CN111931704A - Method, apparatus, device and computer-readable storage medium for assessing map quality - Google Patents

Method, apparatus, device and computer-readable storage medium for assessing map quality Download PDF

Info

Publication number
CN111931704A
CN111931704A CN202010966261.4A CN202010966261A CN111931704A CN 111931704 A CN111931704 A CN 111931704A CN 202010966261 A CN202010966261 A CN 202010966261A CN 111931704 A CN111931704 A CN 111931704A
Authority
CN
China
Prior art keywords
map
smoothness
unit
point cloud
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010966261.4A
Other languages
Chinese (zh)
Inventor
王民康
王飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Didi Infinity Technology and Development Co Ltd
Original Assignee
Beijing Didi Infinity Technology and Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Didi Infinity Technology and Development Co Ltd filed Critical Beijing Didi Infinity Technology and Development Co Ltd
Priority to CN202010966261.4A priority Critical patent/CN111931704A/en
Publication of CN111931704A publication Critical patent/CN111931704A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/40Document-oriented image-based pattern recognition
    • G06V30/42Document-oriented image-based pattern recognition based on the type of document
    • G06V30/422Technical drawings; Geographical maps

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

Embodiments of the present disclosure relate to methods, apparatuses, and computer-readable storage media for evaluating map quality. A method of assessing map quality includes identifying a flat area in a point cloud map based on semantic information of the point cloud map; and evaluating the quality of the point cloud map by evaluating at least one attribute of the flat region. Embodiments of the present disclosure can evaluate the quality of a point cloud map by analyzing attributes of a flat area (e.g., a road surface area, etc.) in the point cloud map without comparing the point cloud map with a reference map, thereby enabling automated evaluation of the quality of the point cloud map.

Description

评估地图质量的方法、装置、设备和计算机可读存储介质Method, apparatus, device and computer-readable storage medium for assessing map quality

技术领域technical field

本公开的实施例总体涉及地图领域,具体涉及用于评估地图质量的方法、装置、设备和计算机可读存储介质。Embodiments of the present disclosure generally relate to the field of maps, and in particular, to a method, apparatus, device, and computer-readable storage medium for evaluating map quality.

背景技术Background technique

高精度点云地图通常被用于物体检测、自动驾驶中的高精度定位等应用场景。高精度点云地图的质量将显著影响物体检测及高精度定位的准确性。因此,对高精度点云地图进行质量评估尤为重要。High-precision point cloud maps are usually used in application scenarios such as object detection and high-precision positioning in autonomous driving. The quality of high-precision point cloud maps will significantly affect the accuracy of object detection and high-precision positioning. Therefore, it is particularly important to evaluate the quality of high-precision point cloud maps.

发明内容SUMMARY OF THE INVENTION

本公开的实施例提供了用于评估地图质量的方法、装置、设备和计算机可读存储介质。Embodiments of the present disclosure provide a method, apparatus, device, and computer-readable storage medium for evaluating map quality.

在本公开的第一方面,提供了一种评估地图质量的方法。该方法包括:基于点云地图的语义信息,识别所述点云地图中的平坦区域;以及通过评估所述平坦区域的至少一个属性来评估所述点云地图的质量。In a first aspect of the present disclosure, a method of assessing map quality is provided. The method includes: identifying a flat area in the point cloud map based on semantic information of the point cloud map; and evaluating the quality of the point cloud map by evaluating at least one attribute of the flat area.

在本公开的第二方面,提供了一种评估地图质量的装置。该装置包括:平坦区域识别模块,被配置为基于点云地图的语义信息,识别所述点云地图中的平坦区域;以及质量评估模块,被配置为通过评估所述平坦区域的至少一个属性来评估所述点云地图的质量。In a second aspect of the present disclosure, an apparatus for evaluating map quality is provided. The apparatus includes: a flat area identification module configured to identify a flat area in the point cloud map based on semantic information of the point cloud map; and a quality assessment module configured to evaluate at least one attribute of the flat area Evaluate the quality of the point cloud map.

在本公开的第三方面中,提供了一种电子设备,包括一个或多个处理器;以及存储器,用于存储一个或多个程序,当一个或多个程序被一个或多个处理器执行时,使该电子设备实现根据本公开的第一方面的方法。In a third aspect of the present disclosure, there is provided an electronic device comprising one or more processors; and a memory for storing one or more programs, when the one or more programs are executed by the one or more processors When the electronic device is made to implement the method according to the first aspect of the present disclosure.

在本公开的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序。该计算机程序在处理器执行时实现根据本公开的第一方面所描述的方法的任意步骤。In a fourth aspect of the present disclosure, there is provided a computer-readable storage medium having a computer program stored thereon. The computer program, when executed by a processor, implements any of the steps of the method described in accordance with the first aspect of the present disclosure.

提供发明内容部分是为了以简化的形式来介绍对概念的选择,它们在下文的具体实施方式中将被进一步描述。发明内容部分无意标识本公开的关键特征或必要特征,也无意限制本公开的范围。This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the disclosure, nor is it intended to limit the scope of the disclosure.

附图说明Description of drawings

通过结合附图对本公开示例性实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显,其中,在本公开示例性实施例中,相同的参考标号通常代表相同部件。The above and other objects, features and advantages of the present disclosure will become more apparent from the more detailed description of the exemplary embodiments of the present disclosure, taken in conjunction with the accompanying drawings, wherein the same reference numerals generally refer to the exemplary embodiments of the present disclosure. same parts.

图1示出了本公开的实施例能够在其中被实施的示例环境的框图;1 illustrates a block diagram of an example environment in which embodiments of the present disclosure can be implemented;

图2示出了根据本公开的实施例的地图评估设备的示意性框图;FIG. 2 shows a schematic block diagram of a map evaluation device according to an embodiment of the present disclosure;

图3示出了根据本公开的实施例的用于评估地图质量的示例方法的流程图;3 shows a flowchart of an example method for assessing map quality according to an embodiment of the present disclosure;

图4示出了根据本公开的实施例的用于评估平坦区域的平滑度的示例方法的流程图;4 shows a flowchart of an example method for evaluating smoothness of a flat region according to an embodiment of the present disclosure;

图5示出了根据本公开的实施例的用于评估地图质量的示例装置的框图;以及FIG. 5 shows a block diagram of an example apparatus for evaluating map quality according to an embodiment of the present disclosure; and

图6示出了能够实施本公开的多个实施例的示例电子设备的框图。6 illustrates a block diagram of an example electronic device capable of implementing various embodiments of the present disclosure.

在各个附图中,相同或对应的标号表示相同或对应的部分。In the various figures, the same or corresponding reference numerals designate the same or corresponding parts.

具体实施方式Detailed ways

下面将参照附图更详细地描述本公开的优选实施例。虽然附图中显示了本公开的优选实施例,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。Preferred embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. While preferred embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.

在本文中使用的术语“包括”及其变形表示开放性包括,即“包括但不限于”。除非特别申明,术语“或”表示“和/或”。术语“基于”表示“至少部分地基于”。术语“一个示例实施例”和“一个实施例”表示“至少一个示例实施例”。术语“另一实施例”表示“至少一个另外的实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。As used herein, the term "including" and variations thereof mean open-ended inclusion, ie, "including but not limited to". The term "or" means "and/or" unless specifically stated otherwise. The term "based on" means "based at least in part on". The terms "one example embodiment" and "one embodiment" mean "at least one example embodiment." The term "another embodiment" means "at least one additional embodiment." The terms "first", "second", etc. may refer to different or the same objects. Other explicit and implicit definitions may also be included below.

如上所述,高精度点云地图通常被用于物体检测、自动驾驶中的高精度定位等应用场景。高精度点云地图的质量将显著影响物体检测及高精度定位的准确性。因此,对高精度点云地图进行质量评估尤为重要。一些传统方案通过将点云地图与参考地图进行对比来评估点云地图的质量。然而,参考地图可能不容易得到或者参考地图本身可能是不准确的,这些将影响对点云地图的质量评估。As mentioned above, high-precision point cloud maps are usually used in application scenarios such as object detection and high-precision positioning in autonomous driving. The quality of high-precision point cloud maps will significantly affect the accuracy of object detection and high-precision positioning. Therefore, it is particularly important to evaluate the quality of high-precision point cloud maps. Some traditional schemes evaluate the quality of point cloud maps by comparing them with reference maps. However, the reference map may not be readily available or the reference map itself may be inaccurate, which will affect the quality assessment of the point cloud map.

本公开的实施例提出了一种评估地图质量的方案,能够解决上述问题和其他潜在问题中的一个或多个。在该方案中,基于点云地图的语义信息,识别点云地图中的平坦区域。通过评估平坦区域的至少一个属性来评估该点云地图的质量。以此方式,该方案能够通过分析点云地图中平坦区域(例如,路面区域等)的属性来评估点云地图的质量,而无需将点云地图与参考地图进行比较,从而能够实现对点云地图的质量的自动化评估。Embodiments of the present disclosure propose a solution for evaluating map quality, which can address one or more of the above-mentioned problems and other potential problems. In this scheme, the flat areas in the point cloud map are identified based on the semantic information of the point cloud map. The quality of the point cloud map is evaluated by evaluating at least one property of the flat area. In this way, the scheme can evaluate the quality of the point cloud map by analyzing the properties of the flat area (eg, road area, etc.) in the point cloud map without comparing the point cloud map with the reference map, so that the point cloud map can be compared. Automated assessment of map quality.

图1示出了本公开的实施例能够在其中被实现的示例环境100的框图。如图1所示,环境100包括地图采集设备110和地图评估设备120。应当理解,仅出于示例性的目的描述环境100的结构和功能,而不暗示对于本公开的范围的任何限制。例如,本公开的实施例还可以被应用到与环境100不同的环境中。1 illustrates a block diagram of an example environment 100 in which embodiments of the present disclosure can be implemented. As shown in FIG. 1 , the environment 100 includes a map acquisition device 110 and a map evaluation device 120 . It should be understood that the structure and functionality of environment 100 are described for exemplary purposes only and do not imply any limitation on the scope of the present disclosure. For example, embodiments of the present disclosure may also be applied in environments other than environment 100 .

地图采集设备110可以包括但不限于采集车或者用于采集地图数据的其他设备。例如,在地图采集设备110上可以安装激光雷达以用于采集数据。地图采集设备110可以在采集时段期间在特定地理区域内运动,以采集用于制作地图的点云数据。在此所述的“点云数据”可以指代当一束激光照射在物体表面时所返回的该物体表面的各个点的数据信息,包括每个点的三维坐标(例如,x坐标、y坐标和z坐标)以及激光反射强度(也称为“反射值”)。地图采集设备110可以基于采集到的点云数据来生成关于特定地理区域的点云地图115。The map collection device 110 may include, but is not limited to, a collection vehicle or other device for collecting map data. For example, a lidar may be mounted on the map collection device 110 for collecting data. The map acquisition device 110 may be moved within a particular geographic area during the acquisition period to collect point cloud data for mapping. The "point cloud data" mentioned here may refer to the data information of various points on the object surface returned when a laser beam is irradiated on the object surface, including the three-dimensional coordinates of each point (for example, x coordinate, y coordinate and z-coordinates) and laser reflection intensity (also called "reflection value"). The map collection device 110 may generate a point cloud map 115 for a particular geographic area based on the collected point cloud data.

点云地图115可以被提供给地图评估设备120。地图评估设备120可以通过分析点云地图115中路面区域的属性来评估点云地图115的质量,以生成评估结果125。The point cloud map 115 may be provided to the map evaluation device 120 . The map evaluation device 120 may evaluate the quality of the point cloud map 115 by analyzing the properties of the road surface area in the point cloud map 115 to generate the evaluation result 125 .

图2示出了根据本公开的实施例的地图评估设备120的示意性框图。如图2所示,地图评估设备120可以包括投影模块210、平坦区域识别模块220以及评估模块230。应当理解,仅出于示例性的目的描述地图评估设备120的结构和功能,而不暗示对于本公开的范围的任何限制。在一些实施例中,地图评估设备120可以以与图2所示的结构不同的结构来实现。FIG. 2 shows a schematic block diagram of a map evaluation device 120 according to an embodiment of the present disclosure. As shown in FIG. 2 , the map evaluation device 120 may include a projection module 210 , a flat area identification module 220 and an evaluation module 230 . It should be understood that the structure and functionality of the map evaluation device 120 are described for exemplary purposes only and do not imply any limitation on the scope of the present disclosure. In some embodiments, the map evaluation device 120 may be implemented in a different structure than that shown in FIG. 2 .

在一些实施例中,投影模块210被配置为通过将点云地图115进行二维栅格投影来生成与点云地图115对应的投影地图215。投影地图215可以被划分成多个栅格(也称为“多个单元区域”)。针对每个栅格,可以基于点云地图115中与该栅格对应的原始坐标点的高度值来确定与该栅格对应的高度均值和高度方差。此外,可以基于点云地图115中与该栅格对应的原始坐标点的反射值来确定与该栅格对应的反射值均值和反射值方差。在本文中,投影地图215也被称为“二维投影地图”或者“二维栅格地图”。In some embodiments, the projection module 210 is configured to generate the projected map 215 corresponding to the point cloud map 115 by subjecting the point cloud map 115 to a two-dimensional grid projection. Projected map 215 may be divided into multiple grids (also referred to as "multiple unit regions"). For each grid, the height mean and height variance corresponding to the grid can be determined based on the height values of the original coordinate points corresponding to the grid in the point cloud map 115 . In addition, the reflection value mean and reflection value variance corresponding to the grid can be determined based on the reflection values of the original coordinate points corresponding to the grid in the point cloud map 115 . Projected map 215 is also referred to herein as a "two-dimensional projected map" or "two-dimensional grid map."

在一些实施例中,为了生成与点云地图115对应的投影地图215,投影模块210可以首先将三维点云地图115按照三维栅格进行坐标点聚合,其中每个三维栅格是预定边长的正方体。针对每个三维栅格,投影模块210可以计算落入其中的所有原始坐标点的加权结果,包括高度值加权结果和反射值加权结果。投影模块210可以针对每个三维栅格统计高度值均值、高度值方差、反射值均值和反射值方差。在得到每个三维栅格的统计结果之后,投影模块210可以将三维栅格划分成多个栅格集合,其中每个栅格集合具有相同水平坐标(即,每个栅格集合对应于相同的x坐标和相同的y坐标),在本文中每个栅格集合也被称为“柱子(pillar)”。投影模块210可以在每个柱子中的点进行欧式聚类,从而得到多个点簇。投影模块210可以计算每个点簇的高度值加权结果和反射值加权结果。投影模块210可以过滤掉每个柱子中的空中点簇、动态点簇以及权重较低的点簇(例如,点数较少的簇)。投影模块210可以针对经过滤的每个柱子计算其高度值均值、高度值方差、反射值均值和反射值方差,从而得到投影地图215,例如每个柱子所对应的平面区域即为投影地图215中的一个单位区域。In some embodiments, in order to generate the projected map 215 corresponding to the point cloud map 115 , the projection module 210 may first perform coordinate point aggregation on the three-dimensional point cloud map 115 according to three-dimensional grids, wherein each three-dimensional grid has a predetermined side length cube. For each three-dimensional grid, the projection module 210 can calculate the weighted results of all original coordinate points falling therein, including the weighted results of height values and the weighted results of reflection values. The projection module 210 may count the average height value, the variance of the height value, the average value of the reflection value and the variance of the reflection value for each three-dimensional grid. After obtaining the statistical results of each three-dimensional grid, the projection module 210 may divide the three-dimensional grid into a plurality of grid sets, wherein each grid set has the same horizontal coordinates (ie, each grid set corresponds to the same x coordinate and the same y coordinate), each grid set is also referred to herein as a "pillar". The projection module 210 may perform Euclidean clustering on the points in each column to obtain multiple point clusters. The projection module 210 can calculate the height value weighted result and the reflection value weighted result of each point cluster. The projection module 210 can filter out aerial point clusters, dynamic point clusters, and point clusters with lower weights (eg, clusters with fewer points) in each column. The projection module 210 can calculate the mean height value, the height value variance, the reflection value mean value and the reflection value variance for each filtered column, thereby obtaining the projection map 215. For example, the plane area corresponding to each column is in the projection map 215. a unit area.

以上仅出于示例目的描述了投影地图215的生成。应当理解,在一些实施例中,投影模块210可以以任何其他方式来生成与点云地图115对应的投影地图215。本公开的范围在此方面不受限制。The generation of the projected map 215 has been described above for example purposes only. It should be appreciated that in some embodiments, the projection module 210 may generate the projection map 215 corresponding to the point cloud map 115 in any other manner. The scope of the present disclosure is not limited in this regard.

在一些实施例中,平坦区域识别模块220被配置为基于平坦区域的语义信息,识别投影地图215中的平坦区域225。平坦区域的示例可以包括但不限于路面区域,诸如,车道、人行道、广场等。平坦区域的语义信息可以是预先确定的。附加地或备选地,平坦区域的语义信息可以基于评估结果125中的至少一部分而被相应更新,从而提高其准确性。In some embodiments, the flat area identification module 220 is configured to identify the flat area 225 in the projected map 215 based on the semantic information of the flat area. Examples of flat areas may include, but are not limited to, pavement areas such as driveways, sidewalks, plazas, and the like. The semantic information of the flat region can be predetermined. Additionally or alternatively, the semantic information of the flat region may be updated accordingly based on at least a portion of the evaluation results 125, thereby improving its accuracy.

在一些实施例中,评估模块230被配置为通过评估平坦区域225的至少一个属性来评估点云地图115的质量,从而生成评估结果125。至少一个属性可以包括平坦区域的平滑度和厚度中的至少一项。如图2所示,例如,评估模块230可以包括平滑度评估模块231和/或厚度评估模块232,其中平滑度评估模块231被配置为评估平坦区域225的平滑度,而厚度评估模块232被配置为评估平坦区域225的厚度。In some embodiments, the evaluation module 230 is configured to evaluate the quality of the point cloud map 115 by evaluating at least one attribute of the flat region 225 to generate the evaluation result 125 . The at least one attribute may include at least one of smoothness and thickness of the flat region. As shown in FIG. 2, for example, the evaluation module 230 may include a smoothness evaluation module 231 and/or a thickness evaluation module 232, wherein the smoothness evaluation module 231 is configured to evaluate the smoothness of the flat region 225, and the thickness evaluation module 232 is configured to To evaluate the thickness of the flat region 225 .

平坦区域225的平滑性主要通过平坦区域225的高度变化来体现。在一些实施例中,为了评估平坦区域225的平滑度,平滑度评估模块231可以获取与点云地图115对应的位姿图,该位姿图包括地图采集设备110在采集点云地图115时的位姿集合。在一些实施例中,针对多个单位区域中的每个单位区域,平滑度评估模块231可以从位姿图中确定与该单位区域相关联的至少一个位姿。例如,平滑度评估模块231可以确定位于该单位区域的邻近范围内的至少一个位姿。对该单位区域的邻近范围的确定可以基于K近邻(KNN)算法或其他类似算法来实现,本公开的范围在此方面不受限制。在一些实施例中,平滑度评估模块231可以基于投影地图215中的该单位区域的高度均值和至少一个位姿的相应高度值来确定该单位区域的相对高度值。例如,平滑度评估模块231可以对至少一个位姿的相应高度值进行加权平均,以得到至少一个位姿的高度加权平均值。至少一个位姿中的每个位姿的高度值的权值可以基于以下公式来确定:The smoothness of the flat area 225 is mainly reflected by the height change of the flat area 225 . In some embodiments, in order to evaluate the smoothness of the flat area 225 , the smoothness evaluation module 231 may obtain a pose map corresponding to the point cloud map 115 , the pose map including the map collection device 110 when collecting the point cloud map 115 . Pose collection. In some embodiments, for each unit region of the plurality of unit regions, the smoothness assessment module 231 may determine from the pose map at least one pose associated with the unit region. For example, the smoothness evaluation module 231 may determine at least one pose located within the vicinity of the unit area. The determination of the proximity range of the unit area may be implemented based on a K-Nearest Neighbor (KNN) algorithm or other similar algorithms, and the scope of the present disclosure is not limited in this regard. In some embodiments, the smoothness evaluation module 231 may determine the relative height value of the unit area based on the mean height of the unit area in the projected map 215 and the corresponding height value of at least one pose. For example, the smoothness evaluation module 231 may perform a weighted average of the corresponding height values of the at least one pose to obtain a height-weighted average value of the at least one pose. The weight of the height value of each pose in the at least one pose may be determined based on the following formula:

Figure BDA0002682432460000061
Figure BDA0002682432460000061

其中xp,i表示第i个位姿的x坐标,xcell表示该单位区域的x坐标,yp,i表示第i个位姿的y坐标并且ycell表示该单位区域的y坐标。MAX_WEIGHT表示预设的最大权值,例如其小于1。平滑度评估模块231可以计算投影地图215中的该单位区域的高度均值与至少一个位姿的高度加权平均值之间的差值,以作为该单位区域的相对高度值。where x p,i represents the x coordinate of the ith pose, x cell represents the x coordinate of the unit area, y p,i represents the y coordinate of the ith pose and y cell represents the y coordinate of the unit area. MAX_WEIGHT represents the preset maximum weight, for example, it is less than 1. The smoothness evaluation module 231 may calculate the difference between the height mean value of the unit area and the height weighted mean value of the at least one pose in the projected map 215 as the relative height value of the unit area.

在一些实施例中,平滑度评估模块231可以通过将多个单位区域的多个相对高度值分别映射成灰度值(例如,范围为0~255),从而生成灰度图像。平滑度评估模块231可以通过对灰度图像进行边缘检测来生成该灰度图像的梯度图。例如,边缘检测可以基于Canny算法或者其他类似算法来实现,本公开的范围在此方面不受限制。附加地或者备选地,平滑度评估模块231可以将梯度图进行二值化,其中值为0的单位区域表示高度变化低于预定阈值(本文中也称为“第一阈值”)的区域,而值不为0的单位区域表示高度变化超过预定阈值(本文中也称为“第一阈值”)的区域。平滑度评估模块231可以针对平坦区域225所包括的至少一个单位区域中的每个单位区域,确定该单位区域的高度变化是否超过第一阈值(也即,在二值化梯度图中是否存在不为0的梯度值)。如果某个单位区域在二值化梯度图中存在不为0的梯度值,则地图评估设备120可以将该单位区域确定为平坦区域225内的平滑度异常点。In some embodiments, the smoothness evaluation module 231 may generate a grayscale image by respectively mapping a plurality of relative height values of a plurality of unit regions into grayscale values (eg, ranging from 0 to 255). The smoothness evaluation module 231 can generate a gradient map of the grayscale image by performing edge detection on the grayscale image. For example, edge detection may be implemented based on the Canny algorithm or other similar algorithms, and the scope of the present disclosure is not limited in this regard. Additionally or alternatively, the smoothness assessment module 231 may binarize the gradient map, where a unit region with a value of 0 represents a region with a height variation below a predetermined threshold (also referred to herein as a "first threshold"), Whereas, a unit area with a value other than 0 represents an area where the change in height exceeds a predetermined threshold (also referred to herein as a "first threshold"). The smoothness evaluation module 231 may, for each unit area in the at least one unit area included in the flat area 225, determine whether the height change of the unit area exceeds a first threshold (that is, whether there is an inconsistency in the binarized gradient map). a gradient value of 0). If a certain unit area has a gradient value other than 0 in the binarized gradient map, the map evaluation apparatus 120 may determine the unit area as a smoothness abnormal point within the flat area 225 .

附加地或备选地,在一些实施例中,平滑度评估模块231可以进一步确定平坦区域225中的平滑度异常点与平坦区域225的边界的距离是否小于预定阈值(本文中也称为“第二阈值”)。如果平滑度异常点位于平坦区域225的边界附近(也即,与平坦区域225的边界的距离低于第二阈值),则平滑度评估模块231可以将该平滑度异常点标识为平坦区域225内的平滑度报警点,这表示平滑度异常可能是由于平坦区域的语义信息存在的误差而导致的。如果平滑度异常点不在平坦区域225的边界附近(也即,与平坦区域225的边界的距离超过第二阈值),则平滑度评估模块231可以将该平滑度异常点标识为平坦区域225内的平滑度错误点,这表示平滑度异常可能是由于点云地图中的误差而导致的。在一些实施例中,平滑度评估模块231可以生成与平坦区域225内的平滑度报警点和/或平滑度错误点有关的统计信息,以作为平滑性评估结果。例如,该统计信息可以指示平坦区域225中是否存在平滑度报警点和/或平滑度错误点,它们的具体位置以及比例等。Additionally or alternatively, in some embodiments, the smoothness evaluation module 231 may further determine whether the distance between the smoothness outlier in the flat region 225 and the boundary of the flat region 225 is less than a predetermined threshold (also referred to herein as "the first"). two thresholds"). If the smoothness outlier is located near the boundary of the flat area 225 (ie, the distance from the boundary of the flat area 225 is lower than the second threshold), the smoothness evaluation module 231 may identify the smoothness outlier as being within the flat area 225 The smoothness alarm point of , which indicates that the smoothness abnormality may be caused by the error in the semantic information of the flat area. If the smoothness outlier is not near the boundary of the flat area 225 (ie, the distance from the boundary of the flat area 225 exceeds the second threshold), the smoothness evaluation module 231 may identify the smoothness outlier as a smoothness outlier within the flat area 225 Smoothness error points, which indicate that smoothness anomalies may be due to errors in the point cloud map. In some embodiments, the smoothness assessment module 231 may generate statistical information about smoothness warning points and/or smoothness error points within the flat region 225 as a smoothness assessment result. For example, the statistical information may indicate whether there are smoothness warning points and/or smoothness error points in the flat area 225, their specific locations and proportions, and the like.

平坦区域225的平滑性主要通过平坦区域225的高度变化的范围(也即,高度方差)来体现。在一些实施例中,为了评估平坦区域225的厚度是否存在异常,厚度评估模块232可以基于平坦区域225所包括的至少一个单位区域的相应高度方差来生成统计结果。统计结果可以包括高度方差的均值、最大值、最小值等。厚度评估模块232可以基于该统计结果来确定平坦区域225的厚度是否存在异常,并且生成厚度评估结果。The smoothness of the flat area 225 is mainly reflected by the range of height variation (ie, height variance) of the flat area 225 . In some embodiments, in order to evaluate whether the thickness of the flat region 225 is abnormal, the thickness evaluation module 232 may generate statistical results based on the corresponding height variance of at least one unit region included in the flat region 225 . The statistical results may include mean, maximum, minimum, etc. of the height variance. The thickness evaluation module 232 may determine whether there is an abnormality in the thickness of the flat region 225 based on the statistical result, and generate a thickness evaluation result.

返回参考图2,评估模块230可以基于由平滑度评估模块231生成的平滑度评估结果和由厚度评估模块232生成的厚度评估结果中的至少一项来生成评估结果125。以此方式,本公开的实施例能够通过分析点云地图中平坦区域(例如,路面区域等)的属性来评估点云地图的质量,而无需将点云地图与参考地图进行比较,从而能够实现对点云地图的质量的自动化评估。评估结果125可以被用于更新点云地图115和/或更新用于识别平坦区域的地图语义信息,从而提高点云地图115的质量以及提高地图语义信息的准确性。Referring back to FIG. 2 , the evaluation module 230 may generate the evaluation result 125 based on at least one of the smoothness evaluation result generated by the smoothness evaluation module 231 and the thickness evaluation result generated by the thickness evaluation module 232 . In this way, embodiments of the present disclosure can evaluate the quality of a point cloud map by analyzing the properties of flat areas (eg, road areas, etc.) in the point cloud map without comparing the point cloud map with a reference map, thereby enabling Automated assessment of the quality of point cloud maps. The evaluation results 125 may be used to update the point cloud map 115 and/or update map semantic information for identifying flat areas, thereby improving the quality of the point cloud map 115 and improving the accuracy of the map semantic information.

图3示出了根据本公开的实施例的用于评估地图质量的示例方法300的流程图。方法300例如可以在如图1和图2所示的地图评估设备120处被执行。以下将结合图2来详细描述方法300。应当理解,方法300还可以包括未示出的框和/或可以省略所示出的框。本公开的范围在此方面不受限制。FIG. 3 shows a flowchart of an example method 300 for evaluating map quality according to an embodiment of the present disclosure. The method 300 may be performed, for example, at the map evaluation device 120 as shown in FIGS. 1 and 2 . The method 300 will be described in detail below in conjunction with FIG. 2 . It should be understood that method 300 may also include blocks not shown and/or blocks shown may be omitted. The scope of the present disclosure is not limited in this regard.

在框310处,地图评估设备120基于点云地图115的语义信息,识别该点云地图115中的平坦区域225。At block 310 , the map evaluation device 120 identifies flat regions 225 in the point cloud map 115 based on the semantic information of the point cloud map 115 .

在一些实施例中,为了识别平坦区域225,地图评估设备120可以通过将点云地图115进行二维栅格投影来得到与点云地图115对应的投影地图215,其中投影地图215被划分成多个单位区域,每个单位区域具有基于点云地图115中与该单位区域对应的原始坐标点的高度值而确定的高度均值和高度方差。地图评估设备120可以基于语义信息来识别投影地图215中的平坦区域225,其中平坦区域225包括多个单位区域中的至少一个单位区域。In some embodiments, in order to identify the flat area 225, the map evaluation device 120 may obtain the projected map 215 corresponding to the point cloud map 115 by subjecting the point cloud map 115 to a two-dimensional grid projection, wherein the projected map 215 is divided into multiple Each unit area has a height mean value and a height variance determined based on the height values of the original coordinate points corresponding to the unit area in the point cloud map 115 . The map evaluation device 120 may identify a flat area 225 in the projected map 215 based on the semantic information, where the flat area 225 includes at least one unit area of the plurality of unit areas.

在框320处,地图评估设备120通过评估平坦区域的至少一个属性来评估点云地图的质量。At block 320, the map evaluation device 120 evaluates the quality of the point cloud map by evaluating at least one attribute of the flat area.

在一些实施例中,地图评估设备120可以通过评估平坦区域225的平滑度和厚度中的至少一项来评估点云地图115的质量。In some embodiments, map evaluation device 120 may evaluate the quality of point cloud map 115 by evaluating at least one of smoothness and thickness of flat regions 225 .

在一些实施例中,为了评估平坦区域225的厚度,地图评估设备120可以基于至少一个单位区域的相应高度方差来生成统计结果,然后基于该统计结果来确定平坦区域225的厚度是否存在异常。In some embodiments, to assess the thickness of the flat region 225, the map evaluation device 120 may generate statistics based on the respective height variances of at least one unit region, and then determine whether there is an abnormality in the thickness of the flat region 225 based on the statistics.

在一些实施例中,为了评估平坦区域225的平滑度,地图评估设备120可以确定平坦区域225内的平滑度异常点、平滑度报警点和/或平滑度错误点,并且生成相关的统计信息。In some embodiments, to assess the smoothness of the flat area 225, the map evaluation device 120 may determine smoothness outliers, smoothness warning points, and/or smoothness error points within the flat area 225, and generate associated statistics.

图4示出了根据本公开的实施例的用于评估平坦区域的平滑度的示例方法400的流程图。方法400可以被视为框330的一种示例实现方式,其例如可以在如图1和图2所示的地图评估设备120处被执行。应当理解,方法400还可以包括未示出的框和/或可以省略所示出的框。本公开的范围在此方面不受限制。FIG. 4 shows a flowchart of an example method 400 for evaluating smoothness of a flat region according to an embodiment of the present disclosure. Method 400 may be viewed as an example implementation of block 330 , which may be performed, for example, at map evaluation device 120 as shown in FIGS. 1 and 2 . It should be understood that method 400 may also include blocks not shown and/or blocks shown may be omitted. The scope of the present disclosure is not limited in this regard.

如图4所示,在框410处,地图评估设备120可以获取与点云地图115对应的位姿图,该位姿图包括地图采集设备110在采集点云地图115时的位姿集合。As shown in FIG. 4 , at block 410 , the map evaluation device 120 may obtain a pose map corresponding to the point cloud map 115 , the pose map including the set of poses of the map acquisition device 110 when the point cloud map 115 was collected.

在框420处,地图评估设备120基于投影地图215和所获取的位姿图,确定多个单位区域的多个相对高度值。At block 420, the map evaluation device 120 determines a plurality of relative height values for the plurality of unit areas based on the projected map 215 and the acquired pose map.

在一些实施例中,地图评估设备120可以针对多个单位区域中的每个单位区域,从位姿集合中确定与该单位区域相关联的至少一个位姿,然后基于投影地图215中的该单位区域的高度均值和至少一个位姿的相应高度值来确定该单位区域的相对高度值。In some embodiments, the map evaluation device 120 may, for each unit area of the plurality of unit areas, determine at least one pose associated with the unit area from the set of poses, and then, based on the unit area in the projected map 215 , determine at least one pose associated with the unit area. The average height of the area and the corresponding height value of at least one pose are used to determine the relative height value of the unit area.

在框430处,地图评估设备120可以通过将多个单位区域的多个相对高度值分别映射成灰度值,从而生成灰度图像。At block 430, the map evaluation device 120 may generate a grayscale image by respectively mapping the plurality of relative height values of the plurality of unit areas into grayscale values.

在框440处,地图评估设备120可以通过对灰度图像进行边缘检测来生成该灰度图像的梯度图,梯度图指示多个单位区域的相应梯度。At block 440, the map evaluation device 120 may generate a gradient map of the grayscale image by performing edge detection on the grayscale image, the gradient map indicating the corresponding gradients of the plurality of unit regions.

在框450处,地图评估设备120可以基于至少一个单位区域的相应梯度来评估平坦区域225的平滑度。At block 450, the map evaluation device 120 may evaluate the smoothness of the flat region 225 based on the corresponding gradient of the at least one unit region.

在一些实施例中,针对至少一个单位区域中的每个单位区域,如果确定该单位区域的梯度超过第一阈值,则地图评估设备120可以将该单位区域确定为平坦区域225内的平滑度异常点。In some embodiments, for each unit area in the at least one unit area, if it is determined that the gradient of the unit area exceeds the first threshold, the map evaluation device 120 may determine the unit area as an abnormal smoothness within the flat area 225 point.

附加地或备选地,在一些实施例中,如果地图评估设备120确定平坦区域225的平滑度异常点与平坦区域225的边界的距离小于第二阈值,则地图评估设备120可以将该平滑度异常点确定为平坦区域225内的平滑度报警点。在一些实施例中,如果地图评估设备120确定平坦区域225的平滑度异常点与平坦区域225的边界的距离超过第二阈值,则地图评估设备120可以将该平滑度异常点确定为平坦区域225内的平滑度错误点。在一些实施例中,地图评估设备120可以生成与平坦区域225内的平滑度报警点和/或平滑度错误点有关的统计信息。Additionally or alternatively, in some embodiments, if the map evaluation device 120 determines that the smoothness outlier of the flat region 225 is less than a second threshold from the boundary of the flat region 225, the map evaluation device 120 may determine the smoothness of the flat region 225. The outliers are identified as smoothness warning points within the flat region 225 . In some embodiments, if the map evaluation device 120 determines that the distance of the smoothness outlier of the flat region 225 from the boundary of the flat region 225 exceeds the second threshold, the map evaluation device 120 may determine the smoothness outlier as the flat region 225 Smoothness error points within. In some embodiments, map evaluation device 120 may generate statistical information related to smoothness warning points and/or smoothness error points within flat region 225 .

本公开的实施例还提供了用于实现上述方法300和/或400的相应装置。图5示出了根据本公开的实施例的用于评估地图质量的示例装置500的框图。Embodiments of the present disclosure also provide corresponding apparatuses for implementing the above-mentioned methods 300 and/or 400 . FIG. 5 shows a block diagram of an example apparatus 500 for evaluating map quality according to an embodiment of the present disclosure.

如图5所示,装置500包括识别模块510,被配置为基于点云地图的语义信息,识别该点云地图中的平坦区域。装置500还包括评估模块520,被配置为通过评估平坦区域的至少一个属性来评估点云地图的质量。As shown in FIG. 5 , the apparatus 500 includes an identification module 510 configured to identify flat areas in the point cloud map based on semantic information of the point cloud map. The apparatus 500 also includes an evaluation module 520 configured to evaluate the quality of the point cloud map by evaluating at least one attribute of the flat area.

在一些实施例中,评估模块520包括以下至少一项:平滑度评估模块,被配置为评估平坦区域的平滑度;以及厚度评估模块,被配置为评估平坦区域的厚度。In some embodiments, the evaluation module 520 includes at least one of: a smoothness evaluation module configured to evaluate the smoothness of the flat region; and a thickness evaluation module configured to evaluate the thickness of the flat region.

在一些实施例中,识别模块510包括:投影模块,被配置为通过将点云地图进行二维栅格投影来得到与该点云地图对应的投影地图,其中投影地图被划分成多个单位区域,每个单位区域具有基于点云地图中与该单位区域对应的原始坐标点的高度值而确定的高度均值和高度方差;以及平坦区域识别模块,被配置为基于语义信息,识别投影地图中的平坦区域,其中平坦区域包括多个单位区域中的至少一个单位区域。In some embodiments, the identification module 510 includes: a projection module configured to obtain a projection map corresponding to the point cloud map by performing a two-dimensional grid projection on the point cloud map, wherein the projection map is divided into a plurality of unit areas , each unit area has a height mean and height variance determined based on the height value of the original coordinate point corresponding to the unit area in the point cloud map; A flat area, wherein the flat area includes at least one unit area of the plurality of unit areas.

在一些实施例中,平滑度评估模块包括:获取单元,被配置为获取与点云地图对应的位姿图,位姿图包括采集设备在采集点云地图时的位姿集合;第一确定单元,被配置为基于位姿集合的相应高度值和投影地图中多个单位区域的相应高度均值,确定多个单位区域的多个相对高度值;第二确定单元,被配置为基于多个相对高度值,确定多个单位区域的相应梯度;以及评估单元,被配置为基于至少一个单位区域的梯度来评估平坦区域的平滑度。In some embodiments, the smoothness evaluation module includes: an obtaining unit configured to obtain a pose map corresponding to the point cloud map, the pose map including a pose set of the collecting device when collecting the point cloud map; a first determining unit , is configured to determine multiple relative height values of multiple unit areas based on the corresponding height values of the pose set and the corresponding height mean values of multiple unit areas in the projection map; the second determination unit is configured to be based on multiple relative heights. and an evaluation unit configured to evaluate the smoothness of the flat region based on the gradient of the at least one unit region.

在一些实施例中,第二确定单元被配置为:通过将多个相对高度值分别映射成灰度值,生成灰度图像;以及通过对灰度图像进行边缘检测来生成该灰度图像的梯度图,梯度图指示多个单位区域的相应梯度。In some embodiments, the second determining unit is configured to: generate a grayscale image by respectively mapping a plurality of relative height values to grayscale values; and generate a gradient of the grayscale image by performing edge detection on the grayscale image Figure, the gradient map indicates the corresponding gradients of multiple unit regions.

在一些实施例中,评估单元被配置为:针对至少一个单位区域中的每个单位区域,如果确定该单位区域的梯度超过第一阈值,将该单位区域确定为平坦区域内的平滑度异常点。In some embodiments, the evaluation unit is configured to: for each unit area in the at least one unit area, if it is determined that the gradient of the unit area exceeds the first threshold, determine the unit area as a smoothness outlier in the flat area .

在一些实施例中,评估单元还被配置为:如果确定平坦区域内的平滑度异常点与平坦区域的边界的距离小于第二阈值,将平滑度异常点确定为该平坦区域内的平滑度报警点;如果确定平坦区域内的平滑度异常点与平坦区域的边界的距离超过第二阈值,将平滑度异常点确定为该平坦区域内的平滑度错误点;以及生成与该平坦区域内的平滑度报警点和/或平滑度错误点有关的统计信息。In some embodiments, the evaluation unit is further configured to: if it is determined that the distance between the smoothness abnormal point in the flat area and the boundary of the flat area is less than the second threshold, determine the smoothness abnormal point as a smoothness alarm in the flat area If it is determined that the distance between the smoothness abnormal point in the flat area and the boundary of the flat area exceeds the second threshold, determine the smoothness abnormal point as a smoothness error point in the flat area; and generate a smoothness error point in the flat area. Statistics related to degree warning points and/or smoothness error points.

在一些实施例中,厚度评估模块包括:生成单元,被配置为基于至少一个单位区域的相应高度方差,生成统计结果;以及第三确定单元,被配置为基于该统计结果,确定平坦区域的厚度是否存在异常。In some embodiments, the thickness assessment module includes: a generating unit configured to generate a statistical result based on the corresponding height variance of the at least one unit area; and a third determining unit configured to determine the thickness of the flat area based on the statistical result Is there an exception.

装置500中所包括的模块和单元可以利用各种方式来实现,包括软件、硬件、固件或其任意组合。在一些实施例中,一个或多个单元可以使用软件和/或固件来实现,例如存储在存储介质上的机器可执行指令。除了机器可执行指令之外或者作为替代,装置500中的模块和单元中的部分或者全部可以至少部分地由一个或多个硬件逻辑组件来实现。作为示例而非限制,可以使用的示范类型的硬件逻辑组件包括现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准品(ASSP)、片上系统(SOC)、复杂可编程逻辑器件(CPLD),等等。The modules and units included in the apparatus 500 may be implemented in various manners, including software, hardware, firmware, or any combination thereof. In some embodiments, one or more units may be implemented using software and/or firmware, such as machine-executable instructions stored on a storage medium. In addition to or as an alternative to machine-executable instructions, some or all of the modules and units in apparatus 500 may be implemented, at least in part, by one or more hardware logic components. By way of example and not limitation, exemplary types of hardware logic components that may be used include field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standards (ASSPs), systems on chips (SOCs), complex programmable logic devices (CPLD), etc.

图6示出了能够实施本公开的多个实施例的示例电子设备600的框图。例如,如图1所示的地图评估设备120可以由设备600实施。如图6所示,设备600包括中央处理单元(CPU)601,其可以根据存储在只读存储器(ROM)602中的计算机程序指令或者从存储单元608加载到随机访问存储器(RAM)603中的计算机程序指令,来执行各种适当的动作和处理。在RAM603中,还可存储设备600操作所需的各种程序和数据。CPU 601、ROM 602以及RAM 603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。6 illustrates a block diagram of an example electronic device 600 capable of implementing various embodiments of the present disclosure. For example, map evaluation device 120 as shown in FIG. 1 may be implemented by device 600 . As shown in FIG. 6, device 600 includes a central processing unit (CPU) 601 that may be loaded into random access memory (RAM) 603 according to computer program instructions stored in read only memory (ROM) 602 or from storage unit 608 computer program instructions to perform various appropriate actions and processes. In the RAM 603, various programs and data necessary for the operation of the device 600 can also be stored. The CPU 601 , the ROM 602 , and the RAM 603 are connected to each other through a bus 604 . An input/output (I/O) interface 605 is also connected to bus 604 .

设备600中的多个部件连接至I/O接口605,包括:输入单元606,例如键盘、鼠标等;输出单元607,例如各种类型的显示器、扬声器等;存储单元608,例如磁盘、光盘等;以及通信单元609,例如网卡、调制解调器、无线通信收发机等。通信单元609允许设备600通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。Various components in the device 600 are connected to the I/O interface 605, including: an input unit 606, such as a keyboard, mouse, etc.; an output unit 607, such as various types of displays, speakers, etc.; a storage unit 608, such as a magnetic disk, an optical disk, etc. ; and a communication unit 609, such as a network card, a modem, a wireless communication transceiver, and the like. The communication unit 609 allows the device 600 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunication networks.

上文所描述的各个过程和处理,例如方法300和/或400,可由处理单元601执行。例如,在一些实施例中,方法300和/或400可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元608。在一些实施例中,计算机程序的部分或者全部可以经由ROM602和/或通信单元609而被载入和/或安装到设备600上。当计算机程序被加载到RAM 603并由CPU 601执行时,可以执行上文描述的方法300和/或400的一个或多个动作。The various procedures and processes described above, eg, methods 300 and/or 400 , may be performed by processing unit 601 . For example, in some embodiments, methods 300 and/or 400 may be implemented as a computer software program tangibly embodied on a machine-readable medium, such as storage unit 608 . In some embodiments, part or all of the computer program may be loaded and/or installed on device 600 via ROM 602 and/or communication unit 609 . When a computer program is loaded into RAM 603 and executed by CPU 601, one or more of the actions of methods 300 and/or 400 described above may be performed.

本公开可以是方法、装置、系统和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于执行本公开的各个方面的计算机可读程序指令。The present disclosure may be a method, apparatus, system and/or computer program product. The computer program product may include a computer-readable storage medium having computer-readable program instructions loaded thereon for carrying out various aspects of the present disclosure.

计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是——但不限于——电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。A computer-readable storage medium may be a tangible device that can hold and store instructions for use by the instruction execution device. The computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. More specific examples (non-exhaustive list) of computer readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM) or flash memory), static random access memory (SRAM), portable compact disk read only memory (CD-ROM), digital versatile disk (DVD), memory sticks, floppy disks, mechanically coded devices, such as printers with instructions stored thereon Hole cards or raised structures in grooves, and any suitable combination of the above. Computer-readable storage media, as used herein, are not to be construed as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (eg, light pulses through fiber optic cables), or through electrical wires transmitted electrical signals.

这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。The computer readable program instructions described herein may be downloaded to various computing/processing devices from a computer readable storage medium, or to an external computer or external storage device over a network such as the Internet, a local area network, a wide area network, and/or a wireless network. The network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer-readable program instructions from a network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing/processing device .

用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。Computer program instructions for carrying out operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or instructions in one or more programming languages. Source or object code, written in any combination, including object-oriented programming languages, such as Smalltalk, C++, etc., and conventional procedural programming languages, such as the "C" language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server implement. In the case of a remote computer, the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through the Internet connect). In some embodiments, custom electronic circuits, such as programmable logic circuits, field programmable gate arrays (FPGAs), or programmable logic arrays (PLAs), can be personalized by utilizing state information of computer readable program instructions. Computer readable program instructions are executed to implement various aspects of the present disclosure.

这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。Aspects of the present disclosure are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the disclosure. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.

这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理单元,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理单元执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。These computer readable program instructions may be provided to a processing unit of a general purpose computer, special purpose computer or other programmable data processing apparatus to produce a machine that causes the instructions when executed by the processing unit of the computer or other programmable data processing apparatus , resulting in means for implementing the functions/acts specified in one or more blocks of the flowchart and/or block diagrams. These computer readable program instructions can also be stored in a computer readable storage medium, these instructions cause a computer, programmable data processing apparatus and/or other equipment to operate in a specific manner, so that the computer readable medium on which the instructions are stored includes An article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.

也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。Computer readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other equipment to cause a series of operational steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executing on a computer, other programmable data processing apparatus, or other device to implement the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.

附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more functions for implementing the specified logical function(s) executable instructions. In some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented in dedicated hardware-based systems that perform the specified functions or actions , or can be implemented in a combination of dedicated hardware and computer instructions.

以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。Various embodiments of the present disclosure have been described above, and the foregoing descriptions are exemplary, not exhaustive, and not limiting of the disclosed embodiments. Numerous modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the various embodiments, the practical application or improvement over the technology in the marketplace, or to enable others of ordinary skill in the art to understand the various embodiments disclosed herein.

Claims (18)

1. A method of assessing map quality, comprising:
identifying a flat area in a point cloud map based on semantic information of the point cloud map; and
evaluating a quality of the point cloud map by evaluating at least one attribute of the flat region.
2. The method of claim 1, wherein evaluating at least one attribute of the flat region comprises:
evaluating at least one of smoothness and thickness of the flat region.
3. The method of claim 2, wherein identifying a flat area in the point cloud map comprises:
obtaining a projection map corresponding to the point cloud map by performing two-dimensional grid projection on the point cloud map, wherein the projection map is divided into a plurality of unit areas, and each unit area has a height mean value and a height variance which are determined based on a height value of an original coordinate point corresponding to the unit area in the point cloud map; and
identifying the flat region in the projected map based on the semantic information, wherein the flat region includes at least one unit region of the plurality of unit regions.
4. The method of claim 3, wherein evaluating smoothness of the flat region comprises:
acquiring a pose graph corresponding to the point cloud map, wherein the pose graph comprises a set of poses of an acquisition device when the point cloud map is acquired;
determining a plurality of relative height values for the plurality of unit areas based on the respective height values for the set of poses and the respective height means for the plurality of unit areas in the projection map;
determining respective gradients of the plurality of unit regions based on the plurality of relative height values; and
evaluating smoothness of the flat region based on a gradient of the at least one unit region.
5. The method of claim 4, wherein determining respective gradients of the plurality of unit regions comprises:
generating a gray image by mapping the plurality of relative height values to gray values, respectively; and
generating a gradient map of the grayscale image by edge detecting the grayscale image, the gradient map indicating respective gradients of the plurality of unit regions.
6. The method of claim 4, wherein evaluating smoothness of the flat region based on the respective gradient of the at least one unit region comprises:
for each unit area of the at least one unit area, if it is determined that the gradient of the unit area exceeds a first threshold, determining the unit area as a smoothness anomaly point within the flat area.
7. The method of claim 6, further comprising:
if the distance between the smoothness abnormal point in the flat area and the boundary of the flat area is determined to be smaller than a second threshold value, determining the smoothness abnormal point as a smoothness alarm point in the flat area;
determining a smoothness outlier within the flat region as a smoothness error point within the flat region if it is determined that the distance of the smoothness outlier from the boundary of the flat region exceeds the second threshold; and
generating statistical information about smoothness alert points and/or smoothness error points within the flat region.
8. The method of claim 3, wherein evaluating the thickness of the flat region comprises:
generating a statistical result based on the respective height variance of the at least one unit area; and
determining whether there is an anomaly in the thickness of the flat region based on the statistical result.
9. An apparatus for evaluating map quality, comprising:
an identification module configured to identify a flat area in a point cloud map based on semantic information of the point cloud map; and
an evaluation module configured to evaluate a quality of the point cloud map by evaluating at least one attribute of the flat region.
10. The apparatus of claim 9, wherein the evaluation module comprises at least one of:
a smoothness evaluation module configured to evaluate a smoothness of the flat region; and
a thickness evaluation module configured to evaluate a thickness of the flat region.
11. The apparatus of claim 9, wherein the identification module comprises:
a projection module configured to obtain a projection map corresponding to the point cloud map by performing two-dimensional grid projection on the point cloud map, wherein the projection map is divided into a plurality of unit areas, each unit area having a height mean and a height variance determined based on a height value of an original coordinate point corresponding to the unit area in the point cloud map; and
a flat region identification module configured to identify the flat region in the projected map based on the semantic information, wherein the flat region includes at least one unit region of the plurality of unit regions.
12. The apparatus of claim 11, wherein the smoothness evaluation module comprises:
an acquisition unit configured to acquire a pose map corresponding to the point cloud map, the pose map including a set of poses of an acquisition device at the time of acquiring the point cloud map;
a first determination unit configured to determine a plurality of relative height values of the plurality of unit areas based on the respective height values of the pose set and the respective height mean values of the plurality of unit areas in the projection map;
a second determination unit configured to determine respective gradients of the plurality of unit areas based on the plurality of relative height values; and
an evaluation unit configured to evaluate smoothness of the flat region based on a gradient of the at least one unit region.
13. The apparatus of claim 12, wherein the second determining unit is configured to:
generating a gray image by mapping the plurality of relative height values to gray values, respectively; and
generating a gradient map of the grayscale image by edge detecting the grayscale image, the gradient map indicating respective gradients of the plurality of unit regions.
14. The apparatus of claim 12, wherein the evaluation unit is configured to:
for each unit area of the at least one unit area, if it is determined that the gradient of the unit area exceeds a first threshold, determining the unit area as a smoothness anomaly point within the flat area.
15. The apparatus of claim 14, wherein the evaluation unit is further configured to:
if the distance between the smoothness abnormal point in the flat area and the boundary of the flat area is determined to be smaller than a second threshold value, determining the smoothness abnormal point as a smoothness alarm point in the flat area;
determining a smoothness outlier within the flat region as a smoothness error point within the flat region if it is determined that the distance of the smoothness outlier from the boundary of the flat region exceeds the second threshold; and
generating statistical information about smoothness alert points and/or smoothness error points within the flat region.
16. The apparatus of claim 11, wherein the thickness evaluation module comprises:
a generating unit configured to generate a statistical result based on the respective height variances of the at least one unit area; and
a third determination unit configured to determine whether there is an abnormality in the thickness of the flat region based on the statistical result.
17. An electronic device, comprising:
one or more processors; and
memory storing one or more programs that, when executed by the one or more processors, cause the electronic device to implement the method of any of claims 1-8.
18. A computer-readable storage medium, on which a computer program is stored which, when being executed by a processor, carries out the method according to any one of claims 1-8.
CN202010966261.4A 2020-09-15 2020-09-15 Method, apparatus, device and computer-readable storage medium for assessing map quality Pending CN111931704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010966261.4A CN111931704A (en) 2020-09-15 2020-09-15 Method, apparatus, device and computer-readable storage medium for assessing map quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010966261.4A CN111931704A (en) 2020-09-15 2020-09-15 Method, apparatus, device and computer-readable storage medium for assessing map quality

Publications (1)

Publication Number Publication Date
CN111931704A true CN111931704A (en) 2020-11-13

Family

ID=73334627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010966261.4A Pending CN111931704A (en) 2020-09-15 2020-09-15 Method, apparatus, device and computer-readable storage medium for assessing map quality

Country Status (1)

Country Link
CN (1) CN111931704A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112559539A (en) * 2020-12-07 2021-03-26 北京嘀嘀无限科技发展有限公司 Method and device for updating map data
CN112634260A (en) * 2020-12-31 2021-04-09 上海商汤智能科技有限公司 Map evaluation method and device, electronic equipment and storage medium
CN114757870A (en) * 2020-12-29 2022-07-15 深圳市普渡科技有限公司 Grid map quality evaluation method and device, computer equipment and storage medium
CN114998400A (en) * 2022-06-24 2022-09-02 安徽酷哇机器人有限公司 Automatic ground extraction method for laser point cloud
CN116226298A (en) * 2023-05-08 2023-06-06 上海维智卓新信息科技有限公司 Automatic assessment method for map quality
CN117314894A (en) * 2023-11-27 2023-12-29 深圳市金三维实业有限公司 Method for rapidly detecting defects of watch bottom cover

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715987A (en) * 2005-06-16 2006-01-04 武汉理工大学 Stitching Method of Large Panoramic Depth of View Under Microscope
CN103777249A (en) * 2014-01-29 2014-05-07 核工业北京地质研究院 Method for determining forward line of sandstone uranium mine oxidizing zone through high-precision magnetic measurement
US20150062115A1 (en) * 2013-08-28 2015-03-05 Adobe Systems Incorporated Contour gradients using three-dimensional models
CN105718945A (en) * 2016-01-20 2016-06-29 江苏大学 Apple picking robot night image identification method based on watershed and nerve network
CN106650640A (en) * 2016-12-05 2017-05-10 浙江大学 Negative obstacle detection method based on local structure feature of laser radar point cloud
US20180261184A1 (en) * 2015-09-21 2018-09-13 Dolby Laboratories Licensing Corporation Techniques for operating a display in the perceptual code space
CN108805841A (en) * 2018-06-12 2018-11-13 西安交通大学 A kind of depth map recovery and View Synthesis optimization method based on cromogram guiding
CN109064506A (en) * 2018-07-04 2018-12-21 百度在线网络技术(北京)有限公司 Accurately drawing generating method, device and storage medium
CN109141446A (en) * 2018-07-04 2019-01-04 百度在线网络技术(北京)有限公司 For obtaining the method, apparatus, equipment and computer readable storage medium of map
US20190080273A1 (en) * 2017-09-08 2019-03-14 Petrochina Company Limited Method and apparatus for evaluating exploitation value of a geological resource
CN109562844A (en) * 2016-08-06 2019-04-02 深圳市大疆创新科技有限公司 The assessment of automatic Landing topographical surface and relevant system and method
US20190163958A1 (en) * 2017-04-28 2019-05-30 SZ DJI Technology Co., Ltd. Methods and associated systems for grid analysis
CN110363839A (en) * 2019-06-19 2019-10-22 深圳市彬讯科技有限公司 Model rendering method, apparatus, computer equipment and storage medium
CN111028037A (en) * 2019-05-22 2020-04-17 珠海随变科技有限公司 Method, device and equipment for providing commodity customization information, production order and design drawing
CN111079611A (en) * 2019-12-09 2020-04-28 成都奥伦达科技有限公司 Automatic extraction method for road surface and marking line thereof
CN111223059A (en) * 2020-01-04 2020-06-02 西安交通大学 Robust depth map structure reconstruction and denoising method based on guide filter

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715987A (en) * 2005-06-16 2006-01-04 武汉理工大学 Stitching Method of Large Panoramic Depth of View Under Microscope
US20150062115A1 (en) * 2013-08-28 2015-03-05 Adobe Systems Incorporated Contour gradients using three-dimensional models
CN103777249A (en) * 2014-01-29 2014-05-07 核工业北京地质研究院 Method for determining forward line of sandstone uranium mine oxidizing zone through high-precision magnetic measurement
US20180261184A1 (en) * 2015-09-21 2018-09-13 Dolby Laboratories Licensing Corporation Techniques for operating a display in the perceptual code space
CN105718945A (en) * 2016-01-20 2016-06-29 江苏大学 Apple picking robot night image identification method based on watershed and nerve network
CN109562844A (en) * 2016-08-06 2019-04-02 深圳市大疆创新科技有限公司 The assessment of automatic Landing topographical surface and relevant system and method
CN106650640A (en) * 2016-12-05 2017-05-10 浙江大学 Negative obstacle detection method based on local structure feature of laser radar point cloud
US20190163958A1 (en) * 2017-04-28 2019-05-30 SZ DJI Technology Co., Ltd. Methods and associated systems for grid analysis
US20190080273A1 (en) * 2017-09-08 2019-03-14 Petrochina Company Limited Method and apparatus for evaluating exploitation value of a geological resource
CN108805841A (en) * 2018-06-12 2018-11-13 西安交通大学 A kind of depth map recovery and View Synthesis optimization method based on cromogram guiding
CN109141446A (en) * 2018-07-04 2019-01-04 百度在线网络技术(北京)有限公司 For obtaining the method, apparatus, equipment and computer readable storage medium of map
CN109064506A (en) * 2018-07-04 2018-12-21 百度在线网络技术(北京)有限公司 Accurately drawing generating method, device and storage medium
CN111028037A (en) * 2019-05-22 2020-04-17 珠海随变科技有限公司 Method, device and equipment for providing commodity customization information, production order and design drawing
CN110363839A (en) * 2019-06-19 2019-10-22 深圳市彬讯科技有限公司 Model rendering method, apparatus, computer equipment and storage medium
CN111079611A (en) * 2019-12-09 2020-04-28 成都奥伦达科技有限公司 Automatic extraction method for road surface and marking line thereof
CN111223059A (en) * 2020-01-04 2020-06-02 西安交通大学 Robust depth map structure reconstruction and denoising method based on guide filter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOANGHUN等: "A height-map based terrain rendering with tessellation hardware", 《IEEE》, 26 January 2015 (2015-01-26) *
杨光亮;申重阳;谈洪波;王嘉沛;吴桂桔;: "云南鲁甸M_S6.5地震震区地壳密度结构特征", 地震地质, no. 04, 15 December 2014 (2014-12-15) *
须明;赵荣椿;: "SFS方法及其与立体视觉方法的集成方案综述", 计算机工程与应用, no. 08, 11 March 2006 (2006-03-11) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112559539A (en) * 2020-12-07 2021-03-26 北京嘀嘀无限科技发展有限公司 Method and device for updating map data
CN114757870A (en) * 2020-12-29 2022-07-15 深圳市普渡科技有限公司 Grid map quality evaluation method and device, computer equipment and storage medium
CN112634260A (en) * 2020-12-31 2021-04-09 上海商汤智能科技有限公司 Map evaluation method and device, electronic equipment and storage medium
CN114998400A (en) * 2022-06-24 2022-09-02 安徽酷哇机器人有限公司 Automatic ground extraction method for laser point cloud
CN116226298A (en) * 2023-05-08 2023-06-06 上海维智卓新信息科技有限公司 Automatic assessment method for map quality
CN117314894A (en) * 2023-11-27 2023-12-29 深圳市金三维实业有限公司 Method for rapidly detecting defects of watch bottom cover
CN117314894B (en) * 2023-11-27 2024-03-29 深圳市金三维实业有限公司 Method for rapidly detecting defects of watch bottom cover

Similar Documents

Publication Publication Date Title
CN111931704A (en) Method, apparatus, device and computer-readable storage medium for assessing map quality
JP6831414B2 (en) Methods for positioning, devices, devices and computers for positioning Readable storage media
US20190205665A1 (en) Method, apparatus, and device for determining lane line on road
CN110647902A (en) Entropy clustering of objects
Tsai et al. Multiscale crack fundamental element model for real-world pavement crack classification
CN112129266B (en) Method, apparatus, device and computer readable storage medium for processing map
CN110598541B (en) A method and device for extracting road edge information
CN113514849B (en) Vehicle parameter detection method, system and storage medium
US10082787B2 (en) Estimation of abnormal sensors
Cao et al. Roof plane extraction from airborne lidar point clouds
CN116109601A (en) A real-time target detection method based on 3D lidar point cloud
US20220244070A1 (en) Method for calculating operation acres of agricultural machinery, and electronic device using the same
Kang et al. Primitive fitting based on the efficient multibaysac algorithm
CN113269889B (en) Self-adaptive point cloud target clustering method based on elliptical domain
CN114445565A (en) Data processing method, apparatus, electronic device and computer readable medium
CN111812670B (en) A single-photon lidar spatial transformation noise judgment, filtering method and device
JP2014106725A (en) Point group analyzer, point group analysis method and point group analysis program
JP6673504B2 (en) Information processing device, database generation device, method, program, and storage medium
Li et al. Three‐Dimensional Asphalt Pavement Crack Detection Based on Fruit Fly Optimisation Density Peak Clustering
US20230104674A1 (en) Machine learning techniques for ground classification
CN111815652A (en) A method and apparatus for multi-scale local threshold segmentation of images
WO2020095549A1 (en) Imaging device
WO2021014495A1 (en) Label estimation device, label estimation method, and label estimation program
JP7622688B2 (en) Map data generation method, map data generation device, and map data generation program
Daudt et al. Learning to understand earth observation images with weak and unreliable ground truth

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination