CN111929710B - 一种北斗卫星导航信号质量评估的出厂测试方法 - Google Patents

一种北斗卫星导航信号质量评估的出厂测试方法 Download PDF

Info

Publication number
CN111929710B
CN111929710B CN202010613166.6A CN202010613166A CN111929710B CN 111929710 B CN111929710 B CN 111929710B CN 202010613166 A CN202010613166 A CN 202010613166A CN 111929710 B CN111929710 B CN 111929710B
Authority
CN
China
Prior art keywords
signal
domain
power
phase
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010613166.6A
Other languages
English (en)
Other versions
CN111929710A (zh
Inventor
饶永南
卢晓春
石慧慧
王雪
张馥臣
贺成艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Time Service Center of CAS
Original Assignee
National Time Service Center of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Time Service Center of CAS filed Critical National Time Service Center of CAS
Priority to CN202010613166.6A priority Critical patent/CN111929710B/zh
Publication of CN111929710A publication Critical patent/CN111929710A/zh
Application granted granted Critical
Publication of CN111929710B publication Critical patent/CN111929710B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/20Integrity monitoring, fault detection or fault isolation of space segment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明涉及一种北斗卫星导航信号质量的出厂测试方法,包括频域、相关域、时域、调制域、一致性测试;频域:卫星射频信号端连接测试电缆,接入频谱仪或相噪仪,卫星送出单载波信号、扩频信号进行带内杂散、带外抑制、相位噪声测试,卫星送出扩频信号进行带外多余辐射功率谱密度测试。相关域:接收的导航卫星信号进行载波剥离,理想信号功率与实测信号功率的差值即为相关损失;画出接收信号鉴相曲线锁定点偏差,分析采集数据时间段内SCB曲线的过零点偏差及其斜率变化。时域:解调后的基带信号进行相干累加,统计码周期内信号正负码片时长与理想码片时长做差,获得正负、理想码片的时间差序列。本发明的优点是,测试效率高、准确度高、方法简单可行。

Description

一种北斗卫星导航信号质量评估的出厂测试方法
技术领域
本发明属于卫星导航信号质量评估技术领域,具体涉及一种北斗卫星导航信号质量评估的出厂测试方法。
背景技术
全球卫星导航系统(GNSS)提供全球范围内的定位、导航、授时服务,其应用已经渗透到国防建设、国土资源、测绘农林、交通旅游等各个领域,涉及到人类日常生活、生命安全等多个方面。随着应用领域的拓展和需求的增长,用户对GNSS系统服务特别是高精度、完好性方面也提出了更高的要求。信号质量同系统的高精度服务和完好性紧密相关。
随着卫星导航应用领域的拓展,用户对GNSS系统服务也提出了更高的要求。为满足日益增长的需求,卫星导航系统发展出了高精度星基增强、实时动态(RTK)、全球精密单点定位(GPPP)和多源融合等高精度测量模式,这些模式均以导航信号高精度观测量为必要条件,信号测量精度决定了所有模式最终的服务精度。因此卫星导航系统的空间信号质量优劣直接关系着系统的高精度服务。现有技术中只是针对空间的信号质量进行规定,其应用具有一定的局限性,不能够满足卫星出厂测试对信号质量的测试需求。同时在各接口控制文件中没有对各参数的测试评估方法进行规定,这就带来了很大的随机性与不确定因素。
为使北斗系统具备高精度全球服务能力,我国建设了北斗全球(三号)卫星导航系统,该系统采用的关键技术解决办法必须通过大量试验与评估才能真正的转入工程应用。由于北斗全球系统新型信号体制具有的宽带BOC调制、新型测距码、长周期二次编码、不同功率配比、导频与数据分离、信号恒包络多路复用技术、电文编码等诸多特点,这些新型设计促使卫星载荷采用了大量的新技术。在卫星设计、器件测试、集成测试、对接测试、在轨测试等重要检测环节,均需要信号质量作为通过测试验收的重要依据。
但是,国内尚没有正式的体系化的北斗导航卫星信号质量出厂测试方法,这给导航卫星的出厂测试带来了诸多不便。纵观国内外现有的导航信号质量评估方法,其对象均为BPSK信号,但是新型导航信号调制方式更为复杂,广泛采用BOC及其衍生信号,信号分量数目增多,信号的有效带宽增大,各信号分量之间的功率分配和相位关系复杂,传统的评估方法无法实现信号质量的精细分析。要想完成新型导航信号质量的精细分析,急需开展新型导航信号的测试评估方法研究,并解决传统信号质量评估方法和参数的适用性问题。
发明内容
本发明的目的是解决上述问题,提供一种测试效率高、测试准确度高、方法简单可行的北斗卫星导航信号质量评估的出厂测试方法。
为实现上述目的,本发明提供如下技术方案:
一种北斗卫星导航信号质量评估的出厂测试方法,包括对频域、相关域、时域、调制域、一致性的测试;
所述频域的评估方法为:
S1:在地面测试过程中,由卫星射频信号端连接测试电缆,接入频谱仪或相噪仪;
1)卫星送出单载波信号,进行相位噪声测试;
2)卫星送出单载波信号,进行带内杂散功率测试;
3)卫星送出扩频信号,进行带外多余辐射功率谱密度测试;
S2:由卫星射频信号端连接测试电缆,接入数据采集设备;
S3:卫星送出扩频信号,数据采集设备进行连续数据采集工作;
1)对采集数据进行功率谱分析,并与信号设计的标准功率谱比对,比较信号主要能量分布点处功率偏差;
2)通过信号设计的标准功率谱与实测信号功率谱比较分析;
3)通过功率谱检测载波泄漏情况,综合考察信号频谱失真程度;
所述相关域的评估方法为:
S1:对接收的导航卫星信号进行载波剥离去除,得到实测信号基带波形;
S2:计算其与本地参考码的归一化互相关,并计算相对应的实际功率值,理想的功率与实际功率的差值的即为相关损失;
S3:画出接收信号鉴相曲线锁定点偏差εbias(δ)随超前-滞后间距δ的变化曲线;
S4:在信号的发射带宽内,相关器间隔0~1码片范围内,分析100码周期的数据段内SCB曲线的过零点偏差及其斜率的变化情况;
所述时域的评估方法为:
S1:对解调后的基带信号做相干累加平均处理;
S2:观察基带波形是否存在明显畸变,统计码周期内的信号每个正负码片对应时长,并与理想码片宽度做差,获得正负码片与理想码片的时间差序列;
S3:分别统计两个时间序列的最大值、最小值和峰值,并统计标准差和均值;
所述调制域的评估方法为:
S1:采集信号经过带宽为发射带宽的理想FIR锐截止滤波器,经过解调后获得基带信号;
S2:利用本地码产生器与接收的基带信号做计算,计算各个支路的民用信号的功率值,统计各个信号功率比为:E(a):E(b):E(c),其中a,b,c代表不同信号分量,其统计个数选择100码周期数,其表示方式为单路信号占总功率的百分比或分贝;
S3:获得上述功率比与理想信号功率比比较,获得功率比偏差;
S4:对同一组数据中不同信号分量实现跟踪,跟踪过程中分别输出信号载波相位;
S5:统计分析各分量之间载波相位差值,与ICD信号设计结果比较,获得信号分量相对的相位误差;
所述一致性的评估方法为:
S1:伪码相位均值的互差
1)由卫星播发的射频信号经过天线接收,利用接收机进行观测;
2)卫星送出扩频信号,接收机连续24小时测量信号载波相位、码伪距测量;
S2:伪码相位互差稳定性
1)由卫星播发的射频信号经过天线接收,利用接收机进行观测;
2)卫星送出扩频信号,接收机连续24小时测量信号载波相位、码伪距测量;
3)不考虑电离层对信号的影响。
进一步的,所述伪码相位均值的互差的测试方法中:
①频间各支路信号测距码相位相对一致性
Δρ=ρij
在剔除接收通道误差情况下,统计分析Δρ在一段时间内的均值,均值代表两个信号分量之间的固定偏差;
②频内各支路信号测距码相位相对一致性
Δρ=ρi1i2
ρi1和ρi2分别表示相同频点两支路测距码伪距,在在剔除接收通道误差情况下,统计分析Δρ在一段时间内的均值,均值代表两个信号分量之间的固定偏差。
进一步的,所述伪码相位互差稳定性的测试方法中:
a)同频点不同支路的计算步骤为:
①PRBi=ρBix(t)-ρBiy(t);
②对PRBi进行画图,并计算PRBi标准差;
b)不同频点同支路,步骤如下:
①PRBij=ρBix(t)-ρBjx(t)
②对PRBij进行画图,计算PRBij标准差;
其中:Bix表示Bi频点x支路;
Biy表示Bi频点y支路;
Bjx表示Bj频点x支路;
ρ(t)表示t时刻的伪距测量值;
φ(t)表示t时刻的以米为单位的载波相位测量值。
进一步的,所述频域主要评估参数为:相位噪声、带内杂散、带外多余辐射功率谱密度、合成功率谱偏差、载波泄露。
进一步的,所述相关域主要评估参数为:相关损失、S曲线过零点偏差、鉴相器过零点斜率。
进一步的,所述调制域主要评估参数为:信号分量有效功率比偏差、信号分量间相位偏差。
进一步的,所述一致性主要评估参数为:伪码相位均值互差、伪码相位互差稳定性、载波与伪码相干性。
进一步的,所述时域主要评估参数为:时域波形数字畸变。
与现有技术相比,本发明的有益效果在于:
传统的信号质量评估方法主要面对BPSK信号,在功率谱上采用理想功率谱和实际功率谱的残差来评估功率谱包络,在调制域中采用基于星座图计算得到的EVM、幅度误差和相位误差等参数来评估调制性能,在时域特性中采用基于累加平均法得到的时域波形进行评估,在相关域中基于相关曲线对称性、S曲线过零点偏差(S-curve offset biases,SCB)和相关损失(Correlation Loss,CL)来评估信号质量。新型信号体制下,导航信号更为复杂,授权信号分量逐渐增多,已有的大部分研究成果是基于民用BPSK信号,无法直接运用到新体制导航信号之上,眼图、EVM等评估参数已经失去评估效能。
此外,传统的导航卫星无法实现导航信号质量的在线优化调整,也就是说导航载荷的组件加工并集成后,信号的性能不可调整。而北斗全球系统的导航卫星集成了信号质量优化调整功能,能够实现导航信号质量的在线优化和调整。为了满足现代化导航系统高精度导航定位的性能需求,确保导航卫星的出厂性能,满足导航信号的性能指标要求,急需针对导航载荷的出厂测试开展新体制下的导航信号质量测试评估方法的研究,解决导航载荷的出厂测试问题。
针对新型导航信号质量评估问题及其性能优化调整需求,本发明提出了一套适用于北斗全球系统的信号质量性能测试量化评估方法,涵盖了信号频域、调制域、时域、能量域、相关域和信号一致性等方面的参数。
本发明是建立全方位、多要素的信号质量评估体系的重要组成部分,可在一定程度上促进我国卫星导航新型信号设计以及空间信号质量评估的发展,能够解决北斗全球系统导航卫星的信号质量出厂测试问题,支撑北斗系统组网卫星的性能优化调整,提高我国北斗系统的信号质量总体水平,极大的提高北斗系统的国际竞争力。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例对本发明作进一步说明,但所举实施例只作为对本发明的说明,不作为对本发明的限定。
本发明提供一种北斗卫星导航信号质量评估的出厂测试方法,包括对频域、相关域、时域、调制域、一致性的测试,具体方案如下:
一、北斗系统信号质量评估参数定义
1、频域
1.1发射带宽
B1:±18.414MHz;B2:±35.805MHz;B3:±20.46MHz;
1.2相位噪声
B1、B2、B3频点单载波信号在1Hz、10Hz、100Hz、1KHz、10KHz、100KHz等典型频点的噪声功率分布。
1.3带内杂散
下行信号发射带宽内卫星发射的杂散信号大小。卫星发射单载波信号条件下,利用频谱仪测量信号发射带宽范围内的功率分布情况,并把杂散能量与信号载波能量比较,分析相对差值。
1.4带外多余辐射功率谱密度
测量B1和B2频点中心频点±45MHz带宽范围内的功率谱分布情况;
频谱仪设置为RBW:1KHz,测量B1±45MHz或B3±45MHz频点处1KHz带内通道功率;
测量1575.42±18.414MHz带内通道功率;
测量1540~1558MHz带内信号通道功率;
测量1610.6~1613.8MHz带内通道功率。
2、相关域
2.1相关损失
基带信号与本地产生的理想信号波形进行相关运算,得到相关曲线,与设计信号标准信号相关曲线比对,分析相关曲线形状变化,并计算相关损耗。
2.2鉴相曲线过零点偏差(S曲线过零点偏差)
在信号的发射带宽内,相关器间隔0~1码片范围内,分析100码周期的数据段内,SCB曲线过零点偏差及其变化情况。
2.3鉴相曲线斜率偏差(S曲线斜率过零点偏差)
在信号的发射带宽内,相关器间隔0~1码片范围内,分析100码周期的数据段内,SCB曲线斜率过零点偏差及其变化情况。
3、时域
3.1基带波形失真
分析100个码周期内的波形正确与否,并记录波形畸变位置,分析畸变大小等。
4、调制域
4.1信号分量有效功率比偏差
选择100个码周期,分析各频点民用信号之间功率比的情况,单路信号占总功率的百分比或分贝;实际功率比(百分比或分贝)与理想信号功率比(百分比或分贝)比较,获得功率比偏差。
4.2信号分量间相位偏差
利用软件接收机对同一组数据中不同信号分量实现跟踪,不同信号支路跟踪过程中分别输出信号载波相位,统计分析各分量之间载波相位差值,与ICD信号设计结果比较,获得信号分量相对的相位误差。
5、一致性
5.1伪码相位均值的互差
1)频间各支路信号测距码相位相对一致性
对不同频点相同测距码间一致性进行评估,评估卫星信号调制和发射过程中不同频点测距码间的相对延迟。
2)频内各支路信号测距码相位相对一致性
对相同频点不同测距码间一致性进行分析,评估卫星信号调制和发射过程中同频点不同测距码间的相对延迟。
5.2伪码相位互差稳定性
在地面测试中不考虑电离层等对信号影响,同频点不同支路相对延迟,不同频点同支路相对延迟的稳定度。
二、北斗导航卫星信号质量评估方法
1、频域
1)评估参数
频域主要评估参数为:相位噪声、带内杂散、带外多余辐射功率谱密度、合成功率谱偏差、载波泄露等。
2)评估方法
(1)在地面测试过程中,由卫星射频信号端连接测试电缆,接入频谱仪或相噪仪,卫星送出扩频信号。
参考1.1-1.3相位噪声指标参数设置,进行噪声功率分布带内杂散;
参考1.1-1.3带内杂散指标参数设置,进行带内杂散功率分布测试;
参考1.1-1.3节带外多余辐射功率谱密度指标参数设置,进行带外多余辐射功率谱密度测试;
(2)由卫星射频信号端连接测试电缆,接入数据采集设备。卫星送出扩频信号,数据采集设备进行连续数据采集工作。
参考1.1-1.3合成功率谱偏差指标参数设置,对采集数据进行功率谱分析,并与信号设计的标准功率谱比对,比较信号主要能量分布点处功率偏差。通过信号设计的标准功率谱与实测信号功率谱比较分析,同时通过功率谱检测载波泄漏情况,综合考察信号频谱失真程度。
2、相关域
1)评估参数
相关域主要评估参数为:相关损失、S曲线过零点偏差、鉴相器过零点斜率等。
2)评估方法
对接收的导航卫星信号进行载波剥离去除,得到实测信号基带波形,计算其与本地参考码的归一化互相关,继而计算相对应的实际功率值,理想的功率与实际功率的差值的即为相关损失。
画出接收信号鉴相曲线锁定点偏差εbias(δ)随超前-滞后间距δ的变化曲线。在信号的发射带宽内,相关器间隔0~1码片范围内,分析100码周期的数据段内SCB曲线的过零点偏差及其斜率的变化情况。
3、时域
1)评估参数
时域主要评估参数为:时域波形数字畸变。
2)评估方法
对解调后的基带信号做相干累加平均处理,观察基带波形是否存在明显畸变,统计码周期内的信号每个正负码片对应时长,并与理想码片码片宽度做差,获得“1”和“0”码片与理想码片的时间差序列,分别统计两个时间序列的最大值、最小值和峰峰值,并统计标准差和均值。
4、调制域
1)评估参数
调制域主要评估参数为:信号分量有效功率比偏差、信号分量间相位偏差等。
2)评估方法
(1)采集信号经过带宽为发射带宽的理想FIR锐截止滤波器,经过解调后获得基带信号。利用本地码产生器与接收的基带信号做相关计算,计算各个支路的民用信号的功率值,统计各个信号功率比为:E(a):E(b):E(c),其中a,b,c代表不同信号分量,其统计个数可选择100码周期数,其表示方式为单路信号占总功率的百分比或分贝。获得该功率比(百分比或分贝)与理想信号功率比(百分比或分贝)比较,获得功率比偏差。
(2)利用软件接收机对同一组数据中不同信号分量实现跟踪,不同信号支路跟踪过程中分别输出信号载波相位,统计分析各分量之间载波相位差值,与ICD信号设计结果比较,获得信号分量相对的相位误差。
5、一致性
(1)评估参数
1)评估参数
一致性主要评估参数为:伪码相位均值互差、伪码相位互差稳定性、载波与伪码相干性等。
2)评估方法
(1)伪码相位均值的互差
在地面测试过程中,由卫星播发的射频信号经过天线接收,利用接收机进行观测。卫星送出扩频信号,在接收机正常工作条件下,连续24小时测量信号载波相位、码伪距等观测量。
①频间各支路信号测距码相位相对一致性
Δρ=ρij
本发明在剔除接收通道误差情况下,统计分析Δρ在一段时间内的均值,均值代表两个信号分量之间的固定偏差。
②频内各支路信号测距码相位相对一致性
Δρ=ρi1i2
ρi1和ρi2分别表示相同频点两支路测距码伪距。本发明在在剔除接收通道误差情况下,统计分析Δρ在一段时间内的均值,均值代表两个信号分量之间的固定偏差。
(2)伪码相位互差稳定性
出厂测试过程中,由卫星播发的射频信号经过天线接收,利用接收机进行观测。卫星送出扩频信号,在接收机正常工作条件下,连续24小时测量信号载波相位、码伪距等观测量。考虑电离层等对信号影响。
a)同频点不同支路,步骤如下:
①PRBi=ρBix(t)-ρBiy(t);
②对PRBi进行画图,并计算PRBi标准差。
b)不同频点同支路,步骤如下:
①PRBij=ρBix(t)-ρBjx(t)
②对PRBij进行画图,计算PRBij标准差。
其中:Bix表示Bi频点x支路;
Biy表示Bi频点y支路;
Bjx表示Bj频点x支路;
ρ(t)表示t时刻的伪距测量值;
φ(t)表示t时刻的以米为单位的载波相位测量值。
本发明中未做详细描述的内容均为现有技术。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种北斗卫星导航信号质量评估的出厂测试方法,其特征在于,包括对频域、相关域、时域、调制域、一致性的测试;
所述频域的评估方法为:
S1:在地面测试过程中,由卫星射频信号端连接测试电缆,接入频谱仪或相噪仪;
1)卫星送出单载波信号,进行相位噪声测试;
2)卫星送出单载波信号,进行带内杂散功率测试;
3)卫星送出扩频信号,进行带外多余辐射功率谱密度测试;
S2:由卫星射频信号端连接测试电缆,接入数据采集设备;
S3:卫星送出扩频信号,数据采集设备进行连续数据采集工作;
1)对采集数据进行功率谱分析,并与信号设计的标准功率谱比对,比较信号主要能量分布点处功率偏差;
2)通过信号设计的标准功率谱与实测信号功率谱比较分析;
3)通过功率谱检测载波泄漏情况,综合考察信号频谱失真程度;
所述相关域的评估方法为:
S1:对接收的导航卫星信号进行载波剥离去除,得到实测信号基带波形;
S2:计算其与本地参考码的归一化互相关,并计算相对应的实际功率值,理想的功率与实际功率的差值的即为相关损失;
S3:画出接收信号鉴相曲线锁定点偏差εbias(δ)随超前-滞后间距δ的变化曲线;
S4:在信号的发射带宽内,相关器间隔0~1码片范围内,分析100码周期的数据段内SCB曲线的过零点偏差及其斜率的变化情况;
所述时域的评估方法为:
S1:对解调后的基带信号做相干累加平均处理;
S2:观察基带波形是否存在明显畸变,统计码周期内的信号每个正负码片对应时长,并与理想码片宽度做差,获得正负码片与理想码片的时间差序列;
S3:分别统计两个时间序列的最大值、最小值和峰值,并统计标准差和均值;
所述调制域的评估方法为:
S1:采集信号经过带宽为发射带宽的理想FIR锐截止滤波器,经过解调后获得基带信号;
S2:利用本地码产生器与接收的基带信号做计算,计算各个支路的民用信号的功率值,统计各个信号功率比;
S3:获得上述功率比与理想信号功率比比较,获得功率比偏差;
S4:对同一组数据中不同信号分量实现跟踪,跟踪过程中分别输出信号载波相位;
S5:统计分析各分量之间载波相位差值,与ICD信号设计结果比较,获得信号分量相对的相位误差;
所述一致性的评估方法为:
S1:伪码相位均值的互差
1)在地面测试过程中,由卫星播发的射频信号经过天线接收,利用接收机进行观测;
2)卫星送出扩频信号,接收机连续24小时测量信号载波相位、码伪距测量;
S2:伪码相位互差稳定性
1)在地面测试过程中,由卫星播发的射频信号经过天线接收,利用接收机进行观测;
2)卫星送出扩频信号,接收机连续24小时测量信号载波相位、码伪距测量;
3)不考虑电离层对信号的影响。
2.根据权利要求1所述的一种北斗卫星导航信号质量评估的出厂测试方法,其特征在于,所述伪码相位均值的互差的测试方法中:
①频间各支路信号测距码相位相对一致性
Δρ=ρij
在剔除接收通道误差情况下,统计分析Δρ在一段时间内的均值,均值代表两个信号分量之间的固定偏差;
②频内各支路信号测距码相位相对一致性
Δρ=ρi1i2
ρi1和ρi2分别表示相同频点两支路测距码伪距,在剔除接收通道误差情况下,统计分析Δρ在一段时间内的均值,均值代表两个信号分量之间的固定偏差。
3.根据权利要求1所述的一种北斗卫星导航信号质量评估的出厂测试方法,其特征在于,所述伪码相位互差稳定性的测试方法中:
a)同频点不同支路的计算步骤为:
①PRBi=ρBix(t)-ρBiy(t);
②对PRBi进行画图,并计算PRBi标准差;
b)不同频点同支路,步骤如下:
①PRBij=ρBix(t)-ρBjx(t)
②对PRBij进行画图,计算PRBij标准差;
其中:Bix表示Bi频点x支路;
Biy表示Bi频点y支路;
Bjx表示Bj频点x支路;
ρ(t)表示t时刻的伪距测量值;
φ(t)表示t时刻的以米为单位的载波相位测量值。
4.根据权利要求1所述的一种北斗卫星导航信号质量评估的出厂测试方法,其特征在于,所述调制域的评估方法中,统计各个信号功率比为:E(a):E(b):E(c),其中a,b,c代表不同信号分量,其统计个数选择100码周期数,其表示方式为单路信号占总功率的百分比或分贝。
5.根据权利要求1所述的一种北斗卫星导航信号质量评估的出厂测试方法,其特征在于,所述频域主要评估参数为:相位噪声、带内杂散、带外多余辐射功率谱密度、合成功率谱偏差、载波泄露。
6.根据权利要求1所述的一种北斗卫星导航信号质量评估的出厂测试方法,其特征在于,所述相关域主要评估参数为:相关损失、S曲线过零点偏差、鉴相器过零点斜率。
7.根据权利要求1所述的一种北斗卫星导航信号质量评估的出厂测试方法,其特征在于,所述调制域主要评估参数为:信号分量有效功率比偏差、信号分量间相位偏差。
8.根据权利要求1所述的一种北斗卫星导航信号质量评估的出厂测试方法,其特征在于,所述一致性主要评估参数为:伪码相位均值互差、伪码相位互差稳定性、载波与伪码相干性。
9.根据权利要求1所述的一种北斗卫星导航信号质量评估的出厂测试方法,其特征在于,所述时域主要评估参数为:时域波形数字畸变。
CN202010613166.6A 2020-06-30 2020-06-30 一种北斗卫星导航信号质量评估的出厂测试方法 Active CN111929710B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010613166.6A CN111929710B (zh) 2020-06-30 2020-06-30 一种北斗卫星导航信号质量评估的出厂测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010613166.6A CN111929710B (zh) 2020-06-30 2020-06-30 一种北斗卫星导航信号质量评估的出厂测试方法

Publications (2)

Publication Number Publication Date
CN111929710A CN111929710A (zh) 2020-11-13
CN111929710B true CN111929710B (zh) 2022-10-28

Family

ID=73317725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010613166.6A Active CN111929710B (zh) 2020-06-30 2020-06-30 一种北斗卫星导航信号质量评估的出厂测试方法

Country Status (1)

Country Link
CN (1) CN111929710B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112882070A (zh) * 2021-01-13 2021-06-01 中国科学院微小卫星创新研究院 导航卫星eirp及稳定性测试系统及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278825B (zh) * 2013-05-02 2015-05-27 西安空间无线电技术研究所 一种卫星导航信号质量评估参数的确定方法
KR101654003B1 (ko) * 2014-12-29 2016-09-12 한국해양과학기술원 해상 전파항법신호 수신 모듈을 이용한 신호품질감시와 항법오차추정과 신뢰도 평가 기법 및 그 시스템
CN106324627B (zh) * 2016-01-27 2018-10-02 上海华测导航技术股份有限公司 Gnss接收机嵌入式自动化测试方法
CN105929414A (zh) * 2016-06-14 2016-09-07 中国航天标准化研究所 一种导航信号完好性的评估方法
CN106932791B (zh) * 2017-02-17 2023-04-07 上海华测导航技术股份有限公司 一种差分用数据质量指标测试方法
CN110098876A (zh) * 2018-01-26 2019-08-06 神讯电脑(昆山)有限公司 信号强度测试系统及其测试方法
CN108387911B (zh) * 2018-02-06 2024-03-19 深圳市摩尔环宇通信技术有限公司 一种gps测试系统
CN110531381A (zh) * 2019-08-23 2019-12-03 桂林电子科技大学 一种gnss信号可用性与完好性监测系统

Also Published As

Publication number Publication date
CN111929710A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN111929706A (zh) 一种北斗卫星导航信号质量评估的在轨测试方法
CN111934792B (zh) 一种北斗卫星导航信号质量评估的服务性能测试方法
Motella et al. Method for assessing the interference impact on GNSS receivers
Skone et al. Investigating the impact of ionospheric scintillation using a GPS software receiver
CN103033824A (zh) 高性能导航卫星空间信号质量评估方法
Bougard et al. CIGALA: Challenging the solar maximum in Brazil with PolaRxS
CN112213742B (zh) 一种卫星导航系统信号质量监测方法
CN104536016A (zh) 一种gnss新体制信号捕获装置及方法
CN102508263B (zh) 一种采用多通道并行相关峰采样监测信号质量的方法
CN111929710B (zh) 一种北斗卫星导航信号质量评估的出厂测试方法
Zhuang et al. Detection and classification of GNSS signal distortions based on quadratic discriminant analysis
CN113281786B (zh) 全空域多级触发式gnss空间信号质量监测评估方法
De Bakker et al. Effects of radio frequency interference on GNSS receiver output
CN106291612B (zh) 一种导航卫星星间链路无线信号高性能捕获判决方法
CN115327579A (zh) 一种基于信号质量监测的欺骗攻击检测方法
Wang et al. A signal quality monitoring algorithm based on chip domain observables for BDS B1C signal
Macabiau et al. Use of multicorrelator techniques for interference detection
Julien et al. Extension of EWF threat model and associated SQM
Zhuang et al. The signal quality monitoring method based on multi-correlation algorithm for GNSS modernized signals
Akos et al. High gain antenna measurements and signal characterization of the GPS satellites
Malyshev et al. Algorithm for separating GNSS signals into components
Thoelert et al. New Signals in the Sky-A High Gain Antenna Analysis of GPS IIF and COMPASS
Thoelert Latest GNSS signal in space developments–GPS, QZSS & the new Beidou 3 under examination
Yang et al. Unambiguous acquisition performance analysis of BOC (m, n) signal
CN115079211B (zh) 一种可用作频率协调依据的卫星导航信号性能评估方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant