CN111931587A - Video anomaly detection method based on interpretable spatiotemporal autoencoder - Google Patents
Video anomaly detection method based on interpretable spatiotemporal autoencoder Download PDFInfo
- Publication number
- CN111931587A CN111931587A CN202010678292.XA CN202010678292A CN111931587A CN 111931587 A CN111931587 A CN 111931587A CN 202010678292 A CN202010678292 A CN 202010678292A CN 111931587 A CN111931587 A CN 111931587A
- Authority
- CN
- China
- Prior art keywords
- interpretable
- video
- encoder
- anomaly detection
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000013135 deep learning Methods 0.000 claims abstract description 8
- 238000007781 pre-processing Methods 0.000 claims abstract description 4
- 230000005856 abnormality Effects 0.000 claims abstract description 3
- 238000013136 deep learning model Methods 0.000 claims abstract description 3
- 230000004913 activation Effects 0.000 claims description 9
- 238000001994 activation Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 7
- 230000002123 temporal effect Effects 0.000 claims description 7
- 230000001537 neural effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000012706 support-vector machine Methods 0.000 description 3
- 230000002547 anomalous effect Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 206010000117 Abnormal behaviour Diseases 0.000 description 1
- 241001270131 Agaricus moelleri Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Image Analysis (AREA)
Abstract
本发明涉及一种基于可解释时空自编码器的视频异常检测方法,包括对视频进行预处理的步骤;对处理后的数据进行特征学习的步骤,其中,所述特征学习包括基于可解释时空自编码器的深度学习模型,并获取重构视频序列;对重构的视频序列进行规则性分数计算的步骤;将计算的规则性分数与预定义的阈值进行比较,判断是否发生异常的步骤,本发明将深度学习的可解释性方法与异常检测方法相结合,大幅提升了视频异常检测的可信度。
The present invention relates to a video anomaly detection method based on an interpretable spatiotemporal autoencoder, which includes the steps of preprocessing the video; and the step of performing feature learning on the processed data, wherein the feature learning includes an interpretable spatiotemporal autoencoder. The deep learning model of the encoder, and obtain the reconstructed video sequence; the steps of calculating the regularity score for the reconstructed video sequence; the steps of comparing the calculated regularity score with the predefined threshold to determine whether an abnormality occurs, this The invention combines the interpretability method of deep learning with the anomaly detection method, which greatly improves the reliability of video anomaly detection.
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010678292.XA CN111931587B (en) | 2020-07-15 | 2020-07-15 | Video anomaly detection method based on interpretable spatiotemporal autoencoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010678292.XA CN111931587B (en) | 2020-07-15 | 2020-07-15 | Video anomaly detection method based on interpretable spatiotemporal autoencoder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111931587A true CN111931587A (en) | 2020-11-13 |
CN111931587B CN111931587B (en) | 2022-10-25 |
Family
ID=73312394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010678292.XA Active CN111931587B (en) | 2020-07-15 | 2020-07-15 | Video anomaly detection method based on interpretable spatiotemporal autoencoder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111931587B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117911930A (en) * | 2024-03-15 | 2024-04-19 | 释普信息科技(上海)有限公司 | Data security early warning method and device based on intelligent video monitoring |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107273880A (en) * | 2017-07-31 | 2017-10-20 | 秦皇岛玥朋科技有限公司 | A kind of multi-storied garage safety-protection system and method based on intelligent video monitoring |
CN109615019A (en) * | 2018-12-25 | 2019-04-12 | 吉林大学 | Anomaly behavior detection method based on spatiotemporal autoencoder |
CN109670446A (en) * | 2018-12-20 | 2019-04-23 | 泉州装备制造研究所 | Anomaly detection method based on linear dynamic system and depth network |
CN109871799A (en) * | 2019-02-02 | 2019-06-11 | 浙江万里学院 | A detection method of driver's mobile phone behavior based on deep learning |
CN109902562A (en) * | 2019-01-16 | 2019-06-18 | 重庆邮电大学 | A driver abnormal posture monitoring method based on reinforcement learning |
US20190188212A1 (en) * | 2016-07-27 | 2019-06-20 | Anomalee Inc. | Prioritized detection and classification of clusters of anomalous samples on high-dimensional continuous and mixed discrete/continuous feature spaces |
CN110889328A (en) * | 2019-10-21 | 2020-03-17 | 大唐软件技术股份有限公司 | Method, device, electronic equipment and storage medium for detecting road traffic condition |
CN111008570A (en) * | 2019-11-11 | 2020-04-14 | 电子科技大学 | Video understanding method based on compression-excitation pseudo-three-dimensional network |
CN111079539A (en) * | 2019-11-19 | 2020-04-28 | 华南理工大学 | A video anomaly behavior detection method based on anomaly tracking |
CN111325347A (en) * | 2020-02-19 | 2020-06-23 | 山东大学 | Automatic danger early warning description generation method based on interpretable visual reasoning model |
WO2020142483A1 (en) * | 2018-12-31 | 2020-07-09 | Futurewei Technologies, Inc. | Explicit address signaling in video coding |
CN111401526A (en) * | 2020-03-20 | 2020-07-10 | 厦门渊亭信息科技有限公司 | Model-universal deep neural network representation visualization method and device |
-
2020
- 2020-07-15 CN CN202010678292.XA patent/CN111931587B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190188212A1 (en) * | 2016-07-27 | 2019-06-20 | Anomalee Inc. | Prioritized detection and classification of clusters of anomalous samples on high-dimensional continuous and mixed discrete/continuous feature spaces |
CN107273880A (en) * | 2017-07-31 | 2017-10-20 | 秦皇岛玥朋科技有限公司 | A kind of multi-storied garage safety-protection system and method based on intelligent video monitoring |
CN109670446A (en) * | 2018-12-20 | 2019-04-23 | 泉州装备制造研究所 | Anomaly detection method based on linear dynamic system and depth network |
CN109615019A (en) * | 2018-12-25 | 2019-04-12 | 吉林大学 | Anomaly behavior detection method based on spatiotemporal autoencoder |
WO2020142483A1 (en) * | 2018-12-31 | 2020-07-09 | Futurewei Technologies, Inc. | Explicit address signaling in video coding |
CN109902562A (en) * | 2019-01-16 | 2019-06-18 | 重庆邮电大学 | A driver abnormal posture monitoring method based on reinforcement learning |
CN109871799A (en) * | 2019-02-02 | 2019-06-11 | 浙江万里学院 | A detection method of driver's mobile phone behavior based on deep learning |
CN110889328A (en) * | 2019-10-21 | 2020-03-17 | 大唐软件技术股份有限公司 | Method, device, electronic equipment and storage medium for detecting road traffic condition |
CN111008570A (en) * | 2019-11-11 | 2020-04-14 | 电子科技大学 | Video understanding method based on compression-excitation pseudo-three-dimensional network |
CN111079539A (en) * | 2019-11-19 | 2020-04-28 | 华南理工大学 | A video anomaly behavior detection method based on anomaly tracking |
CN111325347A (en) * | 2020-02-19 | 2020-06-23 | 山东大学 | Automatic danger early warning description generation method based on interpretable visual reasoning model |
CN111401526A (en) * | 2020-03-20 | 2020-07-10 | 厦门渊亭信息科技有限公司 | Model-universal deep neural network representation visualization method and device |
Non-Patent Citations (3)
Title |
---|
JEFFERSON RYAN MEDEL等: "《Anomaly Detection in Video Using Predictive Convolutional Long Short-Term Memory Networks》", 《ARXIV》 * |
周培培 等: "《视频监控中的人群异常行为检测与定位》", 《光学学报》 * |
朱辉辉: "《监控场景下基于视频目标分析的异常检测算法研究》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117911930A (en) * | 2024-03-15 | 2024-04-19 | 释普信息科技(上海)有限公司 | Data security early warning method and device based on intelligent video monitoring |
CN117911930B (en) * | 2024-03-15 | 2024-06-04 | 释普信息科技(上海)有限公司 | Data security early warning method and device based on intelligent video monitoring |
Also Published As
Publication number | Publication date |
---|---|
CN111931587B (en) | 2022-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108805015B (en) | A Crowd Anomaly Detection Method for Weighted Convolutional Autoencoder Long Short-Term Memory Networks | |
Lee et al. | AnoViT: Unsupervised anomaly detection and localization with vision transformer-based encoder-decoder | |
CN111680614B (en) | A Method of Abnormal Behavior Detection Based on Video Surveillance | |
Alsaade et al. | Developing a recognition system for classifying covid-19 using a convolutional neural network algorithm | |
CN111079539B (en) | Video abnormal behavior detection method based on abnormal tracking | |
Chen et al. | Adaptive convolution for object detection | |
CN110232361B (en) | Human behavior intention identification method and system based on three-dimensional residual dense network | |
CN110930378B (en) | Emphysema image processing method and system based on low data demand | |
Zhang et al. | Multi-head enhanced self-attention network for novelty detection | |
Kingra et al. | LBPNet: Exploiting texture descriptor for deepfake detection | |
Prawiro et al. | Abnormal event detection in surveillance videos using two-stream decoder | |
CN112580545B (en) | Crowd counting method and system based on multi-scale adaptive context network | |
CN114627150A (en) | Method and device for data processing and motion estimation based on event camera | |
CN111814644B (en) | A video anomaly detection method based on perturbed visual interpretation | |
Li et al. | Image operation chain detection with machine translation framework | |
CN112149596A (en) | Abnormal behavior detection method, terminal device and storage medium | |
CN111931587A (en) | Video anomaly detection method based on interpretable spatiotemporal autoencoder | |
CN118155266A (en) | Bank outlet monitoring and identifying method and device | |
CN118051908A (en) | Malicious code homology detection method, device, equipment and storage medium | |
Dhar et al. | Detecting deepfake images using deep convolutional neural network | |
CN116863346A (en) | SAR image detection and recognition method suitable for multi-scale targets | |
CN116611500A (en) | Method and device for training neural network | |
CN111062408B (en) | Fuzzy license plate image super-resolution reconstruction method based on deep learning | |
Yang et al. | 3d u-net for video anomaly detection | |
Liu et al. | Fusion Attention Mechanism for Foreground Detection Based on Multiscale U‐Net Architecture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240529 Address after: 100000 Room 601, 6th floor, building 5, Lianhua yuan, Haidian District, Beijing Patentee after: Aerospace Guosheng Technology Co.,Ltd. Country or region after: China Address before: 518000 1104, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Patentee before: Shenzhen Hongyue Enterprise Management Consulting Co.,Ltd. Country or region before: China Effective date of registration: 20240528 Address after: 518000 1104, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Patentee after: Shenzhen Hongyue Enterprise Management Consulting Co.,Ltd. Country or region after: China Address before: 400065 Chongwen Road, Nanshan Street, Nanan District, Chongqing Patentee before: CHONGQING University OF POSTS AND TELECOMMUNICATIONS Country or region before: China |