CN111918408A - 基于csma-ca退避算法的优化方法及装置 - Google Patents

基于csma-ca退避算法的优化方法及装置 Download PDF

Info

Publication number
CN111918408A
CN111918408A CN202010786065.9A CN202010786065A CN111918408A CN 111918408 A CN111918408 A CN 111918408A CN 202010786065 A CN202010786065 A CN 202010786065A CN 111918408 A CN111918408 A CN 111918408A
Authority
CN
China
Prior art keywords
channel
contention window
backoff
algorithm
csma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010786065.9A
Other languages
English (en)
Other versions
CN111918408B (zh
Inventor
马礼
赵萌
傅颖勋
马东超
肖蔼玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Technology
Original Assignee
North China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Technology filed Critical North China University of Technology
Priority to CN202010786065.9A priority Critical patent/CN111918408B/zh
Publication of CN111918408A publication Critical patent/CN111918408A/zh
Application granted granted Critical
Publication of CN111918408B publication Critical patent/CN111918408B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于CSMA‑CA退避算法的优化方法、装置、电子设备及计算机可读存储介质,基于CSMA‑CA退避算法的优化方法包括:获取信道状态;获取信道强度系数;获取节点当前发送数据的退避次数;设置竞争窗口中间值;根据信道状态、信道强度系数、退避次数以及竞争窗口中间值计算竞争窗口。该退避算法解决了二进制退避算法中存在的不公平问题,由于竞争窗口主要在CWmid大小附近,而LoRa传输时延的增大,会使邻居节点造成较严重的退避现象,该算法使每个LoRa节点在传输冲突时,迅速增大竞争窗口,减轻了节点之间的竞争;在信道负载较轻时,逐渐减小竞争窗口,使节点较公平的竞争信道,并在逐步递减的过程中尽可能的找到竞争窗口的合理值,保证了网络的公平性。

Description

基于CSMA-CA退避算法的优化方法及装置
技术领域
本发明涉及通信技术领域,具体涉及一种基于CSMA-CA退避算法的优化方法、装置、电子设备及计算机可读存储介质。
背景技术
随着物联网(Internet of Things,简称为IoT)的快速增长,研究领域出现了另一项重要技术,该技术提供广覆盖、低成本、部署简单、支持大连接的优势,有助于在设备之间获得高性能的无线通信,这被称为低功耗物联网(Low-Power Wide-Area Network,简称为LPWAN)。现如今,以LPWAN技术为主导的物联网设备可以达到总物联网数量的60%。目前,低功耗广域物联网络的三大领先技术分别为LoRa、NB-IoT和Sigfox。
其中,以LoRa技术为核心的LoRaWAN网络协议已经得到了广泛的应用,例如:智慧城市,智能家居,智能交通,工农业领域等应用。多数LPWAN网络使用星型拓扑结构,相对于多跳的网状拓扑结构,使用星形拓扑的好处是可以保留电池寿命并降低网络的复杂性,同时节点不必传播或转发其他节点的数据,而节点仅接收自己的数据。从而更加易于管理。与此同时,由于星形拓扑的原因,网关需要连接大量节点。因此,当节点数量增大时,它们共享同一介质。会造成节点冲突,从而降低信道的利用率。
低功耗广域网LoRaWAN协议A类设备的信道接入过程如图1所示:网关支持多信道通信,由网关配置确定信道数量,分配的信道数取决于区域限制和网络选项。一般用于数据传输的称为主信道,用于网关对帧响应的称为下行信道。一些通道被用于节点加入请求信道。当节点有一些数据要传输时,它将随机选择一个主信道,并以未分配时隙的Aloha模式将帧传输到网关,没有侦听和同步。传输之后,节点将打开两个短接收窗口,第一个在上行传输的信道中,第二个在下行信道中,在此期间接收带有ACK标记的确认帧或者来自网关的某些下行数据,即RX1帧。第一个接收窗口在数据发送RxDelay1后开启,第二个接收窗口在第一个接收窗口后的1秒开启。使用该方案是因为LoRaWAN由电池供电,额外的重试会增加功耗。如果在第一个接收窗口中成功接收到帧,则它不会打开第二个接收窗口。该规范没有确定接收窗口的持续时间,但其时间要大于前导码的时间,以保证接收到数据。RxDelay1的时间是可配置的,默认情况下等于1s。
若两个接收窗口都未成功收到RX帧,则节点发送数据失败,进行重传。节点会随机等待一段时间重复上面的操作。协议规范没有严格定义重传延迟的时间,但建议设置时间为1-3秒。每一个帧的推荐重试次数限制为8次,超过该限制将丢弃该帧,并且MAC层将错误传输通知给应用层。
虽然LoRa网络的性能主要由LoRa物理层和介质访问控制层影响,但是LoRaWAN协议工作在ISM(IndustrialScientificMedical Band)的频段,电信标准化协会(EuropeanTelecommunications Standards Institute,简称为ETSI)中提出的占空比规定对整个LoRaWAN协议的影响不可忽视。ETSI规定LoRaWAN协议使用的信道接入机制需遵循占空比为1%的要求,这种规定虽然减少了一定的冲突,但信道利用率将大幅度的降低,网络延时也会相对增加。占空比的公式如下,这意味着当节点传输1秒的数据,则下次再传输至少要等待99秒。
Figure BDA0002620842380000031
其中,
Figure BDA0002620842380000032
表示占空比发送周期,DutyCycleSubBand表示占空比,ToA表示数据包空中传播时间。
低功耗广域网(LPWAN)近几年发展迅速,广泛地应用于各种物联网服务中。为了降低成本与功耗,实现广覆盖,LPWAN倾向于使用简单的信道访问控制协议,如Aloha协议。虽然该协议简单,但其扩展能力差。当处在高密度环境中,该机制存在信道利用率低,接入时延长,冲突概率高的问题。现有的低功耗物联网大多遵循简单的Aloha标准。低功耗物联网多采用Aloha协议,虽然省电协议简单,但所带来的冲突和效率低也无法避免。Aloha协议的原理很简单,如图2所示,当用户想要发送数据时,就可以直接发送。若在规定的时间内收到回应,则表示这条数据发送成功,否则重新发送。重发的策略是随机等待一段时间,然后再次发送;如果再次遇到冲突,则再随机等待一段时间,直到重发成功不再冲突为止。这个协议的优点是简单易行。但缺点是在发送过程中极易产生冲突并且信道利用率低,据实验分析最大不超过18.4%。
研究发现载波监听多路访问(Carrier Sense Multiple Access,简称为CSMA)具有可扩展性,并且在可靠性,吞吐量和能耗方面也表现出最佳性能。但在802.11网络中使用的CSMA-CA的许多已知随机接入方法需要增加唤醒操作周期,这将导致能量消耗增加,与低功耗物联网的节能目标相背驰。这使得新的访问方法设计变得特别的困难。
发明内容
有鉴于此,本发明实施例提供了一种基于CSMA-CA退避算法的优化方法、装置、电子设备及计算机可读存储介质,以解决现有技术中各个节点对信道的占用率不公平、能量消耗较大的问题。
为此,本发明实施例提供了如下技术方案:
本发明第一方面,提供了一种基于CSMA-CA退避算法的优化方法,包括:
获取信道状态;其中,所述信道状态包括空闲状态和非空闲状态;
获取信道强度系数;
获取节点当前发送数据的退避次数;
设置竞争窗口中间值;
根据所述信道状态、所述信道强度系数、所述退避次数以及所述竞争窗口中间值计算竞争窗口。
可选地,根据所述信道状态、所述信道强度系数、所述退避次数以及所述竞争窗口中间值计算竞争窗口包括:
在所述信道状态为非空闲状态时,通过如下公式计算竞争窗口:
Figure BDA0002620842380000041
在所述信道状态为空闲状态时,通过如下公式计算竞争窗口:
Figure BDA0002620842380000042
其中,CW1表示当前竞争窗口,ration表示所述信道强度系数,CWmin表示最小竞争窗口,CWmid表示预设竞争窗口中间值,n表示所述退避次数,nmax表示竞争失败次数门限值,b为预设值。
可选地,其特征在于,获取信道状态包括:
检测信道是否有LoRa前导码,得到检测结果;
在所述检测结果指示有LoRa前导码时,信道状态为非空闲状态,在所述检测结果指示无LoRa前导码时,信道状态为空闲状态。
可选地,获取信道强度系数包括:
获取节点与网关之间的距离;
根据所述节点与网关之间的距离确定所述信道强度系数。
本发明第二方面,提供了一种基于CSMA-CA退避算法的优化装置,包括:
第一获取模块,用于获取信道状态;其中,所述信道状态包括空闲状态和非空闲状态;
第二获取模块,用于获取信道强度系数;
第三获取模块,用于获取节点当前发送数据的退避次数;
设置模块,用于设置竞争窗口中间值;
计算模块,根据所述信道状态、所述信道强度系数、所述退避次数以及所述竞争窗口中间值计算竞争窗口。
可选地,所述计算模块还用于:
在所述信道状态为非空闲状态时,通过如下公式计算竞争窗口:
Figure BDA0002620842380000051
在所述信道状态为空闲状态时,通过如下公式计算竞争窗口:
Figure BDA0002620842380000052
其中,CW1表示当前竞争窗口,ration表示所述信道强度系数,CWmin表示最小竞争窗口,CWmid表示预设竞争窗口中间值,n表示所述退避次数,nmax表示竞争失败次数门限值,b为预设值。
可选地,所述第一获取模块包括:
检测单元,用于检测信道是否有LoRa前导码,得到检测结果;
确定单元,用于在所述检测结果指示有LoRa前导码时,信道状态为非空闲状态,在所述检测结果指示无LoRa前导码时,信道状态为空闲状态。
可选地,所述第二获取模块包括:
获取单元,用于获取节点与网关之间的距离;
确定单元,用于根据所述节点与网关之间的距离确定所述信道强度系数。
本发明第三方面,提供了一种移动终端,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述第一方面中任一所述的基于CSMA-CA退避算法的优化方法。
本发明第四方面,提供了一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述第一方面中任一所述的基于CSMA-CA退避算法的优化方法。
本发明实施例技术方案,具有如下优点:
本发明实施例提供了一种基于CSMA-CA退避算法的优化方法、装置、电子设备及计算机可读存储介质,其中,基于CSMA-CA退避算法的优化方法包括:获取信道状态;其中,该信道状态包括空闲状态和非空闲状态;获取信道强度系数;获取节点当前发送数据的退避次数;设置竞争窗口中间值,根据信道状态、信道强度系数、退避次数以及竞争窗口中间值计算竞争窗口。该退避算法解决了二进制退避算法中存在的不公平问题,由于竞争窗口主要在CWmid大小附近,而LoRa传输时延的增大,会使邻居节点造成较严重的退避现象,该算法使每个LoRa节点在传输冲突时,迅速增大竞争窗口,减轻了节点之间的竞争;在信道负载较轻时,逐渐减小竞争窗口,使节点较公平的竞争信道,并在逐步递减的过程中尽可能的找到竞争窗口的合理值,从而保证了网络的公平性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是低功耗广域网LoRaWAN协议A类设备的信道接入过程示意图;
图2是Aloha机制退避过程示意图;
图3是根据本发明实施例的基于CSMA-CA退避算法的优化方法的流程图;
图4是根据本发明实施例的终端通过信道发送数据的示意图;
图5是根据本发明实施例的基于CSMA-CA退避算法的优化装置的结构框图;
图6是本发明实施例提供的移动终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,“示例性”一词用来表示“用作例子、例证或说明”。本申请中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本申请,给出了以下描述。在以下描述中,为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,在不使用这些特定细节的情况下也可以实现本申请。在其它实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本申请的描述变得晦涩。因此,本申请并非旨在限于所示的实施例,而是与符合本申请所公开的原理和特征的最广范围相一致。
Ad Hoc网络中,节点接入信道的机制由MAC(Media Access Control)协议实现,信道获取能力主要取决于各节点的退避时间,因此退避算法起着关键作用。传统的IEEE802.11无线网络协议采用DCF(Distributed Coordination Function)机制实现信道无线接入,基于DCF的公平性改进策略主要调整协议中的二进制指数退避(BinaryExponential Backoff,简称为BEB)算法,这是目前网络公平性研究的主要方法(IEEEStd802.11.Wireless LAN Medium Access Control(MAC)and Physi cal Layer(PHY)Specifications.2007)。其核心思想是节点的退避时间反映了网络中不同节点接入信道的先后顺序,退避时间较短的节点比退时间较长的节点获得更大的信道接入机会。初始时节点选取竞争窗口CW(Collision Window)的最小值CWmin,如果数据传输失败,则将CW值增加一倍,直至CW达到竞争窗口的最大值CWmax;如果数据发送成功,则重新将CW置为最小值CWmin。BEB算法简单、高效,但是缺点也十分明显,总是倾向于将信道使用权交给最近成功传输信息的节点,造成信道竞争不公平的现象。
为了解决上述技术问题,根据本发明实施例提供了一种基于CSMA-CA退避算法的优化方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
在本实施例中提供一种基于CSMA-CA退避算法的优化方法,可用于物联网中各种移动终端,如手机、平板电脑等,图3是根据本发明实施例的基于CSMA-CA退避算法的优化方法的流程图,如图3所示,该流程包括如下步骤:
步骤S301,获取信道状态;其中,该信道状态包括空闲状态和非空闲状态。关于如何发现呼叫信号,以及发现什么信号,传统的做法是载波场强指示(RSSI),虽然RSSI不是一个时间量,但利用它可以减少接收机的无用激活时间,节省能量。RSSI能够测量无线信号强度,我们可以设置合适的阈值,只有当信号强度足够强时才认为是有效的,唤醒节点,相反当信号强度低于阈值时,认为信道是空的,不唤醒节点。随着扩频调制技术的应用,人们在确定可能低于接收机底噪声的信号是否已经使用信道时,面临重重挑战。这种情况下,使用RSSI无疑是行不通的。为了解决这个问题,可使用信道活动检测器来检测其他LoRa信号。在一个可选实施例中,检测信道是否有LoRa前导码,得到检测结果,在该检测结果指示有LoRa前导码时,信道状态为非空闲状态,在该检测结果指示无LoRa前导码时,信道状态为空闲状态。开启CAD模式后,设备接收器将根据提供的时间持续扫描信道,以检测是否有LoRa的前导码。如果它检测到该信道上有节点在活动,即成功捕获关联的符号,则会使用带有Channel Activity Detected的标志给出中断。
CSMA原则包括测试信道,在尝试发送数据包之前检测信道是否被另一个传输使用,这个原则也被称为“先听再说”(LBT)原则,在ETSI规则中如果没有LBT,设备需要将其占空比限制在0.1%或1%。因此,如果设备应用CSMA原理,则限制被释放,因此设备可以使用更高的占空比,这有助于增加吞吐量和更大的网络容量。该实施例中,采用LoRa自身的信道活动检测技术来实现LBT原则,并且为了进一步降低冲突率,使用RA-CSMA扩展CSMA。
CAD期间检测的准确率是非常重要的。Semtech使用SX1261评估了CAD的性能。当通信距离增加时,CAD可靠性会快速降低并且单个LoRa符号错误检测率非常高,因此,我们需要检测多个LoRa符号使得CAD可靠。具体地,通过使用BW检测SF 7的两个符号,以及SF 9-11的四个符号,误检率保持在2%以下,可以使CAD效率更高,或者远距离时,在ToA期间增加或减少CAD的数量,以确保至少1个成功的CAD来检测正在进行的传输。
步骤S302,获取信道强度系数。本领域技术人员应当知晓,可以通过多种方式获取信道强度系数,在一个可选实施例中,获取节点与网关之间的距离,根据节点与网关之间的距离确定该信道强度系数。在另一个可选实施例中,可以根据节点发送的导频信道测量信道质量。本领域技术人员应当知晓,上述获取信道质量的方式并非用于限制本实施例,根据实际需要采用其他的方式得到信道质量亦在本实施例的保护范围之内。
步骤S303,获取节点当前发送数据的退避次数。
步骤S304,设置竞争窗口中间值。竞争窗口中间值可以根据实际情况灵活设置,以能够得到更合理的竞争窗口为准。
步骤S305,根据信道状态、信道强度系数、退避次数以及竞争窗口中间值计算竞争窗口。
通过上述步骤的退避算法解决了二进制退避算法中存在的不公平问题,由于竞争窗口主要在竞争窗口中间值(CWmid)大小附近,而LoRa传输时延的增大,会使邻居节点造成较严重的退避现象,该算法使每个LoRa节点在传输冲突时,迅速增大竞争窗口,减轻了节点之间的竞争;在信道负载较轻时,逐渐减小竞争窗口,使节点较公平的竞争信道,并在逐步递减的过程中尽可能的找到竞争窗口的合理值,从而保证了网络的公平性,更好地适应节点信道的接入,提高信道监测的同时不过多消耗功耗同时减少碰撞发生。
考虑到具有一个网关和N个竞争终端节点的场景。当终端i∈N有数据要发送时,它会随机选择通信通道Ci进行通信。首先执行CAD,检测信道上是否有其他终端设备正在进行传输,占用信道,即等待是否有Channel Activity Detected标志中断。只有当信道检测到没有标志中断时,即此刻信道处于空闲状态时,该终端设备才会开始传输数据,否则,它会退回并随机进入休眠状态一段时间,然后再次尝试传输,随机间隔为k个时隙。随机取值为一个范围,这个范围会根据退避的次数以及当前信道的状态进行调整,从而达到最优退避时间的选取。整体接入流程如图4所示。具体地,在该信道状态为非空闲状态时,通过如下公式计算竞争窗口:
Figure BDA0002620842380000121
在该信道状态为空闲状态时,通过如下公式计算竞争窗口:
Figure BDA0002620842380000122
其中,CW1表示当前竞争窗口,ration表示该信道强度系数,CWmin表示最小竞争窗口,CWmid表示预设竞争窗口中间值,n表示该退避次数,nmax表示竞争失败次数门限值,b为预设值。
LoRaWan使用扩频因子表示每个信息位发送的符号数。扩频因子越大,传输数据的数量越少。对于节点到网关距离比较近,无线信号比较好的情况,LoRaWan采用比较低的扩频因子,节点的速率较高,给予较短的竞争窗口,从而可以让无线信号比较好的节点优先传输数据,减少了同一时间等待发送数据的节点数,降低节点的平均等待时间和信道侦测次数。
检测信道失败时,CW以2/ration倍速度增加,保障节点快速脱离此次冲突。当检测失败次数超过规定值后,该节点放弃此次竞争,表明该节点不在网关通信范围之内,此次传输失败。
节点检测空闲,接入信道并成功发送数据后,CW做以下调整:当竞争窗口大于等于CWmid时,则认为信道此时竞争激烈,节点的CW值以1/2*ration的倍速递减,当递减到小于CWmid时则CW继续以b/ration线性递减。当竞争窗口小于CWmid时,认为此时的信道竞争趋于平缓,CW的值以b/ration线性递减,减少竞争窗口的频繁波动。
本实施例为一种增强的信道访问控制机制,即动态监听退避机制。将基于改进的先听后说(Listen Before Talk,LBT)机制与信道当前的状态进行结合,对网络状况进行检测并自适应地调节退避窗口大小进行碰撞的避免。该退避算法解决了二进制退避算法中存在的不公平问题,由于竞争窗口主要在CWmid大小附近,而LoRa传输时延的增大,会使邻居节点造成较严重的退避现象,该算法使每个LoRa节点在传输冲突时,迅速增大竞争窗口,减轻了节点之间的竞争;在信道负载较轻时,逐渐减小竞争窗口,使节点较公平的竞争信道,并在逐步递减的过程中尽可能的找到竞争窗口的合理值,从而保证了网络的公平性。
具体算法如下:
Figure BDA0002620842380000131
Figure BDA0002620842380000141
在本实施例中还提供了一种基于CSMA-CA退避算法的优化装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
本实施例提供一种基于CSMA-CA退避算法的优化装置,如图5所示,包括:
第一获取模块51,用于获取信道状态;其中,该信道状态包括空闲状态和非空闲状态;
第二获取模块52,用于获取信道强度系数;
第三获取模块53,用于获取节点当前发送数据的退避次数;
设置模块54,用于设置竞争窗口中间值;
计算模块55,用于根据该信道状态、该信道强度系数以及该退避次数计算竞争窗口。
可选地,该计算模块还用于:
在该信道状态为非空闲状态时,通过如下公式计算竞争窗口:
Figure BDA0002620842380000142
在该信道状态为空闲状态时,通过如下公式计算竞争窗口:
Figure BDA0002620842380000151
其中,CW1表示当前竞争窗口,ration表示该信道强度系数,CWmin表示最小竞争窗口,CWmid表示预设竞争窗口中间值,n表示该退避次数,nmax表示竞争失败次数门限值,b为预设值。
可选地,该第一获取模块包括:
检测单元,用于检测信道是否有LoRa前导码,得到检测结果;
确定单元,用于在该检测结果指示有LoRa前导码时,信道状态为非空闲状态,在该检测结果指示无LoRa前导码时,信道状态为空闲状态。
可选地,该第二获取模块包括:
获取单元,用于获取节点与网关之间的距离;
确定单元,用于根据该节点与网关之间的距离确定该信道强度系数。
本实施例中的基于CSMA-CA退避算法的优化装置是以功能单元的形式来呈现,这里的单元是指ASIC电路,执行一个或多个软件或固定程序的处理器和存储器,和/或其他可以提供上述功能的器件。
上述各个模块的更进一步的功能描述与上述对应实施例相同,在此不再赘述。
本发明实施例还提供一种移动终端,具有上述图5所示的基于CSMA-CA退避算法的优化装置。
请参阅图6,图6是本发明可选实施例提供的一种终端的结构示意图,如图6所示,该终端可以包括:至少一个处理器601,例如CPU(Central Processing Unit,中央处理器),至少一个通信接口603,存储器604,至少一个通信总线602。其中,通信总线602用于实现这些组件之间的连接通信。存储器604可以是高速RAM存储器(Random Access Memory,易挥发性随机存取存储器),也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器604可选的还可以是至少一个位于远离前述处理器601的存储装置。其中处理器601可以结合图5所描述的装置,存储器604中存储应用程序,且处理器601调用存储器604中存储的程序代码,以用于执行上述任一基于CSMA-CA退避算法的优化方法。
其中,通信总线602可以是外设部件互连标准(peripheral componentinterconnect,简称PCI)总线或扩展工业标准结构(extended industry standardarchitecture,简称EISA)总线等。通信总线602可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,存储器604可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器也可以包括非易失性存储器(英文:non-volatile memory),例如快闪存储器(英文:flash memory),硬盘(英文:hard diskdrive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器604还可以包括上述种类的存储器的组合。
其中,处理器601可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。
其中,处理器601还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic arraylogic,缩写:GAL)或其任意组合。
可选地,存储器604还用于存储程序指令。处理器601可以调用程序指令,实现如本申请图2实施例中所示的基于CSMA-CA退避算法的优化方法。
本发明实施例还提供了一种非暂态计算机存储介质,该计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的基于CSMA-CA退避算法的优化方法。其中,该存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;该存储介质还可以包括上述种类的存储器的组合。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (10)

1.一种基于CSMA-CA退避算法的优化方法,其特征在于,包括:
获取信道状态;其中,所述信道状态包括空闲状态和非空闲状态;
获取信道强度系数;
获取节点当前发送数据的退避次数;
设置竞争窗口中间值;
根据所述信道状态、所述信道强度系数、所述退避次数以及所述竞争窗口中间值计算竞争窗口。
2.根据权利要求1所述的基于CSMA-CA退避算法的优化方法,其特征在于,根据所述信道状态、所述信道强度系数、所述退避次数以及所述竞争窗口中间值计算竞争窗口包括:
在所述信道状态为非空闲状态时,通过如下公式计算竞争窗口:
Figure FDA0002620842370000011
在所述信道状态为空闲状态时,通过如下公式计算竞争窗口:
Figure FDA0002620842370000012
其中,CW1表示当前竞争窗口,ration表示所述信道强度系数,CWmin表示最小竞争窗口,CWmid表示预设竞争窗口中间值,n表示所述退避次数,nmax表示竞争失败次数门限值,b为预设值。
3.根据权利要求1所述的基于CSMA-CA退避算法的优化方法,其特征在于,获取信道状态包括:
检测信道是否有LoRa前导码,得到检测结果;
在所述检测结果指示有LoRa前导码时,信道状态为非空闲状态,在所述检测结果指示无LoRa前导码时,信道状态为空闲状态。
4.根据权利要求1至3中任一所述的基于CSMA-CA退避算法的优化方法,其特征在于,获取信道强度系数包括:
获取节点与网关之间的距离;
根据所述节点与网关之间的距离确定所述信道强度系数。
5.一种基于CSMA-CA退避算法的优化装置,其特征在于,包括:
第一获取模块,用于获取信道状态;其中,所述信道状态包括空闲状态和非空闲状态;
第二获取模块,用于获取信道强度系数;
第三获取模块,用于获取节点当前发送数据的退避次数;
设置模块,用于设置竞争窗口中间值;
计算模块,用于根据所述信道状态、所述信道强度系数、所述退避次数以及所述竞争窗口中间值计算竞争窗口。
6.根据权利要求5所述的基于CSMA-CA退避算法的优化装置,其特征在于,所述计算模块还用于:
在所述信道状态为非空闲状态时,通过如下公式计算竞争窗口:
Figure FDA0002620842370000021
在所述信道状态为空闲状态时,通过如下公式计算竞争窗口:
Figure FDA0002620842370000031
其中,CW1表示当前竞争窗口,ration表示所述信道强度系数,CWmin表示最小竞争窗口,CWmid表示预设竞争窗口中间值,n表示所述退避次数,nmax表示竞争失败次数门限值,b为预设值。
7.根据权利要求5所述的基于CSMA-CA退避算法的优化装置,其特征在于,所述第一获取模块包括:
检测单元,用于检测信道是否有LoRa前导码,得到检测结果;
确定单元,用于在所述检测结果指示有LoRa前导码时,信道状态为非空闲状态,在所述检测结果指示无LoRa前导码时,信道状态为空闲状态。
8.根据权利要求5至7中任一所述的基于CSMA-CA退避算法的优化装置,其特征在于,所述第二获取模块包括:
获取单元,用于获取节点与网关之间的距离;
确定单元,用于根据所述节点与网关之间的距离确定所述信道强度系数。
9.一种移动终端,其特征在于,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述权利要求1-4中任一所述的基于CSMA-CA退避算法的优化方法。
10.一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现上述权利要求1-4中任一所述的基于CSMA-CA退避算法的优化方法。
CN202010786065.9A 2020-08-06 2020-08-06 基于csma-ca退避算法的优化方法及装置 Active CN111918408B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010786065.9A CN111918408B (zh) 2020-08-06 2020-08-06 基于csma-ca退避算法的优化方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010786065.9A CN111918408B (zh) 2020-08-06 2020-08-06 基于csma-ca退避算法的优化方法及装置

Publications (2)

Publication Number Publication Date
CN111918408A true CN111918408A (zh) 2020-11-10
CN111918408B CN111918408B (zh) 2023-06-06

Family

ID=73288153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010786065.9A Active CN111918408B (zh) 2020-08-06 2020-08-06 基于csma-ca退避算法的优化方法及装置

Country Status (1)

Country Link
CN (1) CN111918408B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113645586A (zh) * 2021-08-24 2021-11-12 合肥星北航测信息科技有限公司 基于节点退避算法的Lora自组网数据传输系统及方法
CN115343959A (zh) * 2022-09-23 2022-11-15 国网北京市电力公司 一种电采暖负荷自适应控制方法、装置、设备及介质

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090103501A1 (en) * 2007-10-22 2009-04-23 Farrag Osama I Decentralized Media Access Control for Ad-Hoc Mobile Wireless Network
GB201108707D0 (en) * 2011-05-24 2011-07-06 Renesas Mobile Corp Channel access control
US20110249568A1 (en) * 2010-04-07 2011-10-13 Indian Institute Of Technology Backoff adjustment method for mac system
US20120071192A1 (en) * 2010-09-21 2012-03-22 Qinghua Li Device, system, and method of adjusting channel utilization for wireless transmission
CN103260229A (zh) * 2013-06-04 2013-08-21 东北林业大学 基于预测和反馈的无线传感器网络mac协议
CN103441827A (zh) * 2013-07-30 2013-12-11 温州大学 基于物理层信道质量估计约束的避退方法
CN103945558A (zh) * 2014-03-27 2014-07-23 西安交通大学 一种无线局域网中基于网络负载的自适应信道接入控制方法
CN104185298A (zh) * 2014-08-29 2014-12-03 华侨大学 基于优先级的网络负载动态自适应参数调整方法
CN104219778A (zh) * 2014-09-22 2014-12-17 东南大学 一种基于能量收集速率的无线传感器网络竞争接入方法
CN104581980A (zh) * 2015-01-28 2015-04-29 湘潭大学 一种基于距离分区的无线网络免碰撞信道接入控制方法
CN105142185A (zh) * 2015-08-05 2015-12-09 上海交通大学 基于信道争用与集中调度的全双工mac的数据交换方法
US20160014807A1 (en) * 2014-07-14 2016-01-14 Nokia Corporation Contention for channel access in wireless network
CN105306176A (zh) * 2015-11-13 2016-02-03 南京邮电大学 一种基于q学习的车载网mac协议的实现方法
WO2016116143A1 (en) * 2015-01-21 2016-07-28 Huawei Technologies Co.,Ltd Efficient multi-client access using dynamic contention window
WO2017007391A1 (en) * 2015-07-06 2017-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Transmitting node and method therein for performing data transmissions to at least one receiving node on a radio channel in a wireless communications network
CN106358316A (zh) * 2016-11-22 2017-01-25 重庆邮电大学 一种信道接入方法及装置
US20170079068A1 (en) * 2015-09-14 2017-03-16 Nokia Technologies Oy Fairness In Wireless Networks With Adaptive Clear Channel Assessment Thresholds
WO2017045105A1 (en) * 2015-09-14 2017-03-23 Lenovo Innovations Limited (Hong Kong) Contention window size adjustment in a wireless communication system
WO2017191617A1 (en) * 2016-05-06 2017-11-09 Telefonaktiebolaget Lm Ericsson (Publ) Lbt parameters for uplink in unlicensed spectrum
US20180070252A1 (en) * 2016-09-06 2018-03-08 Qualcomm Incorporated Back-off mechanisms for fair joint access of unlicensed sidelink
CN110312313A (zh) * 2019-05-21 2019-10-08 河南科技大学 基于多信道的无线体域网mac协议、通信方法及系统
WO2020119919A1 (en) * 2018-12-14 2020-06-18 Telefonaktiebolaget Lm Ericsson (Publ) Approaches for clear channel assessment

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090103501A1 (en) * 2007-10-22 2009-04-23 Farrag Osama I Decentralized Media Access Control for Ad-Hoc Mobile Wireless Network
US20110249568A1 (en) * 2010-04-07 2011-10-13 Indian Institute Of Technology Backoff adjustment method for mac system
US20120071192A1 (en) * 2010-09-21 2012-03-22 Qinghua Li Device, system, and method of adjusting channel utilization for wireless transmission
GB201108707D0 (en) * 2011-05-24 2011-07-06 Renesas Mobile Corp Channel access control
CN103260229A (zh) * 2013-06-04 2013-08-21 东北林业大学 基于预测和反馈的无线传感器网络mac协议
CN103441827A (zh) * 2013-07-30 2013-12-11 温州大学 基于物理层信道质量估计约束的避退方法
CN103945558A (zh) * 2014-03-27 2014-07-23 西安交通大学 一种无线局域网中基于网络负载的自适应信道接入控制方法
US20160014807A1 (en) * 2014-07-14 2016-01-14 Nokia Corporation Contention for channel access in wireless network
CN104185298A (zh) * 2014-08-29 2014-12-03 华侨大学 基于优先级的网络负载动态自适应参数调整方法
CN104219778A (zh) * 2014-09-22 2014-12-17 东南大学 一种基于能量收集速率的无线传感器网络竞争接入方法
WO2016116143A1 (en) * 2015-01-21 2016-07-28 Huawei Technologies Co.,Ltd Efficient multi-client access using dynamic contention window
CN104581980A (zh) * 2015-01-28 2015-04-29 湘潭大学 一种基于距离分区的无线网络免碰撞信道接入控制方法
WO2017007391A1 (en) * 2015-07-06 2017-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Transmitting node and method therein for performing data transmissions to at least one receiving node on a radio channel in a wireless communications network
CN105142185A (zh) * 2015-08-05 2015-12-09 上海交通大学 基于信道争用与集中调度的全双工mac的数据交换方法
US20170079068A1 (en) * 2015-09-14 2017-03-16 Nokia Technologies Oy Fairness In Wireless Networks With Adaptive Clear Channel Assessment Thresholds
WO2017045105A1 (en) * 2015-09-14 2017-03-23 Lenovo Innovations Limited (Hong Kong) Contention window size adjustment in a wireless communication system
CN105306176A (zh) * 2015-11-13 2016-02-03 南京邮电大学 一种基于q学习的车载网mac协议的实现方法
WO2017191617A1 (en) * 2016-05-06 2017-11-09 Telefonaktiebolaget Lm Ericsson (Publ) Lbt parameters for uplink in unlicensed spectrum
US20180070252A1 (en) * 2016-09-06 2018-03-08 Qualcomm Incorporated Back-off mechanisms for fair joint access of unlicensed sidelink
CN106358316A (zh) * 2016-11-22 2017-01-25 重庆邮电大学 一种信道接入方法及装置
WO2020119919A1 (en) * 2018-12-14 2020-06-18 Telefonaktiebolaget Lm Ericsson (Publ) Approaches for clear channel assessment
CN110312313A (zh) * 2019-05-21 2019-10-08 河南科技大学 基于多信道的无线体域网mac协议、通信方法及系统

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
C. PHAM: "Investigating and experimenting CSMA channel access mechanisms for LoRa IoT networks", 《2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC)》 *
J. -H. CHU, K. -T. FENG AND J. -S. LIN: "Prioritized Optimal Channel Allocation Schemes for Multi-Channel Vehicular Networks", 《IEEE TRANSACTIONS ON MOBILE COMPUTING》 *
L. DING, ET. AL.: "Software-defined joint routing and waveform selection for cognitive Ad Hoc networks", 《2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE》 *
LI MA, MENG ZHAO*, DONGCHAO MA, YINGXUN FU: "A LoRaWAN Access Technology Based on Channel Adaptive Adjustment", 《JOURNAL OF NEW MEDIA》 *
M. LEVORATO, S. TOMASIN AND M. ZORZI: "Strategies and Tradeoffs for Coded Cooperation in Wireless Networks", 《2007 5TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC AND WIRELESS NETWORKS AND WORKSHOPS》 *
P. YUAN, X. M. WEN, Z. M. LU AND Q. PAN: "Dynamic backoff based access mechanism for LoRaWAN class A", 《IEEE INTERNATIONAL CONFERENCE ON ENERGY INTERNET》 *
X. LIU, G. MA, H. KUANG AND F. LI: "An efficient backoff algorithm for QoS guaranteeing in wireless networks", 《2016 CHINESE CONTROL AND DECISION CONFERENCE (CCDC)》 *
X. SUN AND L. DAI: "Backoff Design for IEEE 802.11 DCF Networks: Fundamental Tradeoff and Design Criterion,\" in IEEE/ACM Transactions on Networking", 《IEEE/ACM TRANSACTIONS ON NETWORKING》 *
于皓; 程良伦: "WMSN中一种基于优先级的慢启动退避算法", 《计算机工程》 *
侯佳: "基于信道质量反馈的非授权频段入公平接方法研究", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 *
尹艳玲: "水声通信网络多载波通信与跨层设计", 《中国优秀博硕士学位论文全文数据库(博士)信息科技辑》 *
石岳; 李成; 郝琨: "基于动态变化竞争窗口的水下无线传感器网络MAC协议", 《水下无人系统学报》 *
石春; 戴宪华; 梁平元: "基于多门限估计节点个数的自适应退避算法", 《电子学报》 *
苏海武; 程良伦: "一种流量预测的服务质量区分MAC退避算法", 《计算机应用研究》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113645586A (zh) * 2021-08-24 2021-11-12 合肥星北航测信息科技有限公司 基于节点退避算法的Lora自组网数据传输系统及方法
CN115343959A (zh) * 2022-09-23 2022-11-15 国网北京市电力公司 一种电采暖负荷自适应控制方法、装置、设备及介质
CN115343959B (zh) * 2022-09-23 2024-04-16 国网北京市电力公司 一种电采暖负荷自适应控制方法、装置、设备及介质

Also Published As

Publication number Publication date
CN111918408B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2021004052A1 (en) Power saving mechanisms for multi-link communications
KR101531008B1 (ko) 트래픽 표시 맵 페이징 이후 충돌들을 감소시키기 위한 시스템들 및 방법들
US9655054B2 (en) Adapting blind reception duration for range and congestion
US10716147B2 (en) Method and system for optimizing channel access in a wireless local area network
JP6426173B2 (ja) 異なるndp psポーリングタイプの定義
US11451966B2 (en) Wireless access protocol with collaborative spectrum monitoring
EP3284292A1 (en) System and method for reducing collisions in wireless networks
WO2022057901A1 (zh) 无线局域网中的信道接入方法及相关装置
WO2017143849A1 (zh) 一种休眠控制方法及相关设备
US11290955B2 (en) Low latency wireless protocol
CN114631393A (zh) 用于使ieee 802.15.4实现与ieee 802.11更好的共存的具有冲突避免的混合载波侦听多址系统
CN111918408B (zh) 基于csma-ca退避算法的优化方法及装置
US8130736B2 (en) Method and system for facilitating channel measurements in a communication network
WO2023071055A1 (zh) 多天线mimo场景下随机接入资源的配置与更新方法
US7593745B2 (en) Method for operating wireless local area network cards in a power-saving mode
Misic et al. Avoiding the bottlenecks in the MAC layer in 802.15. 4 low rate WPAN
US10524286B2 (en) Power saving using integrated CF-End indication
KR101819588B1 (ko) 무선 메시지에서 지연 표시를 위한 시스템들 및 방법들
US10390304B2 (en) Sleep during NAV/RID backoff
Gong et al. Traffic adaptive MAC protocol for wireless sensor network
CN103139834B (zh) 一种无线传感器网络多速率自适应退避方法
US8724598B1 (en) Method for energy-efficient, traffic-adaptive, flow-specific medium access for wireless networks
Xu et al. Prioritizing the data in the target-tracking wireless sensor networks
Lee et al. DRMA-AR: distributed reservation multiple access with adaptive requests for wireless networks
Mehta et al. Energy-Efficient Backoff Algorithms for Wireless Sensor Networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant