CN111931704A - Method, apparatus, device and computer-readable storage medium for assessing map quality - Google Patents
Method, apparatus, device and computer-readable storage medium for assessing map quality Download PDFInfo
- Publication number
- CN111931704A CN111931704A CN202010966261.4A CN202010966261A CN111931704A CN 111931704 A CN111931704 A CN 111931704A CN 202010966261 A CN202010966261 A CN 202010966261A CN 111931704 A CN111931704 A CN 111931704A
- Authority
- CN
- China
- Prior art keywords
- map
- smoothness
- unit
- point cloud
- flat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000003860 storage Methods 0.000 title claims abstract description 25
- 238000011156 evaluation Methods 0.000 claims description 79
- 238000004590 computer program Methods 0.000 claims description 12
- 230000002159 abnormal effect Effects 0.000 claims description 11
- 238000013507 mapping Methods 0.000 claims description 6
- 230000005856 abnormality Effects 0.000 claims description 4
- 238000011511 automated evaluation Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 18
- 238000012545 processing Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000003708 edge detection Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000001303 quality assessment method Methods 0.000 description 2
- 101000822695 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C1 Proteins 0.000 description 1
- 101000655262 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C2 Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101000655256 Paraclostridium bifermentans Small, acid-soluble spore protein alpha Proteins 0.000 description 1
- 101000655264 Paraclostridium bifermentans Small, acid-soluble spore protein beta Proteins 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/40—Document-oriented image-based pattern recognition
- G06V30/42—Document-oriented image-based pattern recognition based on the type of document
- G06V30/422—Technical drawings; Geographical maps
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本公开的实施例总体涉及地图领域,具体涉及用于评估地图质量的方法、装置、设备和计算机可读存储介质。Embodiments of the present disclosure generally relate to the field of maps, and in particular, to a method, apparatus, device, and computer-readable storage medium for evaluating map quality.
背景技术Background technique
高精度点云地图通常被用于物体检测、自动驾驶中的高精度定位等应用场景。高精度点云地图的质量将显著影响物体检测及高精度定位的准确性。因此,对高精度点云地图进行质量评估尤为重要。High-precision point cloud maps are usually used in application scenarios such as object detection and high-precision positioning in autonomous driving. The quality of high-precision point cloud maps will significantly affect the accuracy of object detection and high-precision positioning. Therefore, it is particularly important to evaluate the quality of high-precision point cloud maps.
发明内容SUMMARY OF THE INVENTION
本公开的实施例提供了用于评估地图质量的方法、装置、设备和计算机可读存储介质。Embodiments of the present disclosure provide a method, apparatus, device, and computer-readable storage medium for evaluating map quality.
在本公开的第一方面,提供了一种评估地图质量的方法。该方法包括:基于点云地图的语义信息,识别所述点云地图中的平坦区域;以及通过评估所述平坦区域的至少一个属性来评估所述点云地图的质量。In a first aspect of the present disclosure, a method of assessing map quality is provided. The method includes: identifying a flat area in the point cloud map based on semantic information of the point cloud map; and evaluating the quality of the point cloud map by evaluating at least one attribute of the flat area.
在本公开的第二方面,提供了一种评估地图质量的装置。该装置包括:平坦区域识别模块,被配置为基于点云地图的语义信息,识别所述点云地图中的平坦区域;以及质量评估模块,被配置为通过评估所述平坦区域的至少一个属性来评估所述点云地图的质量。In a second aspect of the present disclosure, an apparatus for evaluating map quality is provided. The apparatus includes: a flat area identification module configured to identify a flat area in the point cloud map based on semantic information of the point cloud map; and a quality assessment module configured to evaluate at least one attribute of the flat area Evaluate the quality of the point cloud map.
在本公开的第三方面中,提供了一种电子设备,包括一个或多个处理器;以及存储器,用于存储一个或多个程序,当一个或多个程序被一个或多个处理器执行时,使该电子设备实现根据本公开的第一方面的方法。In a third aspect of the present disclosure, there is provided an electronic device comprising one or more processors; and a memory for storing one or more programs, when the one or more programs are executed by the one or more processors When the electronic device is made to implement the method according to the first aspect of the present disclosure.
在本公开的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序。该计算机程序在处理器执行时实现根据本公开的第一方面所描述的方法的任意步骤。In a fourth aspect of the present disclosure, there is provided a computer-readable storage medium having a computer program stored thereon. The computer program, when executed by a processor, implements any of the steps of the method described in accordance with the first aspect of the present disclosure.
提供发明内容部分是为了以简化的形式来介绍对概念的选择,它们在下文的具体实施方式中将被进一步描述。发明内容部分无意标识本公开的关键特征或必要特征,也无意限制本公开的范围。This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the disclosure, nor is it intended to limit the scope of the disclosure.
附图说明Description of drawings
通过结合附图对本公开示例性实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显,其中,在本公开示例性实施例中,相同的参考标号通常代表相同部件。The above and other objects, features and advantages of the present disclosure will become more apparent from the more detailed description of the exemplary embodiments of the present disclosure, taken in conjunction with the accompanying drawings, wherein the same reference numerals generally refer to the exemplary embodiments of the present disclosure. same parts.
图1示出了本公开的实施例能够在其中被实施的示例环境的框图;1 illustrates a block diagram of an example environment in which embodiments of the present disclosure can be implemented;
图2示出了根据本公开的实施例的地图评估设备的示意性框图;FIG. 2 shows a schematic block diagram of a map evaluation device according to an embodiment of the present disclosure;
图3示出了根据本公开的实施例的用于评估地图质量的示例方法的流程图;3 shows a flowchart of an example method for assessing map quality according to an embodiment of the present disclosure;
图4示出了根据本公开的实施例的用于评估平坦区域的平滑度的示例方法的流程图;4 shows a flowchart of an example method for evaluating smoothness of a flat region according to an embodiment of the present disclosure;
图5示出了根据本公开的实施例的用于评估地图质量的示例装置的框图;以及FIG. 5 shows a block diagram of an example apparatus for evaluating map quality according to an embodiment of the present disclosure; and
图6示出了能够实施本公开的多个实施例的示例电子设备的框图。6 illustrates a block diagram of an example electronic device capable of implementing various embodiments of the present disclosure.
在各个附图中,相同或对应的标号表示相同或对应的部分。In the various figures, the same or corresponding reference numerals designate the same or corresponding parts.
具体实施方式Detailed ways
下面将参照附图更详细地描述本公开的优选实施例。虽然附图中显示了本公开的优选实施例,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。Preferred embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. While preferred embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.
在本文中使用的术语“包括”及其变形表示开放性包括,即“包括但不限于”。除非特别申明,术语“或”表示“和/或”。术语“基于”表示“至少部分地基于”。术语“一个示例实施例”和“一个实施例”表示“至少一个示例实施例”。术语“另一实施例”表示“至少一个另外的实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。As used herein, the term "including" and variations thereof mean open-ended inclusion, ie, "including but not limited to". The term "or" means "and/or" unless specifically stated otherwise. The term "based on" means "based at least in part on". The terms "one example embodiment" and "one embodiment" mean "at least one example embodiment." The term "another embodiment" means "at least one additional embodiment." The terms "first", "second", etc. may refer to different or the same objects. Other explicit and implicit definitions may also be included below.
如上所述,高精度点云地图通常被用于物体检测、自动驾驶中的高精度定位等应用场景。高精度点云地图的质量将显著影响物体检测及高精度定位的准确性。因此,对高精度点云地图进行质量评估尤为重要。一些传统方案通过将点云地图与参考地图进行对比来评估点云地图的质量。然而,参考地图可能不容易得到或者参考地图本身可能是不准确的,这些将影响对点云地图的质量评估。As mentioned above, high-precision point cloud maps are usually used in application scenarios such as object detection and high-precision positioning in autonomous driving. The quality of high-precision point cloud maps will significantly affect the accuracy of object detection and high-precision positioning. Therefore, it is particularly important to evaluate the quality of high-precision point cloud maps. Some traditional schemes evaluate the quality of point cloud maps by comparing them with reference maps. However, the reference map may not be readily available or the reference map itself may be inaccurate, which will affect the quality assessment of the point cloud map.
本公开的实施例提出了一种评估地图质量的方案,能够解决上述问题和其他潜在问题中的一个或多个。在该方案中,基于点云地图的语义信息,识别点云地图中的平坦区域。通过评估平坦区域的至少一个属性来评估该点云地图的质量。以此方式,该方案能够通过分析点云地图中平坦区域(例如,路面区域等)的属性来评估点云地图的质量,而无需将点云地图与参考地图进行比较,从而能够实现对点云地图的质量的自动化评估。Embodiments of the present disclosure propose a solution for evaluating map quality, which can address one or more of the above-mentioned problems and other potential problems. In this scheme, the flat areas in the point cloud map are identified based on the semantic information of the point cloud map. The quality of the point cloud map is evaluated by evaluating at least one property of the flat area. In this way, the scheme can evaluate the quality of the point cloud map by analyzing the properties of the flat area (eg, road area, etc.) in the point cloud map without comparing the point cloud map with the reference map, so that the point cloud map can be compared. Automated assessment of map quality.
图1示出了本公开的实施例能够在其中被实现的示例环境100的框图。如图1所示,环境100包括地图采集设备110和地图评估设备120。应当理解,仅出于示例性的目的描述环境100的结构和功能,而不暗示对于本公开的范围的任何限制。例如,本公开的实施例还可以被应用到与环境100不同的环境中。1 illustrates a block diagram of an
地图采集设备110可以包括但不限于采集车或者用于采集地图数据的其他设备。例如,在地图采集设备110上可以安装激光雷达以用于采集数据。地图采集设备110可以在采集时段期间在特定地理区域内运动,以采集用于制作地图的点云数据。在此所述的“点云数据”可以指代当一束激光照射在物体表面时所返回的该物体表面的各个点的数据信息,包括每个点的三维坐标(例如,x坐标、y坐标和z坐标)以及激光反射强度(也称为“反射值”)。地图采集设备110可以基于采集到的点云数据来生成关于特定地理区域的点云地图115。The
点云地图115可以被提供给地图评估设备120。地图评估设备120可以通过分析点云地图115中路面区域的属性来评估点云地图115的质量,以生成评估结果125。The
图2示出了根据本公开的实施例的地图评估设备120的示意性框图。如图2所示,地图评估设备120可以包括投影模块210、平坦区域识别模块220以及评估模块230。应当理解,仅出于示例性的目的描述地图评估设备120的结构和功能,而不暗示对于本公开的范围的任何限制。在一些实施例中,地图评估设备120可以以与图2所示的结构不同的结构来实现。FIG. 2 shows a schematic block diagram of a
在一些实施例中,投影模块210被配置为通过将点云地图115进行二维栅格投影来生成与点云地图115对应的投影地图215。投影地图215可以被划分成多个栅格(也称为“多个单元区域”)。针对每个栅格,可以基于点云地图115中与该栅格对应的原始坐标点的高度值来确定与该栅格对应的高度均值和高度方差。此外,可以基于点云地图115中与该栅格对应的原始坐标点的反射值来确定与该栅格对应的反射值均值和反射值方差。在本文中,投影地图215也被称为“二维投影地图”或者“二维栅格地图”。In some embodiments, the
在一些实施例中,为了生成与点云地图115对应的投影地图215,投影模块210可以首先将三维点云地图115按照三维栅格进行坐标点聚合,其中每个三维栅格是预定边长的正方体。针对每个三维栅格,投影模块210可以计算落入其中的所有原始坐标点的加权结果,包括高度值加权结果和反射值加权结果。投影模块210可以针对每个三维栅格统计高度值均值、高度值方差、反射值均值和反射值方差。在得到每个三维栅格的统计结果之后,投影模块210可以将三维栅格划分成多个栅格集合,其中每个栅格集合具有相同水平坐标(即,每个栅格集合对应于相同的x坐标和相同的y坐标),在本文中每个栅格集合也被称为“柱子(pillar)”。投影模块210可以在每个柱子中的点进行欧式聚类,从而得到多个点簇。投影模块210可以计算每个点簇的高度值加权结果和反射值加权结果。投影模块210可以过滤掉每个柱子中的空中点簇、动态点簇以及权重较低的点簇(例如,点数较少的簇)。投影模块210可以针对经过滤的每个柱子计算其高度值均值、高度值方差、反射值均值和反射值方差,从而得到投影地图215,例如每个柱子所对应的平面区域即为投影地图215中的一个单位区域。In some embodiments, in order to generate the projected
以上仅出于示例目的描述了投影地图215的生成。应当理解,在一些实施例中,投影模块210可以以任何其他方式来生成与点云地图115对应的投影地图215。本公开的范围在此方面不受限制。The generation of the projected
在一些实施例中,平坦区域识别模块220被配置为基于平坦区域的语义信息,识别投影地图215中的平坦区域225。平坦区域的示例可以包括但不限于路面区域,诸如,车道、人行道、广场等。平坦区域的语义信息可以是预先确定的。附加地或备选地,平坦区域的语义信息可以基于评估结果125中的至少一部分而被相应更新,从而提高其准确性。In some embodiments, the flat
在一些实施例中,评估模块230被配置为通过评估平坦区域225的至少一个属性来评估点云地图115的质量,从而生成评估结果125。至少一个属性可以包括平坦区域的平滑度和厚度中的至少一项。如图2所示,例如,评估模块230可以包括平滑度评估模块231和/或厚度评估模块232,其中平滑度评估模块231被配置为评估平坦区域225的平滑度,而厚度评估模块232被配置为评估平坦区域225的厚度。In some embodiments, the
平坦区域225的平滑性主要通过平坦区域225的高度变化来体现。在一些实施例中,为了评估平坦区域225的平滑度,平滑度评估模块231可以获取与点云地图115对应的位姿图,该位姿图包括地图采集设备110在采集点云地图115时的位姿集合。在一些实施例中,针对多个单位区域中的每个单位区域,平滑度评估模块231可以从位姿图中确定与该单位区域相关联的至少一个位姿。例如,平滑度评估模块231可以确定位于该单位区域的邻近范围内的至少一个位姿。对该单位区域的邻近范围的确定可以基于K近邻(KNN)算法或其他类似算法来实现,本公开的范围在此方面不受限制。在一些实施例中,平滑度评估模块231可以基于投影地图215中的该单位区域的高度均值和至少一个位姿的相应高度值来确定该单位区域的相对高度值。例如,平滑度评估模块231可以对至少一个位姿的相应高度值进行加权平均,以得到至少一个位姿的高度加权平均值。至少一个位姿中的每个位姿的高度值的权值可以基于以下公式来确定:The smoothness of the
其中xp,i表示第i个位姿的x坐标,xcell表示该单位区域的x坐标,yp,i表示第i个位姿的y坐标并且ycell表示该单位区域的y坐标。MAX_WEIGHT表示预设的最大权值,例如其小于1。平滑度评估模块231可以计算投影地图215中的该单位区域的高度均值与至少一个位姿的高度加权平均值之间的差值,以作为该单位区域的相对高度值。where x p,i represents the x coordinate of the ith pose, x cell represents the x coordinate of the unit area, y p,i represents the y coordinate of the ith pose and y cell represents the y coordinate of the unit area. MAX_WEIGHT represents the preset maximum weight, for example, it is less than 1. The
在一些实施例中,平滑度评估模块231可以通过将多个单位区域的多个相对高度值分别映射成灰度值(例如,范围为0~255),从而生成灰度图像。平滑度评估模块231可以通过对灰度图像进行边缘检测来生成该灰度图像的梯度图。例如,边缘检测可以基于Canny算法或者其他类似算法来实现,本公开的范围在此方面不受限制。附加地或者备选地,平滑度评估模块231可以将梯度图进行二值化,其中值为0的单位区域表示高度变化低于预定阈值(本文中也称为“第一阈值”)的区域,而值不为0的单位区域表示高度变化超过预定阈值(本文中也称为“第一阈值”)的区域。平滑度评估模块231可以针对平坦区域225所包括的至少一个单位区域中的每个单位区域,确定该单位区域的高度变化是否超过第一阈值(也即,在二值化梯度图中是否存在不为0的梯度值)。如果某个单位区域在二值化梯度图中存在不为0的梯度值,则地图评估设备120可以将该单位区域确定为平坦区域225内的平滑度异常点。In some embodiments, the
附加地或备选地,在一些实施例中,平滑度评估模块231可以进一步确定平坦区域225中的平滑度异常点与平坦区域225的边界的距离是否小于预定阈值(本文中也称为“第二阈值”)。如果平滑度异常点位于平坦区域225的边界附近(也即,与平坦区域225的边界的距离低于第二阈值),则平滑度评估模块231可以将该平滑度异常点标识为平坦区域225内的平滑度报警点,这表示平滑度异常可能是由于平坦区域的语义信息存在的误差而导致的。如果平滑度异常点不在平坦区域225的边界附近(也即,与平坦区域225的边界的距离超过第二阈值),则平滑度评估模块231可以将该平滑度异常点标识为平坦区域225内的平滑度错误点,这表示平滑度异常可能是由于点云地图中的误差而导致的。在一些实施例中,平滑度评估模块231可以生成与平坦区域225内的平滑度报警点和/或平滑度错误点有关的统计信息,以作为平滑性评估结果。例如,该统计信息可以指示平坦区域225中是否存在平滑度报警点和/或平滑度错误点,它们的具体位置以及比例等。Additionally or alternatively, in some embodiments, the
平坦区域225的平滑性主要通过平坦区域225的高度变化的范围(也即,高度方差)来体现。在一些实施例中,为了评估平坦区域225的厚度是否存在异常,厚度评估模块232可以基于平坦区域225所包括的至少一个单位区域的相应高度方差来生成统计结果。统计结果可以包括高度方差的均值、最大值、最小值等。厚度评估模块232可以基于该统计结果来确定平坦区域225的厚度是否存在异常,并且生成厚度评估结果。The smoothness of the
返回参考图2,评估模块230可以基于由平滑度评估模块231生成的平滑度评估结果和由厚度评估模块232生成的厚度评估结果中的至少一项来生成评估结果125。以此方式,本公开的实施例能够通过分析点云地图中平坦区域(例如,路面区域等)的属性来评估点云地图的质量,而无需将点云地图与参考地图进行比较,从而能够实现对点云地图的质量的自动化评估。评估结果125可以被用于更新点云地图115和/或更新用于识别平坦区域的地图语义信息,从而提高点云地图115的质量以及提高地图语义信息的准确性。Referring back to FIG. 2 , the
图3示出了根据本公开的实施例的用于评估地图质量的示例方法300的流程图。方法300例如可以在如图1和图2所示的地图评估设备120处被执行。以下将结合图2来详细描述方法300。应当理解,方法300还可以包括未示出的框和/或可以省略所示出的框。本公开的范围在此方面不受限制。FIG. 3 shows a flowchart of an
在框310处,地图评估设备120基于点云地图115的语义信息,识别该点云地图115中的平坦区域225。At
在一些实施例中,为了识别平坦区域225,地图评估设备120可以通过将点云地图115进行二维栅格投影来得到与点云地图115对应的投影地图215,其中投影地图215被划分成多个单位区域,每个单位区域具有基于点云地图115中与该单位区域对应的原始坐标点的高度值而确定的高度均值和高度方差。地图评估设备120可以基于语义信息来识别投影地图215中的平坦区域225,其中平坦区域225包括多个单位区域中的至少一个单位区域。In some embodiments, in order to identify the
在框320处,地图评估设备120通过评估平坦区域的至少一个属性来评估点云地图的质量。At
在一些实施例中,地图评估设备120可以通过评估平坦区域225的平滑度和厚度中的至少一项来评估点云地图115的质量。In some embodiments,
在一些实施例中,为了评估平坦区域225的厚度,地图评估设备120可以基于至少一个单位区域的相应高度方差来生成统计结果,然后基于该统计结果来确定平坦区域225的厚度是否存在异常。In some embodiments, to assess the thickness of the
在一些实施例中,为了评估平坦区域225的平滑度,地图评估设备120可以确定平坦区域225内的平滑度异常点、平滑度报警点和/或平滑度错误点,并且生成相关的统计信息。In some embodiments, to assess the smoothness of the
图4示出了根据本公开的实施例的用于评估平坦区域的平滑度的示例方法400的流程图。方法400可以被视为框330的一种示例实现方式,其例如可以在如图1和图2所示的地图评估设备120处被执行。应当理解,方法400还可以包括未示出的框和/或可以省略所示出的框。本公开的范围在此方面不受限制。FIG. 4 shows a flowchart of an
如图4所示,在框410处,地图评估设备120可以获取与点云地图115对应的位姿图,该位姿图包括地图采集设备110在采集点云地图115时的位姿集合。As shown in FIG. 4 , at
在框420处,地图评估设备120基于投影地图215和所获取的位姿图,确定多个单位区域的多个相对高度值。At
在一些实施例中,地图评估设备120可以针对多个单位区域中的每个单位区域,从位姿集合中确定与该单位区域相关联的至少一个位姿,然后基于投影地图215中的该单位区域的高度均值和至少一个位姿的相应高度值来确定该单位区域的相对高度值。In some embodiments, the
在框430处,地图评估设备120可以通过将多个单位区域的多个相对高度值分别映射成灰度值,从而生成灰度图像。At
在框440处,地图评估设备120可以通过对灰度图像进行边缘检测来生成该灰度图像的梯度图,梯度图指示多个单位区域的相应梯度。At
在框450处,地图评估设备120可以基于至少一个单位区域的相应梯度来评估平坦区域225的平滑度。At
在一些实施例中,针对至少一个单位区域中的每个单位区域,如果确定该单位区域的梯度超过第一阈值,则地图评估设备120可以将该单位区域确定为平坦区域225内的平滑度异常点。In some embodiments, for each unit area in the at least one unit area, if it is determined that the gradient of the unit area exceeds the first threshold, the
附加地或备选地,在一些实施例中,如果地图评估设备120确定平坦区域225的平滑度异常点与平坦区域225的边界的距离小于第二阈值,则地图评估设备120可以将该平滑度异常点确定为平坦区域225内的平滑度报警点。在一些实施例中,如果地图评估设备120确定平坦区域225的平滑度异常点与平坦区域225的边界的距离超过第二阈值,则地图评估设备120可以将该平滑度异常点确定为平坦区域225内的平滑度错误点。在一些实施例中,地图评估设备120可以生成与平坦区域225内的平滑度报警点和/或平滑度错误点有关的统计信息。Additionally or alternatively, in some embodiments, if the
本公开的实施例还提供了用于实现上述方法300和/或400的相应装置。图5示出了根据本公开的实施例的用于评估地图质量的示例装置500的框图。Embodiments of the present disclosure also provide corresponding apparatuses for implementing the above-mentioned
如图5所示,装置500包括识别模块510,被配置为基于点云地图的语义信息,识别该点云地图中的平坦区域。装置500还包括评估模块520,被配置为通过评估平坦区域的至少一个属性来评估点云地图的质量。As shown in FIG. 5 , the
在一些实施例中,评估模块520包括以下至少一项:平滑度评估模块,被配置为评估平坦区域的平滑度;以及厚度评估模块,被配置为评估平坦区域的厚度。In some embodiments, the
在一些实施例中,识别模块510包括:投影模块,被配置为通过将点云地图进行二维栅格投影来得到与该点云地图对应的投影地图,其中投影地图被划分成多个单位区域,每个单位区域具有基于点云地图中与该单位区域对应的原始坐标点的高度值而确定的高度均值和高度方差;以及平坦区域识别模块,被配置为基于语义信息,识别投影地图中的平坦区域,其中平坦区域包括多个单位区域中的至少一个单位区域。In some embodiments, the
在一些实施例中,平滑度评估模块包括:获取单元,被配置为获取与点云地图对应的位姿图,位姿图包括采集设备在采集点云地图时的位姿集合;第一确定单元,被配置为基于位姿集合的相应高度值和投影地图中多个单位区域的相应高度均值,确定多个单位区域的多个相对高度值;第二确定单元,被配置为基于多个相对高度值,确定多个单位区域的相应梯度;以及评估单元,被配置为基于至少一个单位区域的梯度来评估平坦区域的平滑度。In some embodiments, the smoothness evaluation module includes: an obtaining unit configured to obtain a pose map corresponding to the point cloud map, the pose map including a pose set of the collecting device when collecting the point cloud map; a first determining unit , is configured to determine multiple relative height values of multiple unit areas based on the corresponding height values of the pose set and the corresponding height mean values of multiple unit areas in the projection map; the second determination unit is configured to be based on multiple relative heights. and an evaluation unit configured to evaluate the smoothness of the flat region based on the gradient of the at least one unit region.
在一些实施例中,第二确定单元被配置为:通过将多个相对高度值分别映射成灰度值,生成灰度图像;以及通过对灰度图像进行边缘检测来生成该灰度图像的梯度图,梯度图指示多个单位区域的相应梯度。In some embodiments, the second determining unit is configured to: generate a grayscale image by respectively mapping a plurality of relative height values to grayscale values; and generate a gradient of the grayscale image by performing edge detection on the grayscale image Figure, the gradient map indicates the corresponding gradients of multiple unit regions.
在一些实施例中,评估单元被配置为:针对至少一个单位区域中的每个单位区域,如果确定该单位区域的梯度超过第一阈值,将该单位区域确定为平坦区域内的平滑度异常点。In some embodiments, the evaluation unit is configured to: for each unit area in the at least one unit area, if it is determined that the gradient of the unit area exceeds the first threshold, determine the unit area as a smoothness outlier in the flat area .
在一些实施例中,评估单元还被配置为:如果确定平坦区域内的平滑度异常点与平坦区域的边界的距离小于第二阈值,将平滑度异常点确定为该平坦区域内的平滑度报警点;如果确定平坦区域内的平滑度异常点与平坦区域的边界的距离超过第二阈值,将平滑度异常点确定为该平坦区域内的平滑度错误点;以及生成与该平坦区域内的平滑度报警点和/或平滑度错误点有关的统计信息。In some embodiments, the evaluation unit is further configured to: if it is determined that the distance between the smoothness abnormal point in the flat area and the boundary of the flat area is less than the second threshold, determine the smoothness abnormal point as a smoothness alarm in the flat area If it is determined that the distance between the smoothness abnormal point in the flat area and the boundary of the flat area exceeds the second threshold, determine the smoothness abnormal point as a smoothness error point in the flat area; and generate a smoothness error point in the flat area. Statistics related to degree warning points and/or smoothness error points.
在一些实施例中,厚度评估模块包括:生成单元,被配置为基于至少一个单位区域的相应高度方差,生成统计结果;以及第三确定单元,被配置为基于该统计结果,确定平坦区域的厚度是否存在异常。In some embodiments, the thickness assessment module includes: a generating unit configured to generate a statistical result based on the corresponding height variance of the at least one unit area; and a third determining unit configured to determine the thickness of the flat area based on the statistical result Is there an exception.
装置500中所包括的模块和单元可以利用各种方式来实现,包括软件、硬件、固件或其任意组合。在一些实施例中,一个或多个单元可以使用软件和/或固件来实现,例如存储在存储介质上的机器可执行指令。除了机器可执行指令之外或者作为替代,装置500中的模块和单元中的部分或者全部可以至少部分地由一个或多个硬件逻辑组件来实现。作为示例而非限制,可以使用的示范类型的硬件逻辑组件包括现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准品(ASSP)、片上系统(SOC)、复杂可编程逻辑器件(CPLD),等等。The modules and units included in the
图6示出了能够实施本公开的多个实施例的示例电子设备600的框图。例如,如图1所示的地图评估设备120可以由设备600实施。如图6所示,设备600包括中央处理单元(CPU)601,其可以根据存储在只读存储器(ROM)602中的计算机程序指令或者从存储单元608加载到随机访问存储器(RAM)603中的计算机程序指令,来执行各种适当的动作和处理。在RAM603中,还可存储设备600操作所需的各种程序和数据。CPU 601、ROM 602以及RAM 603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。6 illustrates a block diagram of an example
设备600中的多个部件连接至I/O接口605,包括:输入单元606,例如键盘、鼠标等;输出单元607,例如各种类型的显示器、扬声器等;存储单元608,例如磁盘、光盘等;以及通信单元609,例如网卡、调制解调器、无线通信收发机等。通信单元609允许设备600通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。Various components in the
上文所描述的各个过程和处理,例如方法300和/或400,可由处理单元601执行。例如,在一些实施例中,方法300和/或400可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元608。在一些实施例中,计算机程序的部分或者全部可以经由ROM602和/或通信单元609而被载入和/或安装到设备600上。当计算机程序被加载到RAM 603并由CPU 601执行时,可以执行上文描述的方法300和/或400的一个或多个动作。The various procedures and processes described above, eg,
本公开可以是方法、装置、系统和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于执行本公开的各个方面的计算机可读程序指令。The present disclosure may be a method, apparatus, system and/or computer program product. The computer program product may include a computer-readable storage medium having computer-readable program instructions loaded thereon for carrying out various aspects of the present disclosure.
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是——但不限于——电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。A computer-readable storage medium may be a tangible device that can hold and store instructions for use by the instruction execution device. The computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. More specific examples (non-exhaustive list) of computer readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM) or flash memory), static random access memory (SRAM), portable compact disk read only memory (CD-ROM), digital versatile disk (DVD), memory sticks, floppy disks, mechanically coded devices, such as printers with instructions stored thereon Hole cards or raised structures in grooves, and any suitable combination of the above. Computer-readable storage media, as used herein, are not to be construed as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (eg, light pulses through fiber optic cables), or through electrical wires transmitted electrical signals.
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。The computer readable program instructions described herein may be downloaded to various computing/processing devices from a computer readable storage medium, or to an external computer or external storage device over a network such as the Internet, a local area network, a wide area network, and/or a wireless network. The network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer-readable program instructions from a network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing/processing device .
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。Computer program instructions for carrying out operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or instructions in one or more programming languages. Source or object code, written in any combination, including object-oriented programming languages, such as Smalltalk, C++, etc., and conventional procedural programming languages, such as the "C" language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server implement. In the case of a remote computer, the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through the Internet connect). In some embodiments, custom electronic circuits, such as programmable logic circuits, field programmable gate arrays (FPGAs), or programmable logic arrays (PLAs), can be personalized by utilizing state information of computer readable program instructions. Computer readable program instructions are executed to implement various aspects of the present disclosure.
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。Aspects of the present disclosure are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the disclosure. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理单元,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理单元执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。These computer readable program instructions may be provided to a processing unit of a general purpose computer, special purpose computer or other programmable data processing apparatus to produce a machine that causes the instructions when executed by the processing unit of the computer or other programmable data processing apparatus , resulting in means for implementing the functions/acts specified in one or more blocks of the flowchart and/or block diagrams. These computer readable program instructions can also be stored in a computer readable storage medium, these instructions cause a computer, programmable data processing apparatus and/or other equipment to operate in a specific manner, so that the computer readable medium on which the instructions are stored includes An article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。Computer readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other equipment to cause a series of operational steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executing on a computer, other programmable data processing apparatus, or other device to implement the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more functions for implementing the specified logical function(s) executable instructions. In some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented in dedicated hardware-based systems that perform the specified functions or actions , or can be implemented in a combination of dedicated hardware and computer instructions.
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。Various embodiments of the present disclosure have been described above, and the foregoing descriptions are exemplary, not exhaustive, and not limiting of the disclosed embodiments. Numerous modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the various embodiments, the practical application or improvement over the technology in the marketplace, or to enable others of ordinary skill in the art to understand the various embodiments disclosed herein.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010966261.4A CN111931704A (en) | 2020-09-15 | 2020-09-15 | Method, apparatus, device and computer-readable storage medium for assessing map quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010966261.4A CN111931704A (en) | 2020-09-15 | 2020-09-15 | Method, apparatus, device and computer-readable storage medium for assessing map quality |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111931704A true CN111931704A (en) | 2020-11-13 |
Family
ID=73334627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010966261.4A Pending CN111931704A (en) | 2020-09-15 | 2020-09-15 | Method, apparatus, device and computer-readable storage medium for assessing map quality |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111931704A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112559539A (en) * | 2020-12-07 | 2021-03-26 | 北京嘀嘀无限科技发展有限公司 | Method and device for updating map data |
CN112634260A (en) * | 2020-12-31 | 2021-04-09 | 上海商汤智能科技有限公司 | Map evaluation method and device, electronic equipment and storage medium |
CN114757870A (en) * | 2020-12-29 | 2022-07-15 | 深圳市普渡科技有限公司 | Grid map quality evaluation method and device, computer equipment and storage medium |
CN114998400A (en) * | 2022-06-24 | 2022-09-02 | 安徽酷哇机器人有限公司 | Automatic ground extraction method for laser point cloud |
CN116226298A (en) * | 2023-05-08 | 2023-06-06 | 上海维智卓新信息科技有限公司 | Automatic assessment method for map quality |
CN117314894A (en) * | 2023-11-27 | 2023-12-29 | 深圳市金三维实业有限公司 | Method for rapidly detecting defects of watch bottom cover |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1715987A (en) * | 2005-06-16 | 2006-01-04 | 武汉理工大学 | Stitching Method of Large Panoramic Depth of View Under Microscope |
CN103777249A (en) * | 2014-01-29 | 2014-05-07 | 核工业北京地质研究院 | Method for determining forward line of sandstone uranium mine oxidizing zone through high-precision magnetic measurement |
US20150062115A1 (en) * | 2013-08-28 | 2015-03-05 | Adobe Systems Incorporated | Contour gradients using three-dimensional models |
CN105718945A (en) * | 2016-01-20 | 2016-06-29 | 江苏大学 | Apple picking robot night image identification method based on watershed and nerve network |
CN106650640A (en) * | 2016-12-05 | 2017-05-10 | 浙江大学 | Negative obstacle detection method based on local structure feature of laser radar point cloud |
US20180261184A1 (en) * | 2015-09-21 | 2018-09-13 | Dolby Laboratories Licensing Corporation | Techniques for operating a display in the perceptual code space |
CN108805841A (en) * | 2018-06-12 | 2018-11-13 | 西安交通大学 | A kind of depth map recovery and View Synthesis optimization method based on cromogram guiding |
CN109064506A (en) * | 2018-07-04 | 2018-12-21 | 百度在线网络技术(北京)有限公司 | Accurately drawing generating method, device and storage medium |
CN109141446A (en) * | 2018-07-04 | 2019-01-04 | 百度在线网络技术(北京)有限公司 | For obtaining the method, apparatus, equipment and computer readable storage medium of map |
US20190080273A1 (en) * | 2017-09-08 | 2019-03-14 | Petrochina Company Limited | Method and apparatus for evaluating exploitation value of a geological resource |
CN109562844A (en) * | 2016-08-06 | 2019-04-02 | 深圳市大疆创新科技有限公司 | The assessment of automatic Landing topographical surface and relevant system and method |
US20190163958A1 (en) * | 2017-04-28 | 2019-05-30 | SZ DJI Technology Co., Ltd. | Methods and associated systems for grid analysis |
CN110363839A (en) * | 2019-06-19 | 2019-10-22 | 深圳市彬讯科技有限公司 | Model rendering method, apparatus, computer equipment and storage medium |
CN111028037A (en) * | 2019-05-22 | 2020-04-17 | 珠海随变科技有限公司 | Method, device and equipment for providing commodity customization information, production order and design drawing |
CN111079611A (en) * | 2019-12-09 | 2020-04-28 | 成都奥伦达科技有限公司 | Automatic extraction method for road surface and marking line thereof |
CN111223059A (en) * | 2020-01-04 | 2020-06-02 | 西安交通大学 | Robust depth map structure reconstruction and denoising method based on guide filter |
-
2020
- 2020-09-15 CN CN202010966261.4A patent/CN111931704A/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1715987A (en) * | 2005-06-16 | 2006-01-04 | 武汉理工大学 | Stitching Method of Large Panoramic Depth of View Under Microscope |
US20150062115A1 (en) * | 2013-08-28 | 2015-03-05 | Adobe Systems Incorporated | Contour gradients using three-dimensional models |
CN103777249A (en) * | 2014-01-29 | 2014-05-07 | 核工业北京地质研究院 | Method for determining forward line of sandstone uranium mine oxidizing zone through high-precision magnetic measurement |
US20180261184A1 (en) * | 2015-09-21 | 2018-09-13 | Dolby Laboratories Licensing Corporation | Techniques for operating a display in the perceptual code space |
CN105718945A (en) * | 2016-01-20 | 2016-06-29 | 江苏大学 | Apple picking robot night image identification method based on watershed and nerve network |
CN109562844A (en) * | 2016-08-06 | 2019-04-02 | 深圳市大疆创新科技有限公司 | The assessment of automatic Landing topographical surface and relevant system and method |
CN106650640A (en) * | 2016-12-05 | 2017-05-10 | 浙江大学 | Negative obstacle detection method based on local structure feature of laser radar point cloud |
US20190163958A1 (en) * | 2017-04-28 | 2019-05-30 | SZ DJI Technology Co., Ltd. | Methods and associated systems for grid analysis |
US20190080273A1 (en) * | 2017-09-08 | 2019-03-14 | Petrochina Company Limited | Method and apparatus for evaluating exploitation value of a geological resource |
CN108805841A (en) * | 2018-06-12 | 2018-11-13 | 西安交通大学 | A kind of depth map recovery and View Synthesis optimization method based on cromogram guiding |
CN109141446A (en) * | 2018-07-04 | 2019-01-04 | 百度在线网络技术(北京)有限公司 | For obtaining the method, apparatus, equipment and computer readable storage medium of map |
CN109064506A (en) * | 2018-07-04 | 2018-12-21 | 百度在线网络技术(北京)有限公司 | Accurately drawing generating method, device and storage medium |
CN111028037A (en) * | 2019-05-22 | 2020-04-17 | 珠海随变科技有限公司 | Method, device and equipment for providing commodity customization information, production order and design drawing |
CN110363839A (en) * | 2019-06-19 | 2019-10-22 | 深圳市彬讯科技有限公司 | Model rendering method, apparatus, computer equipment and storage medium |
CN111079611A (en) * | 2019-12-09 | 2020-04-28 | 成都奥伦达科技有限公司 | Automatic extraction method for road surface and marking line thereof |
CN111223059A (en) * | 2020-01-04 | 2020-06-02 | 西安交通大学 | Robust depth map structure reconstruction and denoising method based on guide filter |
Non-Patent Citations (3)
Title |
---|
GOANGHUN等: "A height-map based terrain rendering with tessellation hardware", 《IEEE》, 26 January 2015 (2015-01-26) * |
杨光亮;申重阳;谈洪波;王嘉沛;吴桂桔;: "云南鲁甸M_S6.5地震震区地壳密度结构特征", 地震地质, no. 04, 15 December 2014 (2014-12-15) * |
须明;赵荣椿;: "SFS方法及其与立体视觉方法的集成方案综述", 计算机工程与应用, no. 08, 11 March 2006 (2006-03-11) * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112559539A (en) * | 2020-12-07 | 2021-03-26 | 北京嘀嘀无限科技发展有限公司 | Method and device for updating map data |
CN114757870A (en) * | 2020-12-29 | 2022-07-15 | 深圳市普渡科技有限公司 | Grid map quality evaluation method and device, computer equipment and storage medium |
CN112634260A (en) * | 2020-12-31 | 2021-04-09 | 上海商汤智能科技有限公司 | Map evaluation method and device, electronic equipment and storage medium |
CN114998400A (en) * | 2022-06-24 | 2022-09-02 | 安徽酷哇机器人有限公司 | Automatic ground extraction method for laser point cloud |
CN116226298A (en) * | 2023-05-08 | 2023-06-06 | 上海维智卓新信息科技有限公司 | Automatic assessment method for map quality |
CN117314894A (en) * | 2023-11-27 | 2023-12-29 | 深圳市金三维实业有限公司 | Method for rapidly detecting defects of watch bottom cover |
CN117314894B (en) * | 2023-11-27 | 2024-03-29 | 深圳市金三维实业有限公司 | Method for rapidly detecting defects of watch bottom cover |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111931704A (en) | Method, apparatus, device and computer-readable storage medium for assessing map quality | |
JP6831414B2 (en) | Methods for positioning, devices, devices and computers for positioning Readable storage media | |
US20190205665A1 (en) | Method, apparatus, and device for determining lane line on road | |
CN110647902A (en) | Entropy clustering of objects | |
Tsai et al. | Multiscale crack fundamental element model for real-world pavement crack classification | |
CN112129266B (en) | Method, apparatus, device and computer readable storage medium for processing map | |
CN110598541B (en) | A method and device for extracting road edge information | |
CN113514849B (en) | Vehicle parameter detection method, system and storage medium | |
US10082787B2 (en) | Estimation of abnormal sensors | |
Cao et al. | Roof plane extraction from airborne lidar point clouds | |
CN116109601A (en) | A real-time target detection method based on 3D lidar point cloud | |
US20220244070A1 (en) | Method for calculating operation acres of agricultural machinery, and electronic device using the same | |
Kang et al. | Primitive fitting based on the efficient multibaysac algorithm | |
CN113269889B (en) | Self-adaptive point cloud target clustering method based on elliptical domain | |
CN114445565A (en) | Data processing method, apparatus, electronic device and computer readable medium | |
CN111812670B (en) | A single-photon lidar spatial transformation noise judgment, filtering method and device | |
JP2014106725A (en) | Point group analyzer, point group analysis method and point group analysis program | |
JP6673504B2 (en) | Information processing device, database generation device, method, program, and storage medium | |
Li et al. | Three‐Dimensional Asphalt Pavement Crack Detection Based on Fruit Fly Optimisation Density Peak Clustering | |
US20230104674A1 (en) | Machine learning techniques for ground classification | |
CN111815652A (en) | A method and apparatus for multi-scale local threshold segmentation of images | |
WO2020095549A1 (en) | Imaging device | |
WO2021014495A1 (en) | Label estimation device, label estimation method, and label estimation program | |
JP7622688B2 (en) | Map data generation method, map data generation device, and map data generation program | |
Daudt et al. | Learning to understand earth observation images with weak and unreliable ground truth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |