CN111931587A - Video anomaly detection method based on interpretable space-time self-encoder - Google Patents
Video anomaly detection method based on interpretable space-time self-encoder Download PDFInfo
- Publication number
- CN111931587A CN111931587A CN202010678292.XA CN202010678292A CN111931587A CN 111931587 A CN111931587 A CN 111931587A CN 202010678292 A CN202010678292 A CN 202010678292A CN 111931587 A CN111931587 A CN 111931587A
- Authority
- CN
- China
- Prior art keywords
- interpretable
- encoder
- video
- level
- convolution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 25
- 238000007781 pre-processing Methods 0.000 claims abstract description 4
- 230000005856 abnormality Effects 0.000 claims abstract description 3
- 238000013136 deep learning model Methods 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 21
- 230000004913 activation Effects 0.000 claims description 9
- 238000001994 activation Methods 0.000 claims description 9
- 238000013135 deep learning Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 230000002123 temporal effect Effects 0.000 claims description 7
- 230000001537 neural effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000012706 support-vector machine Methods 0.000 description 3
- 230000002547 anomalous effect Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 206010000117 Abnormal behaviour Diseases 0.000 description 1
- 241001270131 Agaricus moelleri Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010678292.XA CN111931587B (en) | 2020-07-15 | 2020-07-15 | Video anomaly detection method based on interpretable space-time self-encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010678292.XA CN111931587B (en) | 2020-07-15 | 2020-07-15 | Video anomaly detection method based on interpretable space-time self-encoder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111931587A true CN111931587A (en) | 2020-11-13 |
CN111931587B CN111931587B (en) | 2022-10-25 |
Family
ID=73312394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010678292.XA Active CN111931587B (en) | 2020-07-15 | 2020-07-15 | Video anomaly detection method based on interpretable space-time self-encoder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111931587B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117911930A (en) * | 2024-03-15 | 2024-04-19 | 释普信息科技(上海)有限公司 | Data security early warning method and device based on intelligent video monitoring |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107273880A (en) * | 2017-07-31 | 2017-10-20 | 秦皇岛玥朋科技有限公司 | A kind of multi-storied garage safety-protection system and method based on intelligent video monitoring |
CN109615019A (en) * | 2018-12-25 | 2019-04-12 | 吉林大学 | Anomaly detection method based on space-time autocoder |
CN109670446A (en) * | 2018-12-20 | 2019-04-23 | 泉州装备制造研究所 | Anomaly detection method based on linear dynamic system and depth network |
CN109871799A (en) * | 2019-02-02 | 2019-06-11 | 浙江万里学院 | A kind of driver based on deep learning plays the detection method of mobile phone behavior |
CN109902562A (en) * | 2019-01-16 | 2019-06-18 | 重庆邮电大学 | A kind of driver's exception attitude monitoring method based on intensified learning |
US20190188212A1 (en) * | 2016-07-27 | 2019-06-20 | Anomalee Inc. | Prioritized detection and classification of clusters of anomalous samples on high-dimensional continuous and mixed discrete/continuous feature spaces |
CN110889328A (en) * | 2019-10-21 | 2020-03-17 | 大唐软件技术股份有限公司 | Method, device, electronic equipment and storage medium for detecting road traffic condition |
CN111008570A (en) * | 2019-11-11 | 2020-04-14 | 电子科技大学 | Video understanding method based on compression-excitation pseudo-three-dimensional network |
CN111079539A (en) * | 2019-11-19 | 2020-04-28 | 华南理工大学 | Video abnormal behavior detection method based on abnormal tracking |
CN111325347A (en) * | 2020-02-19 | 2020-06-23 | 山东大学 | Automatic danger early warning description generation method based on interpretable visual reasoning model |
WO2020142483A1 (en) * | 2018-12-31 | 2020-07-09 | Futurewei Technologies, Inc. | Explicit address signaling in video coding |
CN111401526A (en) * | 2020-03-20 | 2020-07-10 | 厦门渊亭信息科技有限公司 | Model-universal deep neural network representation visualization method and device |
-
2020
- 2020-07-15 CN CN202010678292.XA patent/CN111931587B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190188212A1 (en) * | 2016-07-27 | 2019-06-20 | Anomalee Inc. | Prioritized detection and classification of clusters of anomalous samples on high-dimensional continuous and mixed discrete/continuous feature spaces |
CN107273880A (en) * | 2017-07-31 | 2017-10-20 | 秦皇岛玥朋科技有限公司 | A kind of multi-storied garage safety-protection system and method based on intelligent video monitoring |
CN109670446A (en) * | 2018-12-20 | 2019-04-23 | 泉州装备制造研究所 | Anomaly detection method based on linear dynamic system and depth network |
CN109615019A (en) * | 2018-12-25 | 2019-04-12 | 吉林大学 | Anomaly detection method based on space-time autocoder |
WO2020142483A1 (en) * | 2018-12-31 | 2020-07-09 | Futurewei Technologies, Inc. | Explicit address signaling in video coding |
CN109902562A (en) * | 2019-01-16 | 2019-06-18 | 重庆邮电大学 | A kind of driver's exception attitude monitoring method based on intensified learning |
CN109871799A (en) * | 2019-02-02 | 2019-06-11 | 浙江万里学院 | A kind of driver based on deep learning plays the detection method of mobile phone behavior |
CN110889328A (en) * | 2019-10-21 | 2020-03-17 | 大唐软件技术股份有限公司 | Method, device, electronic equipment and storage medium for detecting road traffic condition |
CN111008570A (en) * | 2019-11-11 | 2020-04-14 | 电子科技大学 | Video understanding method based on compression-excitation pseudo-three-dimensional network |
CN111079539A (en) * | 2019-11-19 | 2020-04-28 | 华南理工大学 | Video abnormal behavior detection method based on abnormal tracking |
CN111325347A (en) * | 2020-02-19 | 2020-06-23 | 山东大学 | Automatic danger early warning description generation method based on interpretable visual reasoning model |
CN111401526A (en) * | 2020-03-20 | 2020-07-10 | 厦门渊亭信息科技有限公司 | Model-universal deep neural network representation visualization method and device |
Non-Patent Citations (3)
Title |
---|
JEFFERSON RYAN MEDEL等: "《Anomaly Detection in Video Using Predictive Convolutional Long Short-Term Memory Networks》", 《ARXIV》 * |
周培培 等: "《视频监控中的人群异常行为检测与定位》", 《光学学报》 * |
朱辉辉: "《监控场景下基于视频目标分析的异常检测算法研究》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117911930A (en) * | 2024-03-15 | 2024-04-19 | 释普信息科技(上海)有限公司 | Data security early warning method and device based on intelligent video monitoring |
CN117911930B (en) * | 2024-03-15 | 2024-06-04 | 释普信息科技(上海)有限公司 | Data security early warning method and device based on intelligent video monitoring |
Also Published As
Publication number | Publication date |
---|---|
CN111931587B (en) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108805015B (en) | Crowd abnormity detection method for weighted convolution self-coding long-short term memory network | |
CN108256562B (en) | Salient target detection method and system based on weak supervision time-space cascade neural network | |
EP2377044B1 (en) | Detecting anomalous events using a long-term memory in a video analysis system | |
CN111680614A (en) | Abnormal behavior detection method based on video monitoring | |
CN107506692A (en) | A kind of dense population based on deep learning counts and personnel's distribution estimation method | |
CN110232361B (en) | Human behavior intention identification method and system based on three-dimensional residual dense network | |
CN111079539B (en) | Video abnormal behavior detection method based on abnormal tracking | |
Chen et al. | Adaptive convolution for object detection | |
CN111738054B (en) | Behavior anomaly detection method based on space-time self-encoder network and space-time CNN | |
CN110930378B (en) | Emphysema image processing method and system based on low data demand | |
CN116092179A (en) | Improved Yolox fall detection system | |
Dhole et al. | Anomaly detection using convolutional spatiotemporal autoencoder | |
CN111626134A (en) | Dense crowd counting method, system and terminal based on hidden density distribution | |
Prawiro et al. | Abnormal event detection in surveillance videos using two-stream decoder | |
CN115205604A (en) | Improved YOLOv 5-based method for detecting wearing of safety protection product in chemical production process | |
CN111931587B (en) | Video anomaly detection method based on interpretable space-time self-encoder | |
CN118155266A (en) | Bank outlet monitoring and identifying method and device | |
CN113807203A (en) | Hyperspectral anomaly detection method based on tensor decomposition network | |
Zhao et al. | Layer-wise multi-defect detection for laser powder bed fusion using deep learning algorithm with visual explanation | |
CN112149596A (en) | Abnormal behavior detection method, terminal device and storage medium | |
CN116611500A (en) | Method and device for training neural network | |
CN115984568A (en) | Target detection method in haze environment based on YOLOv3 network | |
CN111062408B (en) | Fuzzy license plate image super-resolution reconstruction method based on deep learning | |
Fang et al. | An attention-based U-Net network for anomaly detection in crowded scenes | |
Esan et al. | Detection of Anomalous Behavioural Patterns In University Environment Using CNN-LSTM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240529 Address after: 100000 Room 601, 6th floor, building 5, Lianhua yuan, Haidian District, Beijing Patentee after: Aerospace Guosheng Technology Co.,Ltd. Country or region after: China Address before: 518000 1104, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Patentee before: Shenzhen Hongyue Enterprise Management Consulting Co.,Ltd. Country or region before: China Effective date of registration: 20240528 Address after: 518000 1104, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Patentee after: Shenzhen Hongyue Enterprise Management Consulting Co.,Ltd. Country or region after: China Address before: 400065 Chongwen Road, Nanshan Street, Nanan District, Chongqing Patentee before: CHONGQING University OF POSTS AND TELECOMMUNICATIONS Country or region before: China |
|
TR01 | Transfer of patent right |