CN111934325B - 一种云边协同电压无功智能控制系统及控制方法 - Google Patents

一种云边协同电压无功智能控制系统及控制方法 Download PDF

Info

Publication number
CN111934325B
CN111934325B CN202010732101.3A CN202010732101A CN111934325B CN 111934325 B CN111934325 B CN 111934325B CN 202010732101 A CN202010732101 A CN 202010732101A CN 111934325 B CN111934325 B CN 111934325B
Authority
CN
China
Prior art keywords
voltage
cloud
control
reactive power
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010732101.3A
Other languages
English (en)
Other versions
CN111934325A (zh
Inventor
刘太华
王信昌
张晓彦
郝栋梁
陈�全
周明辉
叶庆容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Agent Devote Power Technology Dev Co ltd
Original Assignee
Beijing Agent Devote Power Technology Dev Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Agent Devote Power Technology Dev Co ltd filed Critical Beijing Agent Devote Power Technology Dev Co ltd
Priority to CN202010732101.3A priority Critical patent/CN111934325B/zh
Publication of CN111934325A publication Critical patent/CN111934325A/zh
Application granted granted Critical
Publication of CN111934325B publication Critical patent/CN111934325B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • H02J13/00026Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission involving a local wireless network, e.g. Wi-Fi, ZigBee or Bluetooth
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1864Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein the stepless control of reactive power is obtained by at least one reactive element connected in series with a semiconductor switch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种基于云边协同电压无功智能控制系统,包括基于云端协同计算的电压无功控制层、基于站端边缘计算的电压无功控制层,实现了先谐波治理、后无功补偿、先本站自愈、后云端优化的无功控制;还公开了一种基于两级优化的电压无功控制新的技术方案:第一级优化方案为先谐波治理、后无功补偿,解决了谐波治理和无功电压之间存在相互影响的问题;第二级优化方案为先本站自愈、后云端优化,解决了电压无功控制实时控制和全网协同控制的矛盾,从而解决了本领域长期以来电压无功控制始终不能处于优化运行状态的疑难问题,取得了量变到质变的效果,最大限度满足了终端用户节能减排的要求,提升企业及社会经济效益及社会效益。

Description

一种云边协同电压无功智能控制系统及控制方法
技术领域
本发明属于电力系统自动化技术领域,尤其涉及一种云边协同电压无功智能控制系统及控制方法。
背景技术
为实现终端用户的电网经济运行,要求终端用户的电网运行网络损耗最小,实现节能减排目标,提升企业及社会经济效益及社会效益。
若要实现电网运行网络损耗最小,就要控制电网电压无功功率达到最小。电压无功功率用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电网电压无功功率过大将对供、用电产生一定的不良影响,主要表现在:(1)降低发电机有功功率的输出。(2)降低输、变电设备的供电能力。(3)造成线路电压损失增大和电能损耗的增加。(4)造成低功率因数运行和电压下降,使电气设备容量得不到充分发挥。从发电机和高压输电线供给的无功功率,远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。
现有技术电压无功控制存在问题之一:以单一变配电站为控制目标,满足单一变配电站电压无功控制要求,没有实现终端站与站之间的协同控制,由于站与站之间电压无功控制是相互影响的,单一站点的控制使得终端用户电压无功控制不是处于优化运行状态,原因是没有通过全网的电压无功协同控制实现终端用户电网网损最小,满足终端用户节能减排的要求。
现有技术电压无功控制存在问题之二:在线监测装置主要监测谐波含量,并未对不合格谐波提出治理。由于谐波治理和无功电压之间存在相互影响,如果仅仅进行电压无功控制而不对谐波进行治理,就使得无功控制达不到理想要求。
发明内容
本发明为解决现有技术存在的问题,提出一种云边协同电压无功智能控制系统及控制方法,目的在于解决现有电压无功控制以单一变配电站为控制目标、使得终端用户电压无功控制不是处于优化运行状态的问题;还解决现有终端用户在无功控制之前并未对不合格谐波提出治理、使得无功控制达不到理想要求的问题。
本发明为解决其技术问题提出以下技术方案:
一种基于云边协同电压无功智能控制系统,其特征在于:包括基于云端协同计算的电压无功控制层、基于站端边缘计算的电压无功控制层,所述基于云端协同计算的电压无功控制层和基于站端边缘计算的电压无功控制层通过4G或5G网络进行双向通讯;所述基于云端协同计算的电压无功控制层根据站端实时上传的站端自愈数据进行电压无功优化计算、并将优化计算结果送向站端;所述基于站端边缘计算的电压无功控制层实现本站自愈、并接受和执行云端控制;所述基于云端协同计算和基于站端边缘计算的电压无功控制为先谐波治理、后无功补偿、先本站自愈、后云端优化的无功控制。
所述基于云端协同计算的电压无功控制层设有云端协同计算服务器、该云端服务器设有收集站端自愈数据模块、终端用户电网潮流计算模块、终端用户无功值优化计算模块、终端用户控制电压优化计算模块、终端用户谐波电流值优化计算模块。
所述基于站端边缘计算的电压无功控制层由各个配变电站的无功控制终端组成;该各个配变电站的无功控制终端分别设有感知层、传输层、控制层;所述控制层设有边缘计算电压无功智能终端;所述传输层设有无功补偿设备、电能质量在线监测装置、谐波治理设备、变压器调压机构监测装置,这些设备和装置通过光纤网、电力线载波通讯网、无线宽带网与控制层的边缘计算电压无功智能终端进行双向通讯;所述感知层设有用于为无功补偿设备采集数据的物联网电压电流传感器、用于分别为电能质量在线监测设备、谐波治理设备、变压器调压监测设备采集数据的电压电流传感器及执行器。
所述传输层的无功补偿装置包括用于动态无功补偿的SVG控制装置、用于静态无功补偿的SVC控制装置、用于间隔无功补偿的电容投切控制装置;所述传输层的谐波治理设备包括滤波控制装置、用于动态滤波控制的SVG控制装置、用于静态滤波控制的SVC控制装置。
所述边缘计算电压无功智能终端设有中央处理模块、与中央处理模块单向连接的传感器采集数据模块、接收云端优化值模块;还设有与中央处理模块双向连接的电能质量控制模块、谐波控制模块、无功控制模块、电压控制模块;该谐波控制模块设有本站谐波控制子模块、执行云端谐波控制子模块;该无功控制模块设有本站无功控制子模块、执行云端无功控制子模块;该电压控制模块设有本站电压控制子模块、执行云端电压控制子模块;该执行云端谐波控制子模块将本站自愈后的谐波值和云端优化谐波值进行比较,根据差值启动谐波治理设备;该执行云端无功控制子模块将本站自愈后的电压无功值和云端优化后的电压无功值进行比较,根据差值移动无功补偿设备;该执行云端电压控制子模块将本站自愈后的电压值和云端优化后的电压值进行比较,根据差值启动变压器调压监测设备;该中央处理模块控制先谐波治理、后无功补偿、先实现本站自愈、再把实现本站自愈后的数据送向云端优化。
一种基于云边协同电压无功智能控制系统的云边协同控制方法,其特征在于:包括以下步骤:
步骤一、边缘计算端调节本站无功自愈并将调节结果送向云端进行优化;所述边缘计算端为各个配变电站无功控制终端的边缘计算电压无功智能终端;
步骤二、云端根据终端用户电力网实时运行情况,利用电网潮流优化计算算法,计算出终端用户每一变配电所优化运行所需要的无功,送向终端用户边缘计算终端;
步骤三、边缘计算终端根据云端送来的优化无功值,先根据本站电能质量在线监测装置监测电能质量情况,控制谐波治理装置,进行谐波治理;
步骤四、边缘计算终端待谐波治理合格后,依据无功优化值,按照等比例或等增量算法,分配给本站无功补偿设备;
步骤五、由本站无功补偿设备调节,监视进线电压及无功,并将实时调整数据,进线电压、无功数据送向云端;
步骤六、云端根据调整情况,利用潮流优化计算程序再进行计算,并将计算优化无功值送向边缘计算终端,如此不断循环、边缘计算终端连接监控终端实现本地监控,边缘计算终端将最新执行电压无功控制结果送向云端、APP。
所述步骤一具体包括过程:
⑴、电能质量在线监测装置将变配电站电能质量数据送向边缘计算电压无功智能终端的本站谐波控制模块;
⑵、所述本站谐波控制模块根据谐波电能质量标准,判定该变配电站谐波合格情况,并进行趋势分析、对不合格谐波,发出指令,由谐波治理装置去调整并治理谐波;
⑶、所述本站无功控制模块待谐波治理合格后,根据监测母线电压及功率因数,计算出需要调整多少无功、并向变配电所的无功补偿设备发控制命令,实现无功调节与控制;
⑷、无功调整以后,所述本站电压控制模块通过变压器调压监测设备监测电压是否在合理的范围,如果电压高则判定变压器分接头是否可降,如果可下降,则降变压器分接头,如果不可下降,返回过程⑶通过再次调无功把电压降下来;
⑸、将本站自愈后的谐波、无功、电压调节结果送向云端进行优化。
所述步骤三、步骤四、步骤五,具体过程如下:
⑴云端计算最优无功Q值、控制电压、谐波电流值;
⑵站端接收云端标准进行电压、无功、谐波监测;
⑶谐波是否超标?,如果超标,继续过程⑷,如果没有超标,转入过程⑺;
⑷检查补偿滤波柜状态和有源滤波柜状态;
⑸使滤波柜进入工作状态并进行滤波控制;
⑹谐波是否超标?如果超标,返回过程⑸,如果没有超标,继续过程⑺;
⑺根据云端最优无功Q值和当地无功Q值的差值计算出需要增加或减少多少无功值
⑻无功调整后进行电压结果值预测并调整电压在合理范围;
⑼电压调整后判断无功过补或欠补?如果是,采用无功补偿设备进行调节,如果否,继续过程⑽;
⑽无功调整后判断电压是否变高?如果否,则执行云端优化电压U,并转入过程⑿,如果是,继续过程⑾;
⑾分接头是否可降?如果是,则降变压器分接头,如果否,返回过程⑼通过再次调无功把电压降下来;
⑿将执行云端优化后的谐波、无功、电压执行结果送向云端。
本发明的优点效果
本发明将云端协同计算技术、边缘计算技术、物联网技术、电压无功控制技术有机结合,实现了基于两级优化的电压无功控制新的技术方案:第一级优化方案为先谐波治理、后无功补偿,解决了谐波治理和无功电压之间存在相互影响的问题;第二级优化方案为先本站自愈、后云端优化,解决了电压无功控制实时控制和全网协同控制的矛盾,从而解决了本领域长期以来电压无功控制始终不能处于优化运行状态的疑难问题,取得了量变到质变的效果,最大限度满足了终端用户节能减排的要求,提升企业及社会经济效益及社会效益。
附图说明
图1为云边协同控制关系图;
图2为电压无功云边协调逻辑关系图;
图3a、图3b为变配电所无功补、谐波治理等设备与边缘计算终端连接图;
图4为边缘计算电压无功智能终端结构框图;
图5为终端用户实现本站自愈程序图;
图6为终端用户执行云端优化程序图。
具体实施方式
下面结合附图对本发明做出进一步解释:
本发明设计原理
其一、“云”和“边”各自的优势和不足。所谓“云”就是“云”服务器,所述“边”就是各个配变电站。“云”服务器的优势在于将“海量数据”存储和共享,但“云”服务器存储量也不是无限制的,如果将各个配变电站全部数据放到“云”端计算,云”服务器迟早也会因为承受不了“重负”而崩塌或者降低工作效率。“边”的优势在于本站数据少负担轻,能够做到实时处理本地数据,但不足在本站无功控制具有局限性,因为各个配变电站电压无功之间并非一个一个孤岛、而是受到全网电压的影响,各个配变电站电压无功在全网范围内相互制约、相互影响,因此想在单一站点控制本站电压无功达到最优是做不到的。
其二、“云”和“边”优势互补的原理。将本站自愈后的少量数据放在云端作为优化条件,用以保证云端的协同计算,将本站自愈前传感器采集的大量数据放在本站处理,用以实现本站自愈的实时处理。为了保证“云”端数据量不会超载,云端只接收各个变配电站“自愈”以后少量的数据,包括自愈后的谐波值、无功值、电压值(所述“自愈”是指谐波值、无功值、电压值均达到了本站的标准称为“自愈”),而把实时大量的数据采集放在站端处理,在站端实时自愈处理的基础上,站端还定期接收和执行云端的优化值,从而使得站端自愈后的谐波值、电压值、无功值定期得到云端的纠正或优化,这样即可保证终端用户电压无功控制处于优化运行状态。
其三、实时本站自愈和定时云端优化的原理。云端向站端送优化值的间隔时间可以根据需要自行设定,但本站处理自愈的时间密度一定大于云端优化的时间密度,如果本站处理数据的时间密度小于云端优化的密度,那么云端优化的数据将是重复性而没有意义的,只有保证云端每次接收的数据是新鲜的,云端才有必须进行每次的数据优化。
其四、先治理谐波再无功补偿的原理。由于谐波对无功有影响,如果单纯处理无功则达不到预期效果。本发明在无功治理前先进行谐波治理,谐波治理合格后再治理无功,这个时候的无功值已经消除了谐波超标的成分,因而是“干净”的无功值,在干净”的无功值基础上进行无功补偿,才能实现终端用户电网网损最小。
基于以上原理,本发明设计了一种基于云边协同电压无功智能控制系统。
一种基于云边协同电压无功智能控制系统如图1、图2、图3a、图3b所示,包括基于云端协同计算的电压无功控制层、基于站端边缘计算的电压无功控制层,所述基于云端协同计算的电压无功控制层和基于站端边缘计算的电压无功控制层通过4G或5G网络进行双向通讯;所述基于云端协同计算的电压无功控制层根据站端实时上传的数据进行电压无功优化计算、并将优化计算结果送向站端;所述基于站端边缘计算的电压无功控制层实现本站自愈、并接受和执行云端控制。
如图3a、3b所示,所述基于云端计算的电压无功控制层设有用于电压无功优化计算的云端协同计算服务器,所述云端协同计算服务器设有终端用户电网潮流计算模块、终端用户无功值优化计算模块、终端用户控制电压优化计算模块、终端用户谐波电流值优化计算模块,收集站端采集数据模块。
如图3a、3b所示,所述基于站端边缘计算的电压无功控制层由各个配变电站的无功控制终端组成;该各个配变电站的无功控制终端分别设有感知层、传输层、控制层;所述控制层设有边缘计算电压无功智能终端;所述传输层设有无功补偿设备、电能质量在线监测装置、谐波治理设备、变压器调压机构监测装置,这些设备和装置通过光纤网、电力线载波通讯网、无线宽带网与控制层的边缘计算电压无功智能终端进行双向通讯;所述感知层设有用于为无功补偿设备采集数据的物联网电压电流传感器、用于分别为电能质量在线监测设备、谐波治理设备、变压器调压监测设备采集数据的电压电流传感器及执行器。
如图3b所示,所述传输层的无功补偿装置包括用于动态无功补偿的SVG控制装置、用于静态无功补偿的SVC控制装置、用于间隔无功补偿的电容投切控制装置;所述传输层的谐波治理设备包括滤波控制装置、用于动态滤波控制的SVG控制装置、用于静态滤波控制的SVC控制装置。
如图4所示,所述边缘计算电压无功智能终端设有中央处理模块、与中央处理模块单向连接的传感器采集数据模块、接收云端优化值模块;还设有与中央处理模块双向连接的电能质量控制模块、谐波控制模块、无功控制模块、电压控制模块;该谐波控制模块设有本站谐波控制子模块、执行云端谐波控制子模块;该无功控制模块设有本站无功控制子模块、执行云端无功控制子模块;该电压控制模块设有本站电压控制子模块、执行云端电压控制子模块;该执行云端谐波控制子模块将本站自愈后的谐波值和云端优化谐波值进行比较,根据差值启动谐波治理设备;该执行云端无功控制子模块将本站自愈后的电压无功值和云端优化后的电压无功值进行比较,根据差值移动无功补偿设备;该执行云端电压控制子模块将本站自愈后的电压值和云端优化后的电压值进行比较,根据差值启动变压器调压监测设备。
一种基于云边协同电压无功智能控制系统的云边协同控制方法,其特征在于:包括以下步骤:
步骤一、边缘计算端调节本站无功自愈并将调节结果送向云端进行优化;所述边缘计算端为各个配变电站无功控制终端的边缘计算电压无功智能终端;
步骤二、云端根据终端用户电力网实时运行情况,利用电网潮流优化计算算法,计算出终端用户每一变配电所优化运行所需要的无功,送向终端用户边缘计算终端;
步骤三、边缘计算终端根据云端送来的优化无功值,先根据本站电能质量在线监测装置监测电能质量情况,控制谐波治理装置,进行谐波治理;
步骤四、边缘计算终端待谐波治理合格后,依据无功优化值,按照等比例或等增量算法,分配给本站无功补偿设备;
步骤五、由本站无功补偿设备调节,监视进线电压及无功,并将实时调整数据,进线电压、无功数据送向云端;
步骤六、云端根据调整情况,利用潮流优化计算程序再进行计算,并将计算优化无功值送向边缘计算终端,如此不断循环、边缘计算终端连接监控终端实现本地监控,边缘计算终端将最新执行电压无功控制结果送向云端、APP。
如图5所示,所述步骤一具体包括过程:
⑴、电能质量实时在线监测装置将变配电站电能质量数据送向边缘计算电压无功智能终端;
补充说明:中央处理模块向电能质量监测模块发送命令、电能质量控制模块启动电能质量在线监测装置进行实时质量监测,电能质量控制模块将电能质量监测结果实时反馈给中央处理模块;
⑵、所述本站谐波控制模块根据谐波电能质量标准,判定该变配电站谐波合格情况,并进行趋势分析、对不合格谐波,发出指令,由谐波治理装置去调整并治理谐波;
补充说明:中央处理模块向本站谐波控制模块发送命令、由本站谐波控制模块根据谐波电能质量标准,判定该变配电站谐波合格情况,并进行趋势分析、对不合格谐波,由本站谐波控制模块向谐波治理设备发出指令、调整并治理谐波,所述谐波治理设备包括滤波控制装置、SVG动态滤波治理装置和SVC静态滤波治理装置,该滤波控制装置包括补偿滤波柜和有源滤波柜;本站谐波控制模块将完成自愈后的谐波值反馈给中央处理模块。
⑶、所述本站无功控制模块待谐波治理合格后,根据监测母线电压及功率因数,计算出需要调整多少无功、并向变配电所的无功补偿设备发控制命令,实现无功调节与控制;
补充说明:中央处理模块向本站无功控制模块发送命令、由本站无功控制模块根据监测母线电压及功率因数,计算出需要调整多少无功,并向变配电所的无功补偿设备发控制命令,进行无功调节与控制,本站无功控制模块将完成自愈后的无功值反馈给中央处理模块。
⑷、无功调整以后,所述本站电压控制模块通过变压器调压监测设备监测电压是否在合理的范围,如果电压高则判定变压器分接头是否可降,如果可下降,则降变压器分接头,如果不可下降,返回过程⑶通过再次调无功把电压降下来;
补充说明:中央处理模块向本站电压控制模块发送命令、由本站电压控制模块启动变压器调压监测设备、并控制变压器调压机构将电压控制在合理的范围内,本站电压控制模块将完成自愈后的电压值反馈给中央处理模块。
⑸、将本站自愈后的谐波、无功、电压调节结果送向云端进行优化。
补充说明:中央处理模块将完成本站自愈后的谐波、无功、电压调节结果送向云端进行优化。
如图6所示,所述步骤三、步骤四、步骤五,具体过程如下:
⑴云端计算最优无功Q值、控制电压、谐波电流值;
补充说明:
云端协同计算服务器通过终端用户电网潮流计算模块、终端用户无功值优化计算模块、终端用户控制电压优化计算模块、终端用户谐波电流值优化计算模块计算最优无功Q值、控制电压、谐波电流值,并将这些值送向站端;
⑵站端接收云端标准进行电压、无功、谐波监测;
补充说明:站端的云端优化值模块接收云端计算的最优无功Q值、控制电压、谐波电流值以后,将数据传送给中央处理模块;
⑶谐波是否超标?,如果超标,继续过程⑷,如果没有超标,转入过程⑺;
补充说明:中央处理模块将云端优化谐波值和本站自愈谐波值传给执行云端谐波控制模块,并启动执行云端谐波控制模块;执行云端谐波控制模块将本站自愈后的谐波值和云端云端优化谐波值进行比较;执行云端谐波控制模块将执行云端优化后的谐波执行结果反馈给中央处理模块。
⑷检查补偿滤波柜状态和有源滤波柜状态;
补充说明:图3a的谐波治理设备包括滤波控制装置、SVG动态滤波装置、SCV静态滤波装置,其中滤波控制装置包括补偿滤波柜和有源滤波柜;
⑸使滤波柜进入工作状态并进行滤波控制;
⑹谐波是否超标?如果超标,返回过程⑸,若没有超标,继续过程⑺;
⑺根据云端最优无功Q值和当地无功Q值的差值计算出需要增加或减少多少无功值
补充说明:中央处理模块将云端优化无功值、本站自愈无功值传给执行云端无功控制模块并启动执行云端无功控制模块,执行云端无功控制模块将本站自愈无功值和云端优化无功值进行比较,根据云端最优无功Q值和当地无功Q值的差值计算出需要增加或减少多少无功值;执行云端无功控制模块将执行云端优化后的无功执行结果反馈给中央处理模块。
⑻无功调整后进行电压结果值预测并调整电压在合理范围;
⑼电压调整后判断无功过补或欠补?如果是,采用无功补偿设备进行调节,如果否,继续过程⑽;
⑽无功调整后判断电压是否变高?如果否,则执行云端优化电压U,并转入过程⑿,如果是,继续过程⑾;
补充说明:中央处理模块将云端优化电压值U、本站自愈电压值传给执行云端电压控制模块并启动执行云端电压控制模块,执行云端电压控制模块将本站自愈电压值和云端优化电压值进行比较,判断无功调整后电压是否变高?执行云端电压控制模块将执行云端优化后的电压执行结果反馈给中央处理模块。
⑾分接头是否可降?如果是,则降变压器分接头,如果否,返回过程⑼通过再次调无功把电压降下来;
⑿将执行云端优化后的谐波、无功、电压执行结果送向云端。
补充说明:
中央处理模块将执行云端优化后的谐波、无功、电压执行结果送向云端。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种基于云边协同电压无功智能控制系统,其特征在于:包括基于云端协同计算的电压无功控制层、基于站端边缘计算的电压无功控制层,所述基于云端协同计算的电压无功控制层和基于站端边缘计算的电压无功控制层通过4G或5G网络进行双向通讯;所述基于云端协同计算的电压无功控制层根据站端实时上传的站端自愈数据进行电压无功优化计算、并将优化计算结果送向站端;所述基于站端边缘计算的电压无功控制层实现本站自愈、并接受和执行云端控制;所述基于云端协同计算和基于站端边缘计算的电压无功控制为先谐波治理、后无功补偿、先本站自愈、后云端优化的无功控制;
所述基于云端协同计算的电压无功控制层设有云端协同计算服务器,该云端协同计算服务器设有收集站端自愈数据模块、终端用户电网潮流计算模块、终端用户无功值优化计算模块、终端用户控制电压优化计算模块、终端用户谐波电流值优化计算模块;
所述基于站端边缘计算的电压无功控制层由各个配变电站的无功控制终端组成;该各个配变电站的无功控制终端分别设有感知层、传输层、控制层;所述控制层设有边缘计算电压无功智能终端;所述传输层设有无功补偿设备、电能质量在线监测装置、谐波治理设备、变压器调压机构监测设备,这些设备和装置通过光纤网、电力线载波通讯网、无线宽带网与控制层的边缘计算电压无功智能终端进行双向通讯;所述感知层设有用于为无功补偿设备采集数据的物联网电压电流传感器、用于分别为电能质量在线监测装置、谐波治理设备、变压器调压机构监测设备采集数据的电压电流传感器及执行器。
2.根据权利要求1所述一种基于云边协同电压无功智能控制系统,其特征在于:所述传输层的无功补偿设备包括用于动态无功补偿的SVG控制装置、用于静态无功补偿的SVC控制装置、用于间隔无功补偿的电容投切控制装置;所述传输层的谐波治理设备包括滤波控制装置、用于动态滤波控制的SVG控制装置、用于静态滤波控制的SVC控制装置。
3.根据权利要求1所述一种基于云边协同电压无功智能控制系统,其特征在于:所述边缘计算电压无功智能终端设有中央处理模块、与中央处理模块单向连接的传感器采集数据模块、接收云端优化值模块;还设有与中央处理模块双向连接的电能质量控制模块、谐波控制模块、无功控制模块、电压控制模块;该谐波控制模块设有本站谐波控制子模块、执行云端谐波控制子模块;该无功控制模块设有本站无功控制子模块、执行云端无功控制子模块;该电压控制模块设有本站电压控制子模块、执行云端电压控制子模块;该执行云端谐波控制子模块将本站自愈后的谐波值和云端优化谐波值进行比较,根据差值启动谐波治理设备;该执行云端无功控制子模块将本站自愈后的电压无功值和云端优化后的电压无功值进行比较,根据差值启动无功补偿设备;该执行云端电压控制子模块将本站自愈后的电压值和云端优化后的电压值进行比较,根据差值启动变压器调压机构监测设备;该中央处理模块控制先谐波治理、后无功补偿、先实现本站自愈、再把实现本站自愈后的数据送向云端优化。
4.一种如权利要求3所述一种基于云边协同电压无功智能控制系统的云边协同控制方法,其特征在于:包括以下步骤:
步骤一、边缘计算终端调节本站无功自愈并将调节结果送向云端进行优化;所述边缘计算终端为各个配变电站无功控制终端的边缘计算电压无功智能终端;
步骤二、云端根据终端用户电力网实时运行情况,利用电网潮流优化计算算法,计算出终端用户每一变配电所优化运行所需要的无功,送向终端用户边缘计算终端;
步骤三、边缘计算终端根据云端送来的优化无功值,先根据本站电能质量在线监测装置监测电能质量情况,控制谐波治理设备,进行谐波治理;
步骤四、边缘计算终端待谐波治理合格后,依据无功优化值,按照等比例或等增量算法,分配给本站无功补偿设备;
步骤五、由本站无功补偿设备调节,监视进线电压及无功,并将实时调整数据,进线电压、无功数据送向云端;
步骤六、云端根据调整情况,利用潮流优化计算程序再进行计算,并将计算优化无功值送向边缘计算终端,如此不断循环、边缘计算终端连接监控终端实现本地监控,边缘计算终端将最新执行电压无功控制结果送向云端、APP。
5.根据权利要求4所述一种基于云边协同电压无功智能控制系统的云边协同控制方法,其特征在于:所述步骤一具体包括过程:
⑴、电能质量在线监测装置将变配电站电能质量数据送向边缘计算电压无功智能终端的本站谐波控制子模块;
⑵、所述本站谐波控制子模块根据谐波电能质量标准,判定该变配电站谐波合格情况,并进行趋势分析、对不合格谐波,发出指令,由谐波治理设备去调整并治理谐波;
⑶、所述本站无功控制子模块待谐波治理合格后,根据监测母线电压及功率因数,计算出需要调整多少无功、并向变配电所的无功补偿设备发出控制命令,实现无功调节与控制;
⑷、无功调整以后,所述本站电压控制子模块通过变压器调压机构监测设备监测电压是否在合理的范围,如果电压高则判定变压器分接头是否可降,如果可下降,则降变压器分接头,如果不可下降,返回过程⑶通过再次调无功把电压降下来;
⑸、将本站自愈后的谐波、无功、电压调节结果送向云端进行优化。
6.根据权利要求4所述一种基于云边协同电压无功智能控制系统的云边协同控制方法,其特征在于:所述步骤三、步骤四、步骤五,具体过程如下:
⑴云端计算最优无功Q值、控制电压、谐波电流值;
⑵站端接收云端的最优无功Q值、控制电压、谐波电流值,用这些值和当前电压、无功、谐波值进行比较;
⑶谐波是否超标?如果超标,继续过程⑷,如果没有超标,转入过程⑺;
⑷检查补偿滤波柜状态和有源滤波柜状态;
⑸使滤波柜进入工作状态并进行滤波控制;
⑹谐波是否超标?如果超标,返回过程⑸,如果没有超标,继续过程⑺;
⑺根据云端最优无功Q值和当地无功Q值的差值计算出需要增加或减少多少无功值;
⑻无功调整后进行电压结果值预测并调整电压在合理范围;
⑼电压调整后判断无功过补或欠补?如果是,采用无功补偿设备进行调节,如果否,继续过程⑽;
⑽无功调整后判断电压是否变高?如果否,则执行云端优化电压U,并转入过程⑿,如果是,继续过程⑾;
⑾分接头是否可降?如果是,则降变压器分接头,如果否,返回过程⑼通过再次调无功把电压降下来;
⑿将执行云端优化后的谐波、无功、电压执行结果送向云端。
CN202010732101.3A 2020-07-27 2020-07-27 一种云边协同电压无功智能控制系统及控制方法 Active CN111934325B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010732101.3A CN111934325B (zh) 2020-07-27 2020-07-27 一种云边协同电压无功智能控制系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010732101.3A CN111934325B (zh) 2020-07-27 2020-07-27 一种云边协同电压无功智能控制系统及控制方法

Publications (2)

Publication Number Publication Date
CN111934325A CN111934325A (zh) 2020-11-13
CN111934325B true CN111934325B (zh) 2023-08-29

Family

ID=73314227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010732101.3A Active CN111934325B (zh) 2020-07-27 2020-07-27 一种云边协同电压无功智能控制系统及控制方法

Country Status (1)

Country Link
CN (1) CN111934325B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398126B (zh) * 2020-11-26 2022-09-09 国网河南省电力公司内乡县供电公司 一种配电网格降损与防窃运维管理方法
CN112653154B (zh) * 2020-11-30 2023-06-27 国网浙江省电力有限公司嘉兴供电公司 基于边缘计算的分布式光伏配电网无功优化控制方法
CN113471982B (zh) * 2021-07-22 2022-06-28 天津大学 云边协同与电网隐私保护的分布式电源就地电压控制方法
CN114024322B (zh) * 2021-11-15 2023-08-25 云南电网有限责任公司电力科学研究院 一种配电网无功电压自学习控制系统和方法
CN115051477B (zh) * 2022-08-16 2022-11-18 山东大学 一种基于云边端协同的谐波溯源系统及方法
CN116647052B (zh) * 2023-07-21 2023-10-03 合肥工业大学 基于多边云协同的智能变电站自动控制调度方法及系统
CN117318058B (zh) * 2023-09-27 2024-05-03 南方电网数字电网研究院股份有限公司 一种配电网的无功补偿方法和无功补偿系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026096A (zh) * 2016-06-29 2016-10-12 南京软核科技有限公司 一种基于svg的配电网多级协调节能优化控制系统
CN208890843U (zh) * 2018-10-26 2019-05-21 上海方融科技有限责任公司 一种基于雾节点的边缘计算系统
CN110224495A (zh) * 2019-07-19 2019-09-10 国网山东省电力公司临沂供电公司 配电台区故障智能报送系统
CN111045828A (zh) * 2019-12-27 2020-04-21 广东电科院能源技术有限责任公司 基于配电网台区终端的分布式边缘计算方法和相关装置
CN111062651A (zh) * 2020-03-18 2020-04-24 南京中电科能技术有限公司 基于边缘计算和大数据分析的安全用电管理系统及方法
CN111064223A (zh) * 2019-12-20 2020-04-24 远光软件股份有限公司 一种基于边缘计算的微电网电能质量控制系统及方法
CN210867289U (zh) * 2019-12-11 2020-06-26 厦门理工学院 一种基于UPIoT的电能质量监测及补偿系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054518A (zh) * 2020-09-07 2020-12-08 苏州爱科赛博电源技术有限责任公司 一种中低压配电网电能质量提升的两层三级协调控制系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026096A (zh) * 2016-06-29 2016-10-12 南京软核科技有限公司 一种基于svg的配电网多级协调节能优化控制系统
CN208890843U (zh) * 2018-10-26 2019-05-21 上海方融科技有限责任公司 一种基于雾节点的边缘计算系统
CN110224495A (zh) * 2019-07-19 2019-09-10 国网山东省电力公司临沂供电公司 配电台区故障智能报送系统
CN210867289U (zh) * 2019-12-11 2020-06-26 厦门理工学院 一种基于UPIoT的电能质量监测及补偿系统
CN111064223A (zh) * 2019-12-20 2020-04-24 远光软件股份有限公司 一种基于边缘计算的微电网电能质量控制系统及方法
CN111045828A (zh) * 2019-12-27 2020-04-21 广东电科院能源技术有限责任公司 基于配电网台区终端的分布式边缘计算方法和相关装置
CN111062651A (zh) * 2020-03-18 2020-04-24 南京中电科能技术有限公司 基于边缘计算和大数据分析的安全用电管理系统及方法

Also Published As

Publication number Publication date
CN111934325A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN111934325B (zh) 一种云边协同电压无功智能控制系统及控制方法
CN109327050B (zh) 一种分布式光伏并网的稳定电网电压控制方法及系统终端
CN108493945B (zh) 基于配电网节能降损协调优化的电压控制方法
CN110048438B (zh) 一种基于模型预测控制的配电网馈线级负荷功率控制方法
CN108011378B (zh) 受端分层接入特高压直流低负荷无功控制方法及控制装置
CN103441510A (zh) 一种包含柔性直流输电系统的区域电网无功优化方法
CN104810840A (zh) 一种全网电压无功优化控制系统及其控制方法
CN105226675B (zh) 防止光伏并网电压越限的逆变器无功调节控制方法
CN107230979B (zh) 一种电网自动电压优化控制方法
CN114123218B (zh) 分布式光伏接入末端配电网的过电压分层分区抑制方法
CN113783230A (zh) 台区分布式光伏的管理方法及系统、设备、存储介质
CN104319783A (zh) 一种基于负荷预测的配电网二级协调控制系统及方法
CN113555878A (zh) 一种台区电能质量综合补偿系统
CN108695892A (zh) 一种基于光伏逆变器调节的配电网电压控制方法
CN105977992B (zh) 一种基于负载变化智能调节无功输出的配电系统
CN108336743A (zh) 一种基于分布式电源并网逆变器的本地电压控制方法
CN115347577A (zh) 基于分布式光伏的多区域限值电压调控方法及装置
CN108347066A (zh) 一种交直流双向功率变流器的控制策略优化方法
CN212412767U (zh) 一种中压配电网电能质量控制系统
CN111668854A (zh) 一种用于中高压电网的补偿系统
CN111600314A (zh) 一种针对低压配电网的晶闸管控串联补偿控制方法
CN105977993B (zh) 一种基于负载的智能配电系统的无功补偿方法
CN111878888A (zh) 厂级热电机组联合供热方式下的控制调节系统及方法
CN105977997B (zh) 一种可智能无功补偿配电系统的运行方法
CN113794247B (zh) 自动需求响应调节的电力储能控制

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant