意图;
图4为SOM神经网络建立的流程示意图;
图5为神经网络的建立过程中数据集生成流程示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1所示,本申请提出一种基于USRP和神经网络的无线信号调制方式识别系统,包括分别用于发射和接收无线信号的第一USRP和第二USRP。第一USRP与发送端上位机连接,第二USRP与接收端上位机连接,上位机用于控制USRP并对基带信号进行处理。接收端上位机中设有基于神经网络的软件平台,软件平台用于识别无线信号的调制方式。
第一USRP和第二USRP均包括主板和子板。主板设有可编程逻辑门阵列(FPGA)、模数/数模转换器(ADC/DAC)和射频模块。主板通过可编程逻辑门阵列实现插值、数字上变频、IQ转换、数字下变频、降采样等功能,从而实现基带信号与中频之间的转换;通过模数/数模转换器实现数字和模拟之间的转换;通过射频模块,采用分数阶调谐的方法,实现中频与射频之间的转换。子板可以使用整数阶调谐的方式实现中频与射频之间的转换,实现更好的寄生信号性能。
第一USRP、第二USRP、发送端上位机、接收端上位机均设有USRP硬件驱动程序(USRP Hardware Driver,UHD),USRP硬件驱动程序包括使能上位机与USRP之间通信,控制USRP实现高性能的调谐,以及射频信号与基带信号之间的转换的程序。
软件平台采用模块化,即将整个基带信号处理过程分为多个子过程,方便模块的重复利用和软件无线电系统结构的修改;具有可重新编程/可重构性,即可以随时增加新功能或修改已有模块;通过UHD对USRP进行控制以实现多频段的信号收发;将自组织映射神经网络与支持向量机相结合,先通过自组织映射神经网络提取基带信号特征,再使用支持向量机实现调制格式的识别。软件平台可以通过局域网控制多台第二USRP,高性能PC是常用设备。
如图2所示,该系统的信号处理过程包括:
①发送端上位机生成待发送的数据并进行编码、调制和脉冲成型;
②将脉冲成型过后的待发射信号通过网线传送给第一USRP;
③第一USRP对基带信号进行数字上变频及数模转换,再将中频信号调制到载波上形成射频信号,通过天线发射出去;
④第二USRP对应的天线接收到射频信号先转换到中频,再通过ADC和FPGA进行模数转换和数字下变频,形成数字基带信号;
⑤第二USRP将数字基带信号传送给接收端上位机;
⑥接收端上位机首先对基带信号进行匹配滤波,然后送入训练好的自组织映射神经网络处理,将高维空间的基带信号数据投影到低维空间,最后应用支持向量机实现对无线信号调制格式的识别。
实施例
本实施例中,USRP型号为X300,USRP的子板型号为UBX 160;接收端上位机中的软件平台使用GNU Radio;上位机和USRP通过网线连接。USRP硬件设备的结构示意图如图3所示,参数如表1和表2所示:
表1 USRP硬件参数
FPGA Kintex 7-325T
逻辑单元数 321k
内存 16,020Kb
频率范围 直流–6GHz
每通道带宽 120MHz
DAC精度与最大采样率 16bits,800MS/s
ADC精度与最大采样率 14bits,200MS/s
表2 UBX 160子板硬件参数
射频范围 10MHz–6GHz
带宽 160MHz
兼容性 与USRP X系列和N系列兼容
工作方式 全双工
射频屏蔽
神经网络的建立流程如图4所示:
首先生成数据集,流程如图5所示:发送端上位机生成随机数序列,对数据依次进行BPSK、QPSK、16-QAM、64-QAM、GMSK等调制,脉冲成型并用USRP发送;将不同调试方式接收到的基带信号经过匹配滤波器滤波,然后送入自组织映射神经网络进行无监督训练,生成低维度的数据表征,并对SVM分类模型进行有监督训练,SVM部分参数如表3所示;最后将训练好的SOM神经网络和SVM模型编写成GNU Radio OOT(out-of-tree)modules部署到接收端上位机。
表3 SVM模型参数
核函数 RBF核函数
是否使用软间隔
多分类器策略 一对多(one-against-all,OAA)策略
接着进行信号调制格式的识别:任选BPSK、QPSK、GMSK等调制格式中的一个对生成的随机数序列进行调制,脉冲成型并用第一USRP发送;第二USRP对天线接收到的无线信号进行处理:首先通过射频端将射频信号转化为中频信号,再利用ADC将模拟信号转化为数字信号,然后利用FPGA进行数字下变频等操作将中频信号转化为基带信号,最后通过网线将基带信号传送给接收端上位机。接收端上位机首先对基带信号进行匹配滤波,再通过已训练部署好的SOM神经网络降维,最后使用训练好的SVM模型进行分类。

Claims (10)

1.一种基于USRP和神经网络的无线信号调制方式识别系统,其特征在于,包括分别用于发射和接收无线信号的第一USRP和第二USRP,所述第一USRP与发送端上位机连接,所述第二USRP与接收端上位机连接,所述接收端上位机中设有基于神经网络的软件平台,所述软件平台用于识别无线信号的调制方式。
2.根据权利要求1所述的一种基于USRP和神经网络的无线信号调制方式识别系统,其特征在于,所述软件平台的实现方法包括:将自组织映射神经网络与支持向量机相结合,先通过自组织映射神经网络提取基带信号特征,再使用支持向量机实现调制格式的识别。
3.根据权利要求1所述的一种基于USRP和神经网络的无线信号调制方式识别系统,其特征在于,所述第一USRP和第二USRP均包括主板和子板。
4.根据权利要求3所述的一种基于USRP和神经网络的无线信号调制方式识别系统,其特征在于,所述主板设有可编程逻辑门阵列、模数/数模转换器和射频模块。
5.根据权利要求3所述的一种基于USRP和神经网络的无线信号调制方式识别系统,其特征在于,所述子板使用整数阶调谐的方式实现中频与射频之间的转换。
6.根据权利要求1所述的一种基于USRP和神经网络的无线信号调制方式识别系统,其特征在于,所述第一USRP、第二USRP、发送端上位机、接收端上位机均设有USRP硬件驱动程序,所述USRP硬件驱动程序包括使能上位机与USRP之间通信,控制USRP实现高性能的调谐,以及射频信号与基带信号之间的转换的程序。
7.根据权利要求2所述的一种基于USRP和神经网络的无线信号调制方式识别系统,其特征在于,所述支持向量机采用RBF核函数,使用软间隔,并采用一对多的多分类器策略。
8.根据权利要求1所述的一种基于USRP和神经网络的无线信号调制方式识别系统,其特征在于,所述系统的信号处理过程包括:
①发送端上位机生成待发送的数据并进行编码、调制和脉冲成型;
②将脉冲成型过后的待发射信号传送给第一USRP;
③第一USRP对基带信号进行数字上变频及数模转换,再将中频信号调制到载波上形成射频信号发射出去;
④第二USRP接收到射频信号先转换到中频,再进行模数转换和数字下变频,形成数字基带信号;
⑤第二USRP将数字基带信号传送给接收端上位机;
⑥接收端上位机首先对基带信号进行匹配滤波,然后送入训练好的自组织映射神经网络处理,将高维空间的基带信号数据投影到低维空间,最后应用支持向量机实现对无线信号调制格式的识别。
9.根据权利要求1所述的一种基于USRP和神经网络的无线信号调制方式识别系统,其特征在于,所述第一USRP与发送端上位机之间、所述第二USRP与接收端上位机之间均通过网线连接。
10.根据权利要求1所述的一种基于USRP和神经网络的无线信号调制方式识别系统,其特征在于,所述软件平台通过局域网控制多台第二USRP。
CN202010647887.9A 2020-07-07 2020-07-07 一种基于usrp和神经网络的无线信号调制方式识别系统 Active CN111935040B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010647887.9A CN111935040B (zh) 2020-07-07 2020-07-07 一种基于usrp和神经网络的无线信号调制方式识别系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010647887.9A CN111935040B (zh) 2020-07-07 2020-07-07 一种基于usrp和神经网络的无线信号调制方式识别系统

Publications (2)

Publication Number Publication Date
CN111935040A true CN111935040A (zh) 2020-11-13
CN111935040B CN111935040B (zh) 2022-08-09

Family

ID=73312322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010647887.9A Active CN111935040B (zh) 2020-07-07 2020-07-07 一种基于usrp和神经网络的无线信号调制方式识别系统

Country Status (1)

Country Link
CN (1) CN111935040B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114826309A (zh) * 2021-01-19 2022-07-29 菜鸟智能物流控股有限公司 超外差射频结构和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104994045A (zh) * 2015-06-26 2015-10-21 北京航空航天大学 一种基于usrp平台的数字调制方式自动识别平台及方法
CN108234370A (zh) * 2017-12-22 2018-06-29 西安电子科技大学 基于卷积神经网络的通信信号调制方式识别方法
CN108718288A (zh) * 2018-03-30 2018-10-30 电子科技大学 基于卷积神经网络的数字信号调制模式识别方法
CN109818892A (zh) * 2019-01-18 2019-05-28 华中科技大学 构建循环谱特征参数提取模型及信号调制方式识别方法
CN110120926A (zh) * 2019-05-10 2019-08-13 哈尔滨工程大学 基于演化bp神经网络的通信信号调制方式识别方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104994045A (zh) * 2015-06-26 2015-10-21 北京航空航天大学 一种基于usrp平台的数字调制方式自动识别平台及方法
CN108234370A (zh) * 2017-12-22 2018-06-29 西安电子科技大学 基于卷积神经网络的通信信号调制方式识别方法
CN108718288A (zh) * 2018-03-30 2018-10-30 电子科技大学 基于卷积神经网络的数字信号调制模式识别方法
CN109818892A (zh) * 2019-01-18 2019-05-28 华中科技大学 构建循环谱特征参数提取模型及信号调制方式识别方法
CN110120926A (zh) * 2019-05-10 2019-08-13 哈尔滨工程大学 基于演化bp神经网络的通信信号调制方式识别方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
K. PAVAN KUMAR REDDY,ETC.: "Performance Evaluation of Cumulant Feature Based Automatic Modulation Classifier on USRP Testbed", 《2017 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORKS (COMSNETS)》 *
张培钺等: "一种欠完备自编码器调制识别技术", 《电讯技术》 *
高玉龙, 张中兆: "基于改进的自组织映射神经网络的调制方式识别分类器", 《四川大学学报(工程科学版)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114826309A (zh) * 2021-01-19 2022-07-29 菜鸟智能物流控股有限公司 超外差射频结构和电子设备

Also Published As

Publication number Publication date
CN111935040B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
Wu et al. Robust automatic modulation classification under varying noise conditions
CN109660297B (zh) 一种基于机器学习的物理层可见光通信方法
Daniels et al. Online adaptive modulation and coding with support vector machines
CN110113288B (zh) 一种基于机器学习的ofdm解调器的设计和解调方法
CN111444805B (zh) 一种基于改进的多尺度小波熵数字信号调制识别方法
CN109104248A (zh) 一种基于SOFM神经网络聚类的DRoF前端信号量化方法
CN112235023A (zh) 一种基于模型驱动深度学习的mimo-scfde自适应传输方法
Perenda et al. Learning the unknown: Improving modulation classification performance in unseen scenarios
CN111935040B (zh) 一种基于usrp和神经网络的无线信号调制方式识别系统
Lin et al. A real-time modulation recognition system based on software-defined radio and multi-skip residual neural network
CN114615118B (zh) 一种基于多端卷积神经网络的调制识别方法
CN110166389B (zh) 基于最小二乘支持向量机的调制识别方法
CN114745248A (zh) 基于卷积神经网络的dm-gsm信号检测方法
Ali et al. Modulation format identification using supervised learning and high-dimensional features
CN113239788A (zh) 一种基于Mask R-CNN的无线通信调制模式识别方法
Wang et al. Residual learning based RF signal denoising
CN116708104A (zh) 基于储备池计算的水下可见光通信系统调制格式识别方法
CN114422310B (zh) 一种基于联合分布矩阵与多输入神经网络的数字正交调制信号识别方法
Yadav et al. Application of Machine Learning Framework for Next‐Generation Wireless Networks: Challenges and Case Studies
Zhang et al. Modulation format recognition based on CNN in satellite communication system
CN113361433A (zh) 一种基于神经网络的调制信号识别方法及其应用
Kumar et al. 2D-FFT based modulation classification using deep convolution neural network
Xu et al. PSK/QAM modulation recognition by convolutional neural network
Li et al. Deep modulation recognition in an unknown environment
Lin et al. Features fusion based automatic modulation classification using convolutional neural network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant