CN111918300A - 使用下行链路数据接收和运动感测信息的波束跟踪 - Google Patents

使用下行链路数据接收和运动感测信息的波束跟踪 Download PDF

Info

Publication number
CN111918300A
CN111918300A CN202010381451.XA CN202010381451A CN111918300A CN 111918300 A CN111918300 A CN 111918300A CN 202010381451 A CN202010381451 A CN 202010381451A CN 111918300 A CN111918300 A CN 111918300A
Authority
CN
China
Prior art keywords
receive beam
beam configuration
wireless device
configuration
receive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010381451.XA
Other languages
English (en)
Other versions
CN111918300B (zh
Inventor
李旸
季竺
J·O·赛贝尼
王萍
孙海童
赵鹏凯
S·坎德瓦尔
唐嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of CN111918300A publication Critical patent/CN111918300A/zh
Application granted granted Critical
Publication of CN111918300B publication Critical patent/CN111918300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/26Acquisition or tracking or demodulation of signals transmitted by the system involving a sensor measurement for aiding acquisition or tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Abstract

本公开涉及使用下行链路数据接收和运动感测信息的波束跟踪。本公开涉及使用蜂窝通信系统中的运动感测信息来执行接收波束跟踪。无线设备和蜂窝基站可建立蜂窝链路。可为该蜂窝链路选择接收波束配置。可使用所选择的接收波束配置来接收下行链路数据波束。可至少部分地基于该无线设备的运动感测信息来选择对该接收波束配置的可能修改。可确定对该接收波束配置的该可能修改是否改善下行链路数据波束接收。可例如基于对该接收波束配置的该可能修改是否改善下行链路数据波束接收来确定是否根据对该接收波束配置的可能修改来修改该蜂窝链路的接收波束配置。

Description

使用下行链路数据接收和运动感测信息的波束跟踪
优先权信息
本专利申请要求提交于2019年5月8日的名称为“Beam Tracking Using DownlinkData Reception and Motion Sensing Information”的美国临时 专利申请序列号62/845,188的优先权,该文献全文如同在本文中充分完整 地阐述的一样以引用方式并入本文。
技术领域
本申请涉及无线通信,并且更具体地涉及用于在蜂窝通信系统中使用 下行链路数据接收和/或运动感测信息来执行波束跟踪的系统、装置和方 法。
背景技术
无线通信系统的使用正在快速增长。在最近几年中,无线设备诸如智 能电话和平板电脑已变得越来越复杂精密。除了支持电话呼叫之外,现在 很多移动设备(即,用户装置设备或UE)还提供对互联网、电子邮件、文 本消息和使用全球定位系统(GPS)的导航的访问,并且能够操作利用这些功 能的复杂精密的应用程序。另外,存在许多不同的无线通信技术和无线通 信标准。无线通信标准的一些示例包括GSM、UMTS(例如与WCDMA或 TD-SCDMA空中接口相关联)、LTE、高级LTE(LTE-A)、NR、HSPA、 3GPP2 CDMA2000(例如,1xRTT、1xEV-DO、HRPD、eHRPD)、IEEE 802.11(WLAN或Wi-Fi)、BLUETOOTHTM等。
在无线通信设备中引入数量不断增长的特征和功能还需要不断改进无 线通信以及改进无线通信设备。尤为重要的是确保通过用户装置(UE)设备 (例如通过无线设备,诸如在无线蜂窝通信中使用的蜂窝电话、基站和中 继站)所发射的信号和所接收的信号的准确性。因此,人们期望在该领域 进行改进。
例如,一些蜂窝通信系统包括使用波束形成技术。在此类情况下,发 射波束配置可用于有效地增加目标方向或区域上的发射信号的信号强度, 并且/或者接收波束配置可用于通过根据从信号被接收的方向对接收天线阵 列进行取向和供电来有效地增加接收器处的信号的信号强度。因此,波束 跟踪可为蜂窝通信的重要方面,并且期望该领域的改进。
发明内容
本文提供了用于在蜂窝通信系统中使用下行链路数据接收和/或运动感 测信息来执行波束跟踪的装置、系统和方法的实施方案。
根据本文所述的技术,无线设备可使用下行链路数据来辅助执行波束 跟踪。作为一种可能性,这可包括确定对无线设备所使用的接收波束的可 能调节或修改,以及确定对无线设备所使用的接收波束的可能调节或修改 是否会获得改善的性能。为了确定对无线设备所使用的接收波束的可能调 节或修改是否会获得改善的性能,至少根据一些实施方案,可在接收下行 链路数据波束时应用对接收波束的可能修改,并且可针对初始接收波束和 经修改的接收波束比较与接收性能相关的一个或多个度量。至少在一些情 况下,此类方法可降低无线设备对参考信号的依赖性以执行波束跟踪,例 如,因为下行链路数据波束本身可用于帮助保持波束跟踪。
至少在一些情况下,运动感测信息还可用于辅助执行波束跟踪。作为 一种可能性,这可包括估计无线设备的旋转,以及基于所估计的无线设备 的旋转来确定对无线设备所使用的接收波束的可能调节或修改。作为另一 种可能性,运动感测信息可用于确定何时检查对无线设备所使用的接收波 束的可能调节或修改是否会获得改善的性能。
另外,本文描述了用于保持与无线设备的不同可能取向范围相关联的 多个波束测量表的技术。这可用于降低无线设备的接收波束不对准的几 率,该不对准是在选择接收波束搜索候选项时由于使用与跟无线设备的当 前取向范围不同的取向范围相关联的测量结果而导致的。
此外,本文描述了用于执行优先考虑取向/姿势的波束搜索的技术。根 据此类技术,无线设备可能够确定其天线面板中的哪些天线面板当前与方 位角域相关联,以及哪些天线面板当前与仰角域相关联。这继而可允许无 线设备在执行波束搜索时使方位角面板优先于仰角面板(或反之亦然), 例如,取决于用于正在执行的波束搜索的方位角域和仰角域的相对优先 级。
需注意,可在若干个不同类型的设备中实施本文描述的技术和/或将本 文描述的技术与该若干个不同类型的设备一起使用,该若干个不同类型的 设备包括但不限于基站、接入点、蜂窝电话、便携式媒体播放器、平板电 脑、可穿戴设备和各种其他计算设备。
本发明内容旨在提供在本文档中所描述的主题中的一些的简要概述。 因此,应当理解,上述特征仅为示例,并且不应解释为以任何方式缩窄本 发明所描述的主题的范围或实质。本文所描述的主题的其它特征、方面和 优点将通过以下具体实施方式、附图和权利要求书而变得显而易见。
附图说明
图1示出了根据一些实施方案的示例性(和简化的)无线通信系统;
图2示出了根据一些实施方案的与示例性无线用户装置(UE)设备通信 的示例性基站;
图3是根据一些实施方案的UE的示例性框图;
图4是根据一些实施方案的基站的示例性框图;
图5是示出根据一些实施方案的用于在蜂窝通信系统中使用运动感测 信息来执行波束跟踪的示例性可能方法的各方面的流程图;
图6至图7示出了根据一些实施方案的在示例性测试场景中使用用于 接收波束对准的同步信号块和信道状态信息参考信号时的可能波束增益的 模式;
图8至图9示出了根据一些实施方案的信道状态信息参考信号波束和 同步信号块波束的示例性表示;
图10示出了根据一些实施方案的方位角中的信道状态信息参考信号波 束的信号强度模式的各方面;
图11示出了根据一些实施方案的方位角中的同步信号块波束的信号强 度模式的各方面;
图12示出了根据一些实施方案的仰角中的波束的信号强度模式的各方 面;
图13是示出根据一些实施方案的用于执行运动感测信息辅助的波束跟 踪的示例性可能方法的各方面的流程图;
图14A至图14F示出了根据一些实施方案的其中执行运动感测信息辅 助的波束跟踪的无线设备在接收无线信号时旋转的示例场景的各方面;
图15是示出根据一些实施方案的用于确定在执行波束跟踪时是否使用 运动感测信息的示例性可能方法的各方面的流程图;
图16是示出根据一些实施方案的用于确定在执行波束跟踪时使用运动 感测信息的配置的示例性可能方法的各方面的流程图;
图17是示出根据一些实施方案的用于确定何时重新评估在执行波束跟 踪时是否使用运动感测信息以及以哪种配置使用运动感测信息的示例性可 能方法的各方面的流程图;
图18示出了其中执行运动感测信息辅助的波束跟踪的无线设备在接收 无线信号时旋转的示例场景的附加的各方面;
图19至图20示出了根据一些实施方案的示例性可能接收波束码本;
图21至图30示出了根据一些实施方案的其中可使用运动感测信息辅 助的波束跟踪的示例性可能测试场景的各种参数和结果;
图31至图34示出了根据一些实施方案的用于保持取向索引的波束数 据库的示例性可能技术的各方面;并且
图35至图36示出了根据一些实施方案的用于执行优先考虑取向的波 束搜索的示例性可能技术的各方面。
尽管本文所述的特征易受各种修改和另选形式的影响,但其具体实施 方案在附图中以举例的方式示出并且在本文中详细描述。然而,应当理 解,附图和对其的详细描述并非旨在将本文限制于所公开的具体形式,而 正相反,其目的在于覆盖落在如由所附权利要求书所限定的主题的实质和 范围内的所有修改、等同物和另选方案。
具体实施方式
首字母缩略词
在本公开中通篇使用各种首字母缩略词。在本公开中通篇可能出现的 最为突出的所用首字母缩略词的定义如下:
·UE:用户装置
·RF:射频
·BS:基站
·GSM:全球移动通信系统
·UMTS:通用移动电信系统
·LTE:长期演进
·NR:新无线电
·TX:传输/发射
·RX:接收/接收
·RAT:无线电接入技术
术语
以下是本公开中会出现的术语的术语表:
存储器介质—各种类型的非暂态存储器设备或存储设备中的任一个。 术语“存储器介质”旨在包括安装介质,例如,CD-ROM、软盘或磁带设 备;计算机系统存储器或随机存取存储器诸如DRAM、DDR RAM、 SRAM、EDO RAM、Rambus RAM等;非易失性存储器诸如闪存、磁介 质,例如,硬盘驱动器或光学存储装置;寄存器或其他类似类型的存储器 元件等。存储器介质也可包括其他类型的非暂态存储器或它们的组合。此 外,存储器介质可位于执行程序的第一计算机系统中,或者可位于通过网 络诸如互联网连接到第一计算机系统的不同的第二计算机系统中。在后面 的实例中,第二计算机系统可向第一计算机系统提供程序指令以供执行。 术语“存储器介质”可包括可驻留在例如通过网络连接的不同计算机系统 中的不同位置的两个或更多个存储器介质。存储器介质可存储可由一个或 多个处理器执行的程序指令(例如,表现为计算机程序)。
载体介质—如上所述的存储器介质、以及物理传输介质诸如总线、网 络和/或传送信号诸如电信号、电磁信号或数字信号的其他物理传输介质。
计算机系统(或计算机)—各种类型的计算系统或处理系统中的任一 种,包括个人计算机系统(PC)、大型计算机系统、工作站、网络电器、互 联网电器、个人数字助理(PDA)、电视系统、栅格计算系统,或者其他设备 或设备的组合。通常,术语“计算机系统”可广义地被定义为包含具有执 行来自存储器介质的指令的至少一个处理器的任何设备(或设备的组 合)。
用户装置(UE)(或“UE设备”)—移动或便携式的且执行无线通 信的各种类型的计算机系统或设备中的任一者。UE设备的示例包括移动电 话或智能电话(例如,iPhoneTM、基于AndroidTM的电话)、平板电脑(例 如,iPadTM、Samsung GalaxyTM)、便携式游戏设备(例如,Nintendo DSTM、 PlayStation PortableTM、Gameboy AdvanceTM、iPhoneTM)、可穿戴设备(例如,智能手表,智能眼镜)、手提电脑、PDA、便携式互联网设备、音乐 播放器、数据存储设备或其他手持设备等。通常,术语“UE”或“UE设 备”可广义地被定义为包含便于用户运输并能够进行无线通信的任何电子 设备、计算设备和/或电信设备(或设备的组合)。
无线设备—执行无线通信的各种类型的计算机系统或设备中的任一 者。无线设备可为便携式的(或移动的),或者可为静止的或固定在特定 位置处。UE是无线设备的一个示例。
通信设备—执行通信的各种类型的计算机系统或设备中的任一者,其 中该通信可为有线通信或无线通信。通信设备可为便携式的(或移动 的),或者可为静止的或固定在特定位置处。无线设备是通信设备的一个 示例。UE是通信设备的另一个示例。
基站(BS)—术语“基站”具有其通常含义的全部范围,并且至少包括 被安装在固定位置处并用于作为无线电话系统或无线电系统的一部分进行 通信的无线通信站。
处理元件(或处理器)—是指能够执行设备(例如用户装置设备或蜂 窝网络设备)中的功能的各种元件或元件组合。处理元件可包括例如:处 理器和相关联的存储器、各个处理器核心的部分或电路、整个处理器核 心、处理器阵列、电路诸如ASIC(专用集成电路)、可编程硬件元件诸如 现场可编程门阵列(FPGA)以及以上各种组合中的任何一种。
Wi-Fi—术语“Wi-Fi”具有其通常含义的全部范围,并且至少包括无 线通信网络或RAT,其由无线LAN(WLAN)接入点提供服务并通过这些接 入点提供至互联网的连接性。大多数现代Wi-Fi网络(或WLAN网络)基 于IEEE 802.11标准,并以“Wi-Fi”的命名面市。Wi-Fi(WLAN)网络不同 于蜂窝网络。
自动—是指由计算机系统(例如,由计算机系统执行的软件)或设备 (例如,电路、可编程硬件元件、ASIC等)在无需直接指定或执行动作或 操作的用户输入的情况下执行的动作或操作。因此,术语“自动”与用户 手动执行或指定操作形成对比,其中用户提供输入来直接执行该操作。自 动过程可由用户所提供的输入来启动,但“自动”执行的后续动作不是由 用户指定的,即,不是“手动”执行的,其中用户指定要执行的每个动 作。例如,用户通过选择每个字段并提供输入指定信息(例如,通过键入 信息、选择复选框、无线电部件选择等)来填写电子表格为手动填写该表 格,即使计算机系统必须响应于用户动作来更新该表格。该表格可通过计 算机系统自动填写,其中计算机系统(例如,在计算机系统上执行的软件)分析表格的字段并填写该表格,而无需任何用户输入指定字段的答 案。如上面所指示的,用户可援引表格的自动填写,但不参与表格的实际 填写(例如,用户不用手动指定字段的答案而是它们自动地完成)。本说 明书提供了响应于用户已采取的动作而自动执行的操作的各种示例。
被配置为—各种部件可被描述为“被配置为”执行一个或多个任务。 在此类环境中,“被配置为”是一般表示“具有”在操作期间执行一个或 多个任务的“结构”的宽泛表述。由此,即使在部件当前没有执行任务 时,该部件也能被配置为执行该任务(例如,一组电导体可被配置为将模 块电连接到另一个模块,即使当这两个模块未连接时)。在一些环境中,“被配置为”可以是一般意味着“具有在操作过程中执行一个或多个任务 的电路系统”的结构的宽泛叙述。由此,即使在部件当前未接通时,该部 件也能被配置为执行任务。通常,形成与“被配置为”对应的结构的电路 可包括硬件电路。
为了便于描述,可将各种部件描述为执行一个或多个任务。此类描述 应当被解释为包括短语“被配置为”。表述被配置为执行一个或多个任务 的部件明确地旨在对该部件不援引美国法典第35标题第112节第六段的解 释。
图1和图2-示例性通信系统
图1示出了根据一些实施方案的可以实现本公开各个方面的示例性 (和简化的)无线通信系统。需注意,图1的系统仅是一个可能的系统的 示例,并且这些实施方案根据需要可被实施在各种系统中的任一种中。
如图所示,该示例性无线通信系统包括基站102,该基站通过传输介 质与一个或多个(例如,任意数量)用户设备106A、106B等一直到106N 进行通信。在本文中可将每个用户设备称为“用户装置”(UE)或UE设 备。因此,用户设备106称为UE或UE设备。
基站102可以是收发器基站(BTS)或小区站点,并且可包括实现与UE 106A到106N的无线通信的硬件和/或软件。如果在LTE的环境中实施基站 102,则其可被称为“eNodeB”或“eNB”。如果在5G NR的环境中实施 基站102,则其另选地可被称为“gNodeB”或“gNB”。基站102还可被 装备成与网络100(例如,蜂窝服务提供方的核心网络、电信网络诸如公共 交换电话网(PSTN)、和/或互联网,以及各种可能的网络)进行通信。因 此,基站102可促进用户设备之间和/或用户设备与网络100之间的通信。 基站的通信区域(或覆盖区域)可称为“小区”。同样如本文所用,就UE 而言,有时在考虑了UE的上行链路和下行链路通信的情况下,基站可被认 为代表网络。因此,与网络中的一个或多个基站通信的UE也可以被理解为与网络通信的UE。
基站102和用户设备可被配置为使用各种无线电接入技术(RAT)中 的任一种通过传输介质进行通信,无线电接入技术(RAT)也被称为无线 通信技术或电信标准,诸如GSM、UMTS(与,例如WCDMA或TD- SCDMA空中接口相关联)、LTE、高级LTE(LTE-A)、LAA/LTE-U、 5GNR、3GPP2 CDMA2000(例如,1xRTT、1xEV-DO、HRPD、 eHRPD)、Wi-Fi等。
根据相同或不同的蜂窝通信标准进行操作的基站102和其他类似基站 可因此提供作为一个或多个小区网络,该一个或多个小区网络可经由一个 或多个蜂窝通信标准在某一地理区域上向UE 106和类似的设备提供连续的 或近似连续的重叠服务。
需注意,UE106能够使用多个无线通信标准进行通信。例如,UE106 可以被配置为使用3GPP蜂窝通信标准或3GPP2蜂窝通信标准中的任一者 或两者进行通信。在一些实施方案中,UE 106可被配置为使用下行链路数 据接收和/或运动感测信息来执行波束跟踪,诸如根据本文所述的各种方 法。UE 106还可被配置为或作为替代被配置为使用WLAN、BLUETOOTHTM、一个或多个全球导航卫星系统(GNSS,例如GPS或 GLONASS)、一个和/或多个移动电视广播标准(例如,ATSC-M/H)等进 行通信。无线通信标准的其他组合(包括两个以上的无线通信标准)也是 可能的。
图2示出了根据一些实施方案的与基站102通信的示例性用户装置106 (例如,设备106A至106N中的一个)。UE106可为具有无线网络连接性 的设备,诸如移动电话、手持设备、可穿戴设备、计算机或平板电脑,或 实质上任何类型的无线设备。UE 106可包括被配置为执行存储在存储器中 的程序指令的处理器(处理元件)。UE 106可通过执行此类存储的指令来执 行本发明所述的方法实施方案中的任何一个。另选地或此外,UE 106可包 括可编程硬件元件,诸如被配置为执行(例如,个别地或组合地)本文所 述方法实施方案中任一者或本文所述方法实施方案中任一者的任何部分的 FPGA(现场可编程门阵列)、集成电路和/或各种其他可能的硬件部件中 的任一者。UE106可被配置为使用多个无线通信协议中的任一个协议来通 信。例如,UE106可被配置为使用CDMA2000、LTE、LTE-A、5G NR、 WLAN或GNSS中的两个或更多个来通信。无线通信标准的其他组合也是 可能的。
UE106可包括根据一个或多个RAT标准使用一个或多个无线通信协议 进行通信的一根或多根天线。在一些实施方案中,UE106可在多个无线通 信标准之间共享接收链和/或发射链中的一个或多个部分。共享的无线电部 件可包括单根天线,或者可包括用于执行无线通信的多根天线(例如,对 于MIMO来说)。通常,无线电部件可包括基带处理器、模拟射频(RF)信 号处理电路(例如,包括滤波器、混频器、振荡器、放大器等)或数字处 理电路(例如,用于数字调制以及其他数字处理)的任何组合。类似地, 该无线电部件可使用前述硬件来实现一个或多个接收链和发射链。
在一些实施方案中,UE 106针对被配置为用其进行通信的每个无线通 信协议而可包括单独的发射链和/或接收链(例如,包括单独的天线和其他 无线电部件)。作为另一种可能性,UE 106可包括在多个无线通信协议之 间共享的一个或多个无线电部件,以及由单个无线通信协议唯一地使用的 一个或多个无线电部件。例如,UE 106可包括用于使用LTE或 CDMA2000 1xRTT(或LTE或GSM)中的任一种进行通信的共享的无线 电部件,以及用于使用Wi-Fi和BLUETOOTHTM中的每一种进行通信的独立 的无线电部件。其他配置也是可能的。
图3-示例性UE设备的框图
图3是根据一些实施方案的示例性UE 106的框图。如图所示,UE 106 可包括片上系统(SOC)300,该片上系统可包括用于各种目的的部分。例 如,如图所示,SOC 300可包括可执行用于UE 106的程序指令的一个或多 个处理器302,以及可执行图形处理并向显示器360提供显示信号的显示电 路304。SOC300还可包括运动感测电路370,运动感测电路370可例如使 用陀螺仪、加速度计和/或各种其他运动感测部件中的任一者来检测UE106 的运动。一个或多个处理器302还可耦接至存储器管理单元(MMU) 340,该存储器管理单元可被配置为从一个或多个处理器302接收地址并将 那些地址转换成存储器(例如存储器306、只读存储器(ROM)350、 NAND闪存存储器310)中的位置和/或其他电路或设备,诸如显示器电路 304、无线电部件330、连接器I/F 320和/或显示器360。MMU 340可被配 置为执行存储器保护和页表转换或设置。在一些实施方案中,MMU 340可 以被包括作为处理器302的一部分。
如图所示,SOC300可耦接到UE106的各种其他电路。例如,UE 106 可包括各种类型的存储器(例如,包括NAND闪存310)、连接器接口 320(例如,用于耦接至计算机系统、坞站、充电站等等)、显示器360和 无线通信电路330(例如,用于LTE、LTE-A、NR、CDMA2000、BLUETOOTHTM、Wi-Fi、GPS等等)。UE设备106可包括至少一根天线 (例如335a),并且可能包括多根天线(例如由天线335a和335b所 示),以用于执行与基站和/或其他设备的无线通信。天线335a和335b以 示例方式示出,并且UE设备106可包括更少或更多的天线。总的来说,一根或多根天线统称为天线335。例如,UE设备106可借助无线电电路330 使用天线335来执行无线通信。如上所述,在一些实施方案中,UE可被配 置为使用多个无线通信标准来进行无线通信。
UE 106可包括硬件和软件部件,这些硬件和软件部件用于实现UE 106 使用下行链路数据接收和/或运动感测信息来执行接收波束跟踪的方法,诸 如本文随后进一步描述的。UE设备106的一个或多个处理器302可被配置 为实现本文所述方法的一部分或全部,例如通过执行被存储在存储器介质 (例如,非暂态计算机可读存储器介质)上的程序指令。在其他实施方案 中,一个或多个处理器302可被配置作为可编程硬件元件,诸如FPGA(现 场可编程门阵列)或者作为ASIC(专用集成电路)。此外,如图3所示, 一个或多个处理器302可耦接到其他部件并且/或者可与其他部件进行互操 作,以根据本文公开的各种实施方案使用下行链路数据接收和/或运动感测 信息来执行接收波束跟踪。一个或多个处理器302还可实现各种其他应用 程序和/或在UE 106上运行的最终用户应用程序。
在一些实施方案中,无线电部件330可包括专用于针对各种相应RAT 标准来控制通信的单独控制器。例如,如图3所示,无线电部件330可包 括Wi-Fi控制器352、蜂窝控制器(例如LTE和/或LTE-A控制器)354和 BLUETOOTHTM控制器356,并且在至少一些实施方案中,这些控制器中的 一个或多个控制器或者全部控制器可被实现为相应的集成电路(简称为IC 或芯片),这些集成电路彼此通信,并且与SOC 300(更具体地讲与一个 或多个处理器302)通信。例如,Wi-Fi控制器352可通过小区-ISM链路或 WCI接口来与蜂窝控制器354通信,并且/或者BLUETOOTHTM控制器356 可通过小区-ISM链路等与蜂窝控制器354通信。尽管在无线电部件330内 示出了三个单独的控制器,但UE设备106中可实现具有用于各种不同RAT的更少或更多个类似控制器的其他实施方案。
另外,还设想了其中控制器可实现与多种无线电接入技术相关联的功 能的实施方案。例如,根据一些实施方案,除了用于执行蜂窝通信的硬件 和/或软件部件之外,蜂窝控制器354还可包括用于执行与Wi-Fi相关联的 一个或多个活动的硬件和/或软件部件,诸如Wi-Fi前导码检测,和/或Wi- Fi物理层前导码信号的生成和发射。
图4-示例性基站的框图
图4是根据一些实施方案的示例性基站102的框图。需注意,图4的 基站仅为可能的基站的一个示例。如图所示,基站102可包括可执行针对 基站102的程序指令的处理器404。处理器404还可以耦接到存储器管理单 元(MMU)440或其他电路或设备,该MMU可以被配置为接收来自处理器 404的地址并将这些地址转换为存储器(例如,存储器460和只读存储器 (ROM)450)中的位置。
基站102可包括至少一个网络端口470。网络端口470可被配置为耦接 到电话网,并提供有权访问如上文在图1和图2中所述的电话网的多个设 备诸如UE装置106。网络端口470(或附加的网络端口)还可被配置为或 另选地被配置为耦接到蜂窝网络,例如蜂窝服务提供方的核心网络。核心 网络可向多个设备诸如UE装置106提供与移动性相关的服务和/或其他服 务。在一些情况下,网络端口470可经由核心网络耦接到电话网络,并且/ 或者核心网络可提供电话网络(例如,在蜂窝服务提供方所服务的其他UE 装置中)。
基站102可包括至少一个天线434以及可能的多个天线。一根或多根 天线434可被配置为作为无线收发器进行操作,并且可被进一步配置为经 由无线电部件430与UE设备106进行通信。天线434经由通信链432来与 无线电部件430进行通信。通信链432可为接收链、发射链或两者。无线 电部件430可被设计为经由各种无线电信标准进行通信,这些无线电信标 准包括但不限于NR、LTE、LTE-A WCDMA、CDMA2000等。基站102的 处理器404可被配置为实现和/或支持实现本文所述方法的一部分或全部, 例如通过执行存储在存储器介质(例如,非暂态计算机可读存储器介质) 上的程序指令。另选地,处理器404可被配置作为可编程硬件元件诸如 FPGA(现场可编程门阵列),或作为ASIC(专用集成电路)或它们的组合。在某些RAT(例如Wi-Fi)的情况下,基站102可以被设计为接入点 (AP),在这种情况下,网络端口470可被实现为提供对广域网和/或一个或 多个局域网的接入,例如它可包括至少一个以太网端口,并且无线电部件 430可以被设计为根据Wi-Fi标准进行通信。
图5-使用下行链路数据接收的接收波束跟踪
一些无线通信技术可针对至少一些通信利用波束形成。此类技术可降 低功率需求并且/或者增加无线通信在特定方向或区域上的有效通信范围。 然而,由于移动性、改变介质条件和/或出于各种其他原因中的任一种,有 时可能发生波束配置可能变得不如另选的波束配置有效的情况,或者甚至 完全失效,这可能导致信号强度降低,或者甚至服务中断或丢失。因此, 波束跟踪可为利用波束形成技术的无线通信的重要方面。
图5是示出根据一些实施方案的用于无线设备(例如,作为一种可能 性,无线用户装置(UE)设备)在蜂窝通信系统中使用下行链路数据接收 来执行接收波束跟踪的方法的通信流程图。
图5的方法的各方面可由无线设备和蜂窝基站(诸如相对于本文的各 种附图中所示和所述的UE 106和BS 102)实施,或者更一般地,可根据需 要结合上文附图中示出的计算机电路、系统、设备、元件、或部件等等中 的任一者来实施。例如,这样的设备的处理器(和/或其他硬件)可被配置 为使设备执行所示方法元素和/或其他方法元素的任何组合。
需注意,虽然采用了涉及使用与LTE、LTE-A、NR和/或3GPP规范文 档相关联的通信技术和/或特征的方式描述了图5方法的至少一些要素,但 是此类描述并不旨在限制本公开,并且根据需要可在任何合适的无线通信 系统中使用图5方法的各方面。在各种实施方案中,所示方法要素中的一 些可按与所示顺序不同的顺序同时执行、可由其他方法要素代替、或者可 被省略。也可根据需要执行附加的方法要素。如图所示,图5的方法可以 如下操作。
在502中,无线设备可与蜂窝基站建立无线链路。根据一些实施方 案,无线链路可包括根据5G NR的蜂窝链路。例如,无线设备可通过提供 对蜂窝网络的无线电接入的gNB与蜂窝网络的AMF实体建立会话。根据 各种实施方案,其他类型的蜂窝链路也是可能的,并且蜂窝网络还可或另 选地根据另一种蜂窝通信技术(例如,LTE、UMTS、CDMA2000、GSM 等)进行操作。
建立无线链路可包括至少根据一些实施方案建立与服务蜂窝基站的 RRC连接。建立RRC连接可包括配置用于在无线设备和蜂窝基站之间通信 的各种参数,建立无线设备的环境信息,和/或各种其他可能的特征中的任 一者,例如,涉及建立用于与蜂窝网络进行蜂窝通信的无线设备的空中接 口,该蜂窝网络与蜂窝基站相关联。在建立RRC连接之后,无线设备可在 RRC连接状态下操作。
作为建立RRC连接的一部分和/或以一种或多种其他方式(例如,经 由广播系统信息、经由媒体访问控制(MAC)控制元素等),基站和无线 设备可确定和/或交换波束配置信息。波束配置信息可包括用于支持蜂窝基 站与无线设备之间的波束使用的各种信息中的任一种。作为一种可能性, 波束配置信息可指示用于来自蜂窝基站的下行链路通信的一个或多个活动 发射波束(例如,活动波束集)。波束配置信息还可指示一个或多个其他 配置的(但不是活动的)发射波束,例如,无线设备可能够(并且可预 期,至少在一些情况下)监测(例如,使用与由蜂窝基站提供的那些配置 的波束相关联的参考符号)。波束配置还可包括由无线设备对接收波束配 置的选择。
因此,在504中,无线设备可为蜂窝链路选择第一接收波束配置。在 一些情况下,可使用多个可能过程中的任一个或全部来执行波束对准和选 择。例如,作为一种可能性,P1过程可用于粗略发射和接收波束对准。此 类过程可包括蜂窝基站波束扫描同步信号块(SSB),同时无线设备执行并 报告对接收信号强度的测量,这可辅助蜂窝基站选择发射波束配置和无线 设备选择接收波束配置两者。根据一些实施方案,此类波束对准和选择可被认为是相对粗略的,因为SSB可具有相对宽的波束宽度,例如,与数据 波束和/或至少一些其他参考信号相比。
又如,可使用P3过程,例如,以细化接收波束选择。此类过程可包括 蜂窝基站使用所选择的发射波束配置来提供信道状态信息参考信号(CSI- RS)或其他参考信号(例如,相对于SSB可具有更窄的波束),同时无线 设备可执行接收波束扫描以帮助细化其接收波束配置。因此,至少根据一 些实施方案,可例如使用P1和/或P3过程基于来自蜂窝基站的一个或多个 参考信号来选择接收波束配置。利用参考信号来确定发射和/或接收波束配 置的其他过程或此类过程的变型也是可能的。需注意,至少在一些情况下 (例如,作为一种可能性,初始波束选择),可在不使用无线设备的运动 感测信息的情况下执行接收波束选择。
在506中,无线设备可使用第一接收波束配置来接收下行链路数据。 该下行链路数据可在下行链路数据信道诸如物理下行链路共享信道 (PDSCH)上提供,该下行链路数据使用根据波束配置选择被选择用于由 蜂窝基站发射到无线设备的发射波束配置来波束形成。类似地,无线设备 可使用第一接收波束配置来接收下行链路数据波束,例如,以便将该无线 设备的接收朝向由蜂窝基站提供的数据波束取向。
在一些情况下,可能的情况是,使用来自蜂窝基站的参考信号的接收 波束配置选择获得良好的性能,例如,潜在地包括旋转和移动性。例如, 如果蜂窝基站足够频繁地提供非周期性CSI-RS兵并且/或者无线设备正在 经历相对低速的运动/旋转,则可能的情况是,仅使用由蜂窝基站提供的参 考信号的接收波束跟踪可足以获得良好的性能。然而,在一些情况下(例 如,在各种可能性中,如果蜂窝基站不提供P3 CSI-RS,并且/或者无线设 备正在经历相对高速的运动/旋转),可能的情况是,可通过潜在地使用运 动感测信息和/或使用由蜂窝基站提供的数据波束测试可能接收波束修改来 改善接收波束跟踪。
因此,至少根据一些实施方案,无线设备可确定使用来自蜂窝基站的 参考信号的接收波束配置选择是否满足一个或多个接收波束配置选择条 件,例如,这可被认为指示使用参考信号的接收波束配置选择是否提供足 够的性能。例如,一种可能接收波束配置选择条件可包括使用来自蜂窝基 站的参考信号(例如,CSI-RS)的接收波束配置选择是否导致对于至少特 定数量的测量选择相同的接收波束配置。如果是这样,则可能的情况是, 使用参考信号的接收波束配置选择正提供足够的性能。然而,如果不是这 样,则可能的情况是,使用运动感测信息和/或使用由蜂窝基站提供的数据 波束来测试可能接收波束修改可改善接收波束跟踪性能。另一种可能接收 波束配置选择条件可包括:对于特定数量的测量,同步信号的信号强度值 是否与数据信道的信号强度值相差特定阈值(例如,大于或小于)。如果 不是这样,则可能的情况是,使用参考信号的接收波束配置选择正提供足 够的性能。然而,如果是这样,则可能的情况是,使用运动感测信息和/或 使用由蜂窝基站提供的数据波束来测试可能接收波束修改可改善接收波束 跟踪性能。
如果接收波束配置选择条件指示在使用参考信号时接收波束跟踪性能 不足(例如,不使用运动感测信息和/或不使用数据波束测试可能接收波束 修改),无线设备可确定启用一个或多个可能触发器以确定是否修改蜂窝 链路的接收波束配置,是否启用接收波束配置选择的下行链路数据接收的 使用,和/或是否在选择可能接收波束配置修改时启用无线设备的运动感测 信息的使用。
触发条件可包括检测到无线设备的大于配置的旋转阈值的旋转量、检 测到自先前确定是否修改接收波束配置以来已经过去的大于配置的时间阈 值的时间量、和/或各种其他可能触发条件中的任一者。触发条件(例如, 旋转阈值、时间阈值等)可基于各种可能考虑(诸如无线设备的运动状 态、无线设备处的多路径条件、无线设备的接收波束码本空间粒度,和/或 各种其他可能考虑中的任一者)中的任一者来选择。需注意,如果确定这 些考虑中的一者或多者发生改变,则可重新评估触发条件;例如,如果无 线设备的多路径环境发生改变,则可能的情况是,基于新的多路径环境选 择了新的旋转阈值和/或选择了新的时间阈值。
在508中,无线设备可选择对接收波束配置的可能修改。至少根据一 些实施方案,可至少部分地基于检测到配置的触发条件来执行对接收波束 配置的可能修改的选择,以确定是否修改蜂窝链路的接收波束配置。例 如,无线设备可检测无线设备已旋转超过被配置为触发对接收波束的可能 修改的选择的旋转阈值,或者无线设备可检测自对接收波束的可能修改的 先前选择以来已经过去的大于被配置为触发对接收波束的可能修改的选择的时间阈值的时间量。
在一些情况下,对接收波束配置的可能修改可基于无线设备的运动感 测信息。该运动感测信息可包括与无线设备的旋转相关的信息;例如,无 线设备可包括能够检测和测量该无线设备的旋转的运动感测电路,使得运 动感测信息可包括该无线设备的相对于该无线设备的先前位置的估计旋转 量和/或旋转方向。无线设备的旋转可影响接收波束配置的有效性,例如, 取决于已发生了多少旋转,使得可能的情况是对接收波束配置的修改可改 善下行链路数据波束的接收。
对接收波束配置的修改的量和类型可取决于旋转的量和方向,并且可 能还取决于由无线设备使用的接收波束码本的空间粒度。例如,可能修改 可包括保持在与第一接收波束配置相同的接收波束码字内的当前接收波束 配置的扰动,诸如作为一种可能性,例如,如果旋转的量相对较小并且/或 者接收波束码本相对稀疏,则无线设备的一个或两个天线元件旋转45度。 作为另一种可能性,可能修改可包括选择与第一接收波束配置不同的接收 波束码字,例如,如果旋转的量相对较大并且/或者接收波束码本相对较密 集。
需注意,虽然估计的旋转和/或其他运动感测信息可为用于选择用于修 改接收波束配置的一个或多个候选项的一个可能基础,但是根据需要,可 附加地或另选地使用任何数量的其他方法。
在510中,无线设备可确定对接收波束配置的可能修改是否改善下行 链路数据波束接收。这可包括至少在一些情况下测试使用下行链路数据波 束对接收波束配置的可能修改。例如,无线设备可使用由可能修改在配置 的持续时间(例如,根据具有蜂窝基站的蜂窝链路的一个或多个时隙)修 改的(“第二”)接收波束配置来接收下行链路数据波束,并且当使用第 一接收波束配置和第二接收波束配置中的每一者来接收下行链路数据波束 时,可确定信号强度、信噪比和/或各种其他可能度量中的任一者。可比较 所确定的一个或多个度量,并且如果第二接收波束配置的该一个或多个度 量比第一接收波束配置的更好,则可确定对接收波束配置的可能修改改善 了下行链路数据波束接收,而如果第二接收波束配置的该一个或多个度量 比第一接收波束配置的更差,则可确定对接收波束配置的可能修改不改善 下行链路数据波束接收。
至少根据一些实施方案,如果确定对接收波束配置的可能修改不改善 下行链路数据波束接收,则无线设备可确定不修改蜂窝链路的接收波束配 置。在这种情况下,无线设备可随后使用第一接收波束配置来接收下行链 路数据波束。同样,如果确定对接收波束配置的可能修改改善了下行链路 数据波束接收,则无线设备可确定修改蜂窝链路的接收波束配置。在这种 情况下,无线设备可随后使用第二接收波束配置来接收下行链路数据波束。
需注意,无线设备可估计是否修改其接收波束配置任何次数,例如, 如根据配置的触发所触发的那样做。例如,在被配置为这样做时,每当检 测到旋转大于配置的旋转阈值时和/或每当自无线设备先前已经估计是否修 改其接收波束配置以来经过特定量的时间,无线设备都可估计是否修改其 接收波束配置。至少根据一些实施方案,此类估计和偶尔检查可能接收波 束配置修改是否会改善数据波束接收可获得无线设备更准确的接收波束跟 踪。
另外,应当注意,在某些情况下,无线设备可被配置为重新评估仅使 用参考信号的接收波束跟踪是否提供足够的性能,或者运动感测信息辅助 的对无线设备的接收波束配置的可能修改的选择和/或使用由蜂窝基站提供 的数据波束来测试可能接收波束修改是否可改善接收波束跟踪性能。例 如,当发生切换时,并且/或者如果已经向无线设备提供了新的参考信号配 置,则可能的是,仅使用参考信号的接收波束跟踪可在其先前不足时变得 足够,或者可在其先前足够时变得不足。因此,在此类情况下,可能的情 况是,无线设备被配置为再次估计是否启用一个或多个触发器以确定是否 修改蜂窝链路的接收波束配置,是否在选择可能接收波束配置修改时启用 为无线设备的运动感测信息的使用,和/或是否使用下行链路数据波束来确 定此类可能接收波束配置修改是否改善下行链路数据波束接收。此类估计 可以与先前所述类似的方式执行,例如,至少作为一种可能性,包括确定仅使用参考信号执行接收波束配置选择是否满足指示良好性能的一个或多 个条件。
至少根据一些实施方案,诸如本文所述的用于选择可能接收波束配置 修改的运动检测辅助的方法和用于检查此类修改是否会改善无线设备性能 的下行链路数据波束的使用可在使用参考信号的接收波束细化机会相对有 限的场景中帮助改善接收波束跟踪。另选地或附加地,此类技术可潜在地 用于减少获得良好接收波束跟踪性能所需的参考信号测量的数量。
图6至图36-附加信息
提供了图6至图36和下文的信息,其示出涉及图5方法的进一步考虑 和可能的实施细节,并且并非旨在总体上限制本公开。下文提供的细节的 各种变化和另选方案是可能的并且应当认为落在本公开的范围内。
在3GPP 5G NR中,同步信号块(SSB)可用于P1过程以及粗略发射 和接收波束对准。通常,例如,与物理下行链路共享信道(PDSCH)波束 相比,SSB具有宽得多的波束宽度,因此附加P3过程可用于波束细化以支 持PDSCH传输。例如,图6至图7分别示出了在示例性测试场景中使用用 于接收波束对准的同步信号块和信道状态信息参考信号时的可能波束增益 的模式。图8至图9分别示出了根据一些实施方案的CSI-RS波束和SSB波 束的示例性表示。图10示出了根据一些实施方案的方位角中的CSR-RS波 束的信号强度模式的各方面。图11示出了根据一些实施方案的方位角中的 SSB波束的信号强度模式的各方面。图12示出了根据一些实施方案的仰角 中的波束的信号强度模式的各方面。如图所示,CSI-RS波束可比SSB波束 窄,并且可能的情况是,可使用CSI-RS高度精确地选择最高波束增益的仰 角和方位角。
然而,至少在一些情况下(例如,作为一种可能性,初始部署),可 能的情况是,网络基础设施装置可在初始PDSCH使用之前为P3过程提供 非周期性CSI-RS,并且可随后不配置非周期性CSI-RS,除非UE性能下 降。另外,应当指出的是,执行P3过程可需要UE的特定量的功率消耗并 且可中断数据接收,使得至少根据一些实施方案相对不频繁地执行P3过程可为有益的,例如只要仍然可获得良好的设备性能即可。
因此,至少在一些场景中,当基于参考信号的接收波束细化(例如, P3过程)机会相对不频繁时引入一种或多种可帮助改善接收波束跟踪性能 的技术,和/或减少获得良好性能所需的参考信号的数量(例如,减少接收 波束“搜索假设”的数量和/或改善相邻波束配置)可为有益的。可由UE 获得的旋转信息的使用可表示一种此类可能技术。
图13是示出根据一些实施方案的用于执行运动感测信息辅助的波束跟 踪的示例性可能方法的各方面的流程图。此类方法可包括UE使用下行链路 数据波束在旋转期间保持波束跟踪,潜在地以可导致对现有数据接收的最 小中断的方式。
如图所示,在1302中,无线设备可初始等待运动传感器输入。在 1304中,如果传感器输入指示已经发生超过旋转阈值(“A”度)的旋转 或已经过去大于时间阈值(“B”ms)的时间量,则该方法可前进至步骤 1306,而如果旋转小于旋转阈值并且已经过去小于时间阈值的时间量,则 无线设备可继续等待进一步的传感器输入。在1306中,可将旋转投影到当 前阵列方位角和仰角,并且在1308中,可确定方位角或仰角旋转是否大于 某个阈值。如果相对于当前阵列的旋转小于阈值,则无线设备可返回到等 待进一步的传感器输入。如果相对于当前参考取向的旋转大于阈值,则在 1310中,无线设备可选择可被提供至该无线设备的波束跟踪核心的下一个 接收波束(RxB)相位差值(PD)。当前参考取向的一个示例可为方位角 和仰角方向,在该方位角和仰角方向上测量当前接收波束以获得良好的性 能。
在1312中,波束跟踪核心可确定PD是否小于相邻RxB。如果是这 样,则在1314中可将PD添加到当前RxB,并且如果不是这样,则在1316 中可选择相邻RxB。在1318中,可根据所选择的RxB来配置无线设备的 RF电路。在1320中,当使用所选择的RxB时,可确定RSRP和/或SNR是 否改善。如果是这样,则在1322中可更新RxB以保持对RxB的修改。如 果不是这样,则在1324中可不更新RxB,使得先前的(未修改的)RxB可 用于后续的数据波束接收。因此,此类技术可允许无线设备更好地对准其 接收波束以改善性能和/或减少对P3过程的需要。在一些情况下,此类技术 还可帮助无线设备填充由无线设备使用的波束数据库(BDB)。
图14A至图14F示出了根据一些实施方案的其中执行运动感测信息辅 助的波束跟踪的无线设备在接收无线信号时旋转的示例场景的各方面。如 图所示,在图14A中,无线设备可以特定角度初始接收下行链路波束,并 且因此具有当前接收波束配置。在图14B中,可旋转无线设备,使得相对 于传入数据波束的当前接收波束的对准被修改。在图14C中,可将相位差 值添加到当前接收波束配置作为可能修改,并且可对数据波束测试该修改 以确定该修改是否改善接收。在图14C所示的示例中,该修改并不改善接 收,因此可保持当前接收波束配置。在图14D中,无线设备可被进一步旋 转,这可触发是否修改接收波束配置的另一确定。因此,在图14E中,可 将相位差值添加到当前接收波束配置作为可能修改,并且可对数据波束测 试该修改以确定该修改是否改善接收。在图14E所示的示例中,该修改改 善接收,因此可更新接收波束配置。如图14F所示,无线设备可随后使用 更新的接收波束来接收下行链路波束。
至少根据一些实施方案,如果基于参考信号的接收波束配置选择不提 供足够好的性能,则此类方法可为有用的,但是如果基于参考信号的接收 波束配置选择提供足够好的性能,则可不需要此类方法。因此,提供用于 确定基于参考信号的接收波束配置选择的有效性的框架以确定是否启用诸 如图13所示的方法的使用来进行运动辅助的接收波束跟踪可为有用的。图 15是示出一个此类可能框架的各方面的流程图。
在1502中,UE可从服务gNB接收SSB和CSI-RS配置信息。在1504 中,UE可确定CSI-RS(例如,用于P3过程)是否被配置(例如,周期性 或非周期性)。如果是这样,则UE可首先例如基于接收波束是否基于P3 测量而频繁改变来评估CSI-RS是否足以处理运动/旋转。例如,如果接收 波束不经常改变(例如,对于多个连续测量保持不变),则这可指示当前 P3配置是足够的。因此,在1506中,UE可确定基于P3过程选择的接收波 束对于平均特定数量(“K”)的测量是否保持不变。如果是这样,则在 1508中,UE可确定不启用运动辅助的或通常“基于PDSCH的”接收波束 跟踪(例如,P3配置可提供足够的接收波束跟踪性能)。如果基于P3过程 选择的接收波束对于平均K个测量不保持不变,或者如果CSI-RS未被配 置,则UE可进一步估计SSB用于波束跟踪的有效性。在这种情况下,UE 可估计PDSCH和SSB之间是否存在明显的RSRP差异,就像差异相对较 小,这可指示SSB足够密集。因此,在1510中,对于特定数量 (“NA”)的测量,UE可确定所选择的SSB的RSRP减去PDSCH的 RSRP的绝对值是否大于某个阈值(“A”dB)。如果不是这样,则UE还 可前进至步骤1508,并且可确定不启用运动辅助的接收波束跟踪(例如, 使用SSB的接收波束跟踪可提供足够的接收波束跟踪性能)。如果是这 样,则在1512中,UE可确定启用运动辅助的接收波束跟踪。在这种情况 下,可能的情况是使用CSI-RS和/或SSB接收波束跟踪可能无法提供足够 的接收波束跟踪性能,并且使用诸如图13所示的方法来进一步接收波束细 化可为有益的。
一旦UE确定启用运动辅助的接收波束跟踪,该UE就可选择用于运动 辅助的接收波束跟踪的参数(例如,旋转阈值和/或定时器阈值),因为在 不同条件下使用不同参数可为有益的。图16是示出根据一些实施方案的用 于确定在执行波束跟踪时使用运动感测信息的配置的一种可能方法的各方 面的流程图。在例示的方法中,用于触发运动辅助的接收波束跟踪的一个 或多个条件可由UE的运动状态、UE的信道条件和接收波束码本空间粒度来确定。例如,如果运动高速,则该一个或多个条件可被配置为更经常地 由于UE取向变化而触发运动辅助的接收波束跟踪。类似地,如果接收波束 的码本在空间域中相对密集,则可能通过更频繁地触发运动辅助的接收波 束跟踪来获得更大的增益。
如图所示,在例示的方法中,在1602中,UE可基于接收波束测量来 确定当前相干跟踪角度和模拟码字选择策略。在确定相干跟踪角度的情况 下,作为一种可能性,条件可被划分为稀疏多路径或丰富多路径,例如, 基于对不同接收波束的CSI-RS和SSB的现有测量。作为一种可能性,稀疏 多路径条件可包括其中仅1-2个SSB和CSI-RS波束具有强RSRP并且该强 RSRP被限于具有近角域间距的接收波束的那些条件。作为一种可能,丰富 多路径条件可包括其中至少2个SSB和CSI-RS波束具有强RSRP并且该强 RSRP可从具有大角域间距的接收波束获得的那些条件。
在1604中,UE可确定旋转阈值(“A”度)和定时器阈值(“B” ms)以触发运动辅助的接收波束跟踪。作为一种可能性,对于稀疏多路径 场景,由于可能仅有1-2个多路径波束传入,因此具有相对近角度的旋转阈 值可被设置为对应于基于当前参考接收波束的所选择的劣化量(“X” dB)的角度。在这种情况下,可能的情况是UE仅需要跟踪单个传入方向 变化。此外,在这种情况下,作为一种可能性,定时器阈值可被设置为等 于A度除以UE的平均旋转速度的值。这可有利于至少根据平均旋转速度 触发运动和/或PDSCH辅助的接收波束跟踪,以防止在不检查是否修改接 收波束配置的情况下发生过长的时间量。
作为另一种可能性,对于丰富多路径场景,由于可能存在以不同角度 传入的多个多路径波束,旋转阈值可被设置为对应于基于当前参考接收波 束以及第二最强参考接收波束的所选择的劣化量(“X”dB)的角度。在 这种情况下,可能的情况是UE需要跟踪至少两个不同的角度。此外,在这 种情况下,作为一种可能性,定时器阈值可被设置为等于A度除以UE的 平均旋转速度的值,例如,类似地以有利于至少根据该平均旋转速度触发 运动辅助的接收波束跟踪,以防止在不检查是否修改接收波束配置的情况 下发生过长的时间量。
在1606中,UE可利用A度和B ms将运动辅助的接收波束跟踪配置 为参数。在1608中,如果满足旋转阈值或定时器阈值中的任一者,则UE 可提取运动传感器输入并触发运动辅助的接收波束跟踪。需注意,至少根 据一些实施方案,该步骤还可对应于图13的步骤1304。
随着情况改变,重新估计是否启用运动辅助的接收波束跟踪和/或重新 选择哪些参数用于运动辅助的接收波束跟踪例如以保持该运动辅助的接收 波束跟踪的有效性可为有用的。图17是示出根据一些实施方案的用于确定 何时重新评估在执行波束跟踪时是否使用运动感测信息以及以哪种配置使 用运动感测信息的示例性可能方法的各方面的流程图。
如图所示,在1702中,UE可诸如根据图15所示的方法或根据另一种 可能方法来确定是否启用运动辅助的接收波束跟踪。在1704中,如果UE 确定启用运动辅助的接收波束跟踪,则该UE可确定运动辅助的接收波束跟 踪配置,诸如根据图16所示的方法或根据另一种可能方法。在1706中, 一旦UE确定了运动辅助的接收波束跟踪配置,该UE就可以执行运动辅助 的接收波束跟踪,诸如根据图13所示的方法或根据另一种可能方法。如果 多路径环境改变,则UE可返回到步骤1704以重新评估运动辅助的接收波 束跟踪配置。作为一种可能性,这在例如接收波束RSRP已随着不同的接 收波束而显著改变的情况下可为有用的。如果发生切换和/或接收到新的 SSB/CSI-RS配置,则UE可返回到步骤1702以重新评估是否启用运动辅助 的接收波束跟踪。这在例如新配置使用新配置的参考信号获得更好或更差 的接收波束跟踪性能的情况下可为有用的。
图18示出了其中执行运动感测信息辅助的波束跟踪和/或PDSCH辅助 的波束跟踪的无线设备在接收无线信号时旋转的示例场景的附加的各方 面。在例示的场景中,gNB和UE可在频率范围2(FR2)中以非独立模式 使用5G NR进行通信。如图所示,在例示的场景中,UE可接收SSB波束 以及CSI-RS波束。在数据接收期间,可使用1至2个窄发射波束,并且可与P3的CSI-RS波束准共址(QCL)/相同。因此,除了专用P3 CSI-RS之 外,可能使用数据波束接收来保持接收波束跟踪。如图所示,当检测到相 对于大于某个阈值的参考取向的旋转时,则例如可将根据取向变化的1-2个 天线元件上的+/-45度扰动应用于下一个下行链路数据时隙。此类相位变化 可能不如码字变化突然,因此可能对现有数据接收的影响较小。此类扰动 在图18中被示出为UE的初始“测量1”旋转1810,并且在UE模拟码本 中被示出为“测量1”1820。UE的进一步旋转可以导致对UE模拟码本的 不同码字的扰动,诸如图18中被示出为UE的后续的“测量2”旋转 1812,并且在UE模拟码本中被示出为“测量2”1822。在每种情况下,如 果度量(例如SNR、RSRP等)改善,则可以保持新的扰动码字,而如果 度量没有改善,则UE可恢复到原始码字(梯度下降)。需注意,对于某些 阵列尺寸,扰动可与在一个天线元件上施加+/-45度一样简单。还需注意, 可能将不同的权重应用于两个极化以使搜索加倍(例如,一次操作即可完 成迟早门估计)。
如前所述,运动辅助的接收波束跟踪方法可包括根据某个旋转差值来 选择是将相位差值应用于当前接收波束码字还是选择与当前接收波束码字 不同的接收波束码字,并且仅在改善SNR/RSRP等的情况下更新新的接收 波束。可能优选的是,限制/控制与当前接收波束码字的偏差,例如以使接 收期间的可能损失最小化,因为可使用数据波束来确定是否利用新的接收 波束来改善接收。在某些情况下,可能优选的是,在不需要攻角(AoA)或绝对取向的情况下实施偏差,并且对未知信道和天线不完善性该偏差是 稳健的。因此,作为一种可能性,对于小型码本,一种方法可包括在一个 或多个天线元件上应用π/4调节并检查此类调节是否落入现有码字中,然后 使用所得配置。对于大型码本,可以跳过一个或多个天线元件上的π/4调 节。图19至图20示出了根据一些实施方案的相对较小和较大码本的示 例。具体地讲,图19示出了具有120度的6个码字的码本示例,而图20 示出了具有120度的24个码字的码本示例。
图21至图30示出了根据一些实施方案的其中可使用运动感测信息辅 助的波束跟踪的示例性可能测试场景的各种参数和结果。图21示出了测试 场景的波束布置的各方面。根据该配置,gNB可具有多个天线,该多个天 线具有根据3GPP 36.873的元件模式。可使用在约4度的方位角和约8度的 仰角中具有半功率带宽(HPBW)的1个CSI-RS波束,以及在约34度的 方位角和约8度的仰角中具有HPBW的1个SSB波束,诸如图8至图9所 示。在根据3GPP36.873的元件模式中,UE可具有4×1或2×1天线阵列。 UE波束可在约20度的方位角和约65度的仰角中具有HPBW。图22中示 出了UE波束的视觉表示,而图23是示出UE波束在方位角中的信号强度 模式的各方面的曲线图。所使用的信道模型可为双射线模型(稀疏多路 径)。
第一测试场景可包括其中P3 CSI-RS不丰富的场景。具体地讲,在第 一测试场景中,可假设提供初始P3测量,之后不提供进一步调度的P3测 量,使得任何后续的接收波束调节/选择都基于SSB测量。图24至图26示 出了相对于在此类场景中不使用运动辅助的接收波束跟踪方法,在使用运 动辅助的接收波束跟踪方法时UE性能的各方面。如图24所示,当以5度 步长触发运动辅助的接收波束跟踪时,运动辅助的接收波束跟踪方法导致 比在没有运动检测辅助的情况下接收波束选择基于SSB测量时明显更好的 UE接收增益,并且几乎收敛于执行连续P3接收波束选择的“理想”场 景。需注意,此类“理想”场景在实践中可为不可用的,因为此类连续P3 测量会排除任何数据传输,但是可表示运动辅助的接收波束跟踪方法的有 效性的有用基准。图25还示出在例示的测试场景中,相比于对于仅基于 SSB测量的接收波束选择,对于运动辅助的接收波束跟踪方法的相对于 “理想”CSI-RS场景的损耗明显更小,而图26是示出在例示的测试场景 中,相比于对于仅基于SSB测量的接收波束选择,对于运动辅助的接收波 束跟踪方法的对理想接收波束的接收波束索引差值可大体上保持更接近零 的经验累积分布函数(CDF)。还可以注意到,在例示的测试场景中,对 于在1秒内完成的60度旋转,在120KHz子载波间距和8000个总时隙的情 况下,由使用运动辅助的接收波束跟踪方法引起的数据中断可以小于 0.2%。
图27至图28分别示出了使用SSB测量和使用运动辅助的接收波束跟 踪方法的PDSCH波束跟踪性能的各方面。在例示的场景中,基于SSB测 量选择的接收波束可与理想PDSCH接收波束不对准,例如,即使连续测量 可用。例如,如图27所示,通过所示测试旋转的相当大部分,根据SSB测 量的具有最高接收增益的接收波束可为接收波束1,而根据CSI-RS测量的 具有最高接收增益的接收波束可为接收波束2。相比之下,如图28所示, 在测试场景中,运动辅助的接收波束跟踪方法可基本上收敛于会基于连续 CSI-RS测量来选择的相同接收波束(接收波束2),包括针对其中基于 SSB测量的接收波束选择会导致对接收波束1的选择的旋转的部分。
图29至图30示出了当在测试场景中使用运动辅助的接收波束跟踪方 法时使用不同相移器量化值的影响。在图29中,可使用π/4量化,而在图 30中,可使用π/16量化。如图所示,至少在例示的测试场景中,运动辅助 的接收波束跟踪方法可利用两个相移器量化值产生类似的结果。
图31至图34示出了根据一些实施方案的用于保持取向索引的波束数 据库的示例性可能技术的各方面。波束数据库可用于至少一些波束跟踪技 术,例如以辅助选择一个或多个接收波束以在指示某个发射配置时进行搜 索(例如,使用发射配置指示(TCI))。作为一种可能性,波束数据库可 包括其中记录针对各个可能接收波束中的每个的RSRP、针对一个或多个参 考信号中的每个的RSRP、针对某组最近测量的RSRP的表。
考虑到无线设备的旋转的可能性,在一些情况下,将波束数据库与特 定取向范围(例如,进行测量时无线设备的取向)相关联可为有用的,例 如因为如果无线设备的取向改变并且未相应地更新波束数据库,则可能发 生未对准。此外,可能有利的是利用多个取向索引的波束数据库,例如, 用于多个可能取向中的每个。这样,当选择要搜索的一个或多个接收波束 时,无线设备可能够针对其当前取向使用最适用的波束数据库。例如,图 31示出了其中指定了2个取向范围(例如,彼此相对)的示例性场景的各 方面。根据无线设备的取向和由蜂窝基站提供的TCI,可使用与取向范围1 相关联的波束数据库,或者可使用与取向范围2相关联的波束数据库;在 例示的示例中,考虑到无线设备的当前取向和由蜂窝基站提供的TCI,可 使用与取向范围2相关联的波束数据库。
图32还示出了其中包括图31所示的2个取向范围的波束数据库信息 的表的简化示例。继续图31的例示场景的示例,在这种情况下,与取向范 围2相关联的波束数据库可由无线设备使用。
需注意,虽然在图31至图32的示例场景中示出了2个取向范围,但 可根据需要使用任何数量的取向范围。然而,应当指出的是,至少根据一 些实施方案,限定更多数量的取向范围可能需要更大的存储器/存储容量, 并且/或者可能在超过特定数量的取向范围的情况下获得减少的益处。
图33是示出根据一些实施方案的用于更新取向索引的波束测量数据库 的可能过程的流程图。如图所示,在3302中,UE可例如基于该UE的运动 感测电路来确定其取向范围。在3304中,UE可确定其取向范围是否已相 对于其先前的取向范围值改变。在3306中,UE可向该UE的波束管理模块 指示其新的取向范围索引(如果需要,可能仅在取向范围索引已经改变的 情况下)。在3308中,UE可执行一个或多个接收波束测量并将所得的一 个或多个RSRP记录到与当前取向范围相关联的取向索引表中。
图34是示出根据一些实施方案的用于利用取向输入执行波束跟踪的可 能过程的流程图。在3402中,UE可开始波束跟踪过程,并确定该UE的当 前取向范围索引。在3404中,UE可确定该UE的当前取向的测量表是否包 括足够的测量(例如,用于选择波束搜索候选项)。如果是这样,则在 3406中,UE可基于该UE的当前取向的测量表来执行波束跟踪。如果不是 这样,则在3408中,UE可在假设没有测量可用的情况下开始波束搜索。
如前所述,SSB和CSI-RS波束(例如,以及由蜂窝基站提供的其他可 能波束)可在方位角和仰角中具有不同的特征(例如,HPBW配置文 件)。例如,至少根据一些实施方案,对于gNB,由于方位角域中的更丰 富的角度扩展,通常可能优选的是具有更窄的方位角波束(例如,相对于 仰角)。图35示出了至少根据一些实施方案的UE的方位角域的取向可如 何根据UE的取向/姿势而不同。因此,可用于至少一些UE的另一种技术 可包括利用运动感测信息来检测UE取向或姿势,并因此对方位角或仰角中 的波束搜索进行优先级排序。例如,至少在一些情况下,虽然在SSB搜索 中,可能的情况是仰角或方位角可被优先考虑,但是对于数据波束,可能 的情况是方位角可被优先考虑。为了实现这一点,可能存在的情况是需要 取向信息。例如,对于上行链路波束管理,UE可优先考虑在方位角波束上 的第一次扫描,例如以减少或最小化锁定在合适的上行链路波束中的发射 量。
因此,图36是示出用于执行优先考虑UE取向/姿势的波束搜索的可能 过程的流程图。在3602中,可在三维中确定UE的取向/保持姿势。在3604 中,UE的天线面板可被划分为方位角面板和仰角面板。在3606中,可确 定已发起的波束搜索是SSB搜索还是另一种类型的波束搜索。如果已发起 的搜索是SSB搜索,则在3608中,可在没有取向优先级设置的情况下执行 默认波束搜索,例如,因为可以优先考虑方位角或仰角。然而,如果已发 起的搜索不是SSB搜索,则在3610中,UE可首先在方位角面板上执行波 束跟踪,然后可在仰角面板上执行波束跟踪。
在以下中,提供了另外的示例性实施方案。
一组实施方案可包括一种装置,包括:处理元件,该处理元件被配置 为使无线设备:建立与蜂窝基站的蜂窝链路;为该蜂窝链路选择第一接收 波束配置;使用第一接收波束配置在物理下行链路共享信道(PDSCH)上 接收下行链路数据;检测触发以确定是否修改该蜂窝链路的接收波束配 置;并且确定是否修改该蜂窝链路的接收波束配置,其中为了确定是否修 改该蜂窝链路的接收波束配置,处理元件被进一步配置为使得无线设备: 选择第二接收波束配置作为对第一接收波束配置的候选修改;使用PDSCH 数据接收来确定第二接收波束配置相对于第一接收波束配置是否改善信号 强度或信噪比中的一者或多者;并且如果第二接收波束配置相对于第一接 收波束配置改善了信号强度或信噪比中的一者或多者,则确定将该蜂窝链 路的接收波束配置修改为第二接收波束配置。
根据一些实施方案,处理元件被进一步配置为使得无线设备:确定使 用来自蜂窝基站的参考信号的接收波束配置选择是否满足一个或多个接收 波束配置选择条件;至少部分地基于使用来自蜂窝基站的参考信号的接收 波束配置选择是否满足一个或多个接收波束配置选择条件来确定是否启用 触发以确定是否修改蜂窝链路的接收波束配置以及确定是否启用针对接收 波束配置选择的PDSCH数据接收的使用。
根据一些实施方案,该一个或多个接收波束配置选择条件包括以下中 的一者或多者:对于特定数量的测量,基于3GPP P3过程选择的接收波束 配置是否保持不变;或者对于特定数量的测量,同步信号的信号强度值是 否与数据信道的信号强度值相差特定阈值。
根据一些实施方案,处理元件被进一步配置为使得无线设备:确定已 发生无线设备切换并且/或者已向无线设备提供新的参考信号配置;至少部 分地基于确定已发生无线设备切换并且/或者已向无线设备提供新的参考信 号配置来重新评估是否启用触发以确定是否修改蜂窝链路的接收波束配置 以及确定是否启用针对接收波束配置选择的PDSCH数据接收的使用。
根据一些实施方案,处理元件被进一步配置为使得无线设备:至少部 分地基于以下中的一者或多者来选择旋转阈值或时间阈值中的一者或多 者:无线设备的运动状态;无线设备处的多路径条件;或者无线设备的接 收波束码本空间粒度,其中用于确定是否修改蜂窝链路的接收波束配置的 触发包括以下中的至少一者:检测到无线设备的旋转大于旋转阈值;或者 检测到自先前确定是否修改接收波束配置以来已经过去的时间量大于时间阈值。
根据一些实施方案,处理元件被进一步配置为使得无线设备:确定已 改变无线设备的运动状态、无线设备处的多路径条件或无线设备的接收波 束码本空间粒度中的一者或多者;并且至少部分地基于对无线设备的运动 状态、无线设备处的多路径条件或无线设备的接收波束码本空间粒度中的 一者或多者的改变来修改旋转阈值或时间阈值中的一者或多者。
另一组实施方案可包括一种无线设备,包括:天线阵列;无线电部 件,该无线电部件可操作地耦接到该天线阵列;以及处理元件,该处理元 件可操作地耦接到无线电部件;其中该无线设备被配置为:建立与蜂窝基 站的蜂窝链路,为该蜂窝链路选择第一接收波束配置;使用第一接收波束 配置来接收下行链路数据波束;至少部分地基于该无线设备的运动感测信 息来选择第二接收波束配置作为对第一接收波束配置的可能修改;并且确 定相对于使用第一接收波束配置时,使用第二接收波束配置时下行链路数 据波束的信号强度或信噪比中的一者或多者是否改善。
根据一些实施方案,为了确定相对于使用第一接收波束配置时,使用 第二接收波束配置时下行链路数据波束的信号强度或信噪比中的一者或多 者是否改善,该无线设备被进一步配置为:根据与蜂窝基站的蜂窝链路, 使用用于一个或多个时隙的第二接收波束配置来接收下行链路数据波束; 并且将当使用第一接收波束配置接收时的下行链路数据波束的信号强度和 信噪比中的一者或多者与当使用第二接收波束配置接收时的下行链路数据 波束的信号强度和信噪比中的一者或多者进行比较。
根据一些实施方案,在其中使用第二接收波束配置接收下行链路数据 波束的一个或多个时隙之后,该无线设备被进一步配置为:如果确定相对 于使用第一接收波束配置时,使用第二接收波束配置时下行链路数据波束 的信号强度或信噪比中的一者或多者没有改善,则使用第一接收波束配置 接收下行链路数据波束;如果确定相对于使用第一接收波束配置时,使用 第二接收波束配置时下行链路数据波束的信号强度或信噪比中的一者或多 者有所改善,则使用第二接收波束配置接收下行链路数据波束。
根据一些实施方案,该无线设备被进一步配置为:至少部分地基于该 无线设备的运动感测信息来确定启用一个或多个触发以选择可能接收波束 配置修改,其中确定启用该一个或多个触发以选择可能接收波束配置修改 至少部分地基于使用来自蜂窝基站的参考信号的接收波束配置选择不满足 一个或多个接收波束配置选择条件,其中选择第二接收波束配置作为对第 一接收波束配置的可能修改还至少部分地基于检测触发以选择可能接收波 束配置修改。
根据一些实施方案,该无线设备被进一步配置为:确定已发生无线设 备切换或已向无线设备提供新的参考信号配置中的一者或多者;并且至少 部分地基于确定已发生无线设备切换或已向无线设备提供新的参考信号配 置中的一者或多者来重新评估是否启用一个或多个触发以至少部分地基于 无线设备的运动感测信息来选择可能接收波束配置修改。
根据一些实施方案,第二接收波束配置使用与第一接收波束配置相同 的接收波束码字,其中一个或多个天线元件相对于第一接收波束配置在第 二接收波束配置中被扰动。
根据一些实施方案,第二接收波束配置使用与第一接收波束配置不同 的接收波束码字。
另一组实施方案可包括一种方法,该方法包括:通过无线设备:建立 与蜂窝基站的蜂窝链路;为该蜂窝链路选择接收波束配置;使用所选择的 接收波束配置来接收下行链路数据波束;至少部分地基于该无线设备相对 于其先前位置的估计旋转来选择对接收波束配置的可能修改;确定对接收 波束配置的可能修改是否改善下行链路数据波束接收;以及至少部分地基 于对接收波束配置的可能修改是否改善下行链路数据波束接收来确定是否 根据对接收波束配置的可能修改来修改该蜂窝链路的接收波束配置。
根据一些实施方案,该方法还包括:如果确定对接收波束配置的可能 修改不改善下行链路数据波束接收,则确定不修改该蜂窝链路的接收波束 配置;以及如果确定对接收波束配置的可能修改改善了下行链路数据波束 接收,则确定修改该蜂窝链路的接收波束配置。
根据一些实施方案,该方法还包括:在没有运动感测信息的情况下使 用来自蜂窝基站的参考信号执行接收波束配置选择;确定在没有运动感测 信息的情况下使用来自蜂窝基站的参考信号的接收波束配置选择不满足一 个或多个接收波束配置选择条件;至少部分地基于确定在没有运动感测信 息的情况下使用来自蜂窝基站的参考信号的接收波束配置选择不满足一个 或多个接收波束配置选择条件来至少部分地基于无线设备的运动感测信息 来确定用于选择对接收波束配置的可能修改的一个或多个触发;以及检测 用于选择对接收波束配置的可能修改的触发,其中至少部分地基于检测用 于选择对接收波束配置的可能修改的触发来执行至少部分地基于无线设备 的相对于该无线设备的先前位置的估计旋转来选择对接收波束配置的可能 修改。
根据一些实施方案,该一个或多个接收波束配置选择条件包括以下中 的一者或多者:在没有运动感测信息的情况下使用来自蜂窝基站的参考信 号的接收波束配置选择导致对于至少特定数量的测量选择相同的接收波束 配置;或者对于至少特定数量的测量,来自蜂窝基站的同步信号的信号强 度值与来自蜂窝基站的数据信道的信号强度值相差小于差值阈值。
根据一些实施方案,一个或多个触发包括以下中的一者或多者:检测 到无线设备旋转大于旋转阈值的量;或者检测到自用于选择对接收波束配 置的可能修改的先前触发以来已经过去的大于时间阈值的时间量。
根据一些实施方案,该方法还包括:从至少第一取向范围和第二取向 范围确定无线设备的当前取向范围;以及至少部分地基于来自与无线设备 的当前取向范围相关联的测量表的测量数据来执行波束搜索。
根据一些实施方案,该方法还包括:确定无线设备的取向;确定该无 线设备的一个或多个天线面板是当前方位角面板以及该无线设备的一个或 多个天线面板是当前仰角面板;以及执行波束搜索,其中在波束搜索中优 先考虑方位角面板上的波束跟踪。
又一示例性实施方案可包括一种方法,其包括:由无线设备执行前述 示例的任何或所有部分。
另一示例性实施方案可包括一种设备,该设备包括:天线;无线电部 件,所述无线电部件耦接到所述天线;以及可操作地耦接到所述无线电部 件的处理元件,其中所述设备被配置为实现前述示例的任何部分或所有部 分。
示例性的另一组实施方案可包括非暂态计算机可访问存储器介质,其 包括程序指令,当该程序指令在设备处执行时,使该设备实现前述示例中 任一示例的任何或所有部分。
示例性的另一组实施方案可包括一种包括指令的计算机程序,该指令 用于执行前述示例中任一示例的任何或所有部分。
示例性的另一组实施方案可包括一种装置,该装置包括用于执行前述 示例中任一示例的任何或所有要素的装置。
示例性的另一组实施方案可包括一种装置,该装置包括处理元件,该 处理元件被配置为使无线设备执行前述示例中任一示例的任何或所有要 素。
众所周知,使用个人可识别信息应遵循公认为满足或超过维护用户隐 私的行业或政府要求的隐私政策和做法。具体地,应管理和处理个人可识 别信息数据,以使无意或未经授权的访问或使用的风险最小化,并应当向 用户明确说明授权使用的性质。
本发明的实施方案可通过各种形式中的任一种来实现。例如,在一些 实施方案中,可将本发明实现为计算机实现的方法、计算机可读存储器介 质或计算机系统。在其他实施方案中,可使用一个或多个定制设计的硬件 设备诸如ASIC来实现本发明。在其他实施方案中,可使用一个或多个可编 程硬件元件诸如FPGA来实现本发明。
在一些实施方案中,非暂态计算机可读存储器介质(例如,非暂态存 储器元件)可被配置为使其存储程序指令和/或数据,其中如果由计算机系 统执行所述程序指令,则使计算机系统执行一种方法,例如本文所述的方 法实施方案中的任一种,或本文所述的方法实施方案的任何组合,或本文 所述的任何方法实施方案的任何子集,或此类子集的任何组合。
在一些实施方案中,设备(例如UE)可被配置为包括处理器(或一组 处理器)和存储器介质(或存储器元件),其中所述存储器介质存储程序 指令,其中所述处理器被配置为从所述存储器介质中读取并执行所述程序 指令,其中所述程序指令是可执行的以实现本文所述的各种方法实施方案 中的任一种方法实施方案(或本文所述方法实施方案的任何组合,或本文 所述的任何方法实施方案中的任何子集或此类子集的任何组合)。可以各 种形式中的任一种来实现该设备。
虽然已相当详细地描述了上面的实施方案,但是一旦完全了解上面的 公开,许多变型和修改对于本领域的技术人员而言将变得显而易见。本公 开旨在使以下权利要求书被阐释为包含所有此类变型和修改。

Claims (20)

1.一种装置,包括:
处理元件,所述处理元件被配置为使得无线设备:
建立与蜂窝基站的蜂窝链路;
为所述蜂窝链路选择第一接收波束配置;
使用所述第一接收波束配置在物理下行链路共享信道PDSCH上接收下行链路数据;
检测用于确定是否修改所述蜂窝链路的接收波束配置的触发;以及
确定是否修改所述蜂窝链路的所述接收波束配置,其中为了确定是否修改所述蜂窝链路的所述接收波束配置,所述处理元件被进一步配置为使得所述无线设备:
选择第二接收波束配置作为对所述第一接收波束配置的候选修改;
使用PDSCH数据接收来确定所述第二接收波束配置相对于所述第一接收波束配置是否改善信号强度或信噪比中的一者或多者;以及
如果所述第二接收波束配置相对于所述第一接收波束配置改善了信号强度或信噪比中的一者或多者,则确定将所述蜂窝链路的所述接收波束配置修改为所述第二接收波束配置。
2.根据权利要求1所述的装置,其中所述处理元件被进一步配置为使得所述无线设备:
确定使用来自所述蜂窝基站的参考信号的接收波束配置选择是否满足一个或多个接收波束配置选择条件;
至少部分地基于使用来自所述蜂窝基站的参考信号的接收波束配置选择是否满足所述一个或多个接收波束配置选择条件来确定是否启用用于确定是否修改所述蜂窝链路的所述接收波束配置的所述触发以及确定是否启用针对所述接收波束配置选择的PDSCH数据接收的使用。
3.根据权利要求2所述的装置,其中所述一个或多个接收波束配置选择条件至少部分地基于以下中的一者或多者:
对于特定数量的测量结果,基于3GPP P3过程选择的接收波束配置是否保持不变;或者
对于特定数量的测量结果,同步信号的信号强度值是否与数据信道的信号强度值相差特定阈值。
4.根据权利要求2所述的装置,其中所述处理元件被进一步配置为使得所述无线设备:
确定已发生无线设备切换和/或已向所述无线设备提供新的参考信号配置;
至少部分地基于确定已发生无线设备切换和/或已向所述无线设备提供新的参考信号配置来重新评估是否启用用于确定是否修改所述蜂窝链路的所述接收波束配置的所述触发以及确定是否启用针对所述接收波束配置选择的PDSCH数据接收的使用。
5.根据权利要求1所述的装置,其中所述处理元件被进一步配置为使得所述无线设备:
至少部分地基于以下中的一者或多者来选择旋转阈值或时间阈值中的一者或多者:
所述无线设备的运动状态;
所述无线设备处的多路径条件;或者
所述无线设备的接收波束码本空间粒度,
其中用于确定是否修改所述蜂窝链路的所述接收波束配置的所述触发包括以下中的至少一者:
检测到所述无线设备的旋转大于所述旋转阈值;或者
检测到自先前确定是否修改所述接收波束配置以来已经过去的时间量大于所述时间阈值。
6.根据权利要求5所述的装置,其中所述处理元件被进一步配置为使得所述无线设备:
确定已改变所述无线设备的运动状态、所述无线设备处的多路径条件或所述无线设备的接收波束码本空间粒度中的一者或多者;以及
至少部分地基于对所述无线设备的运动状态、所述无线设备处的多路径条件或所述无线设备的接收波束码本空间粒度中的一者或多者的所述改变来修改所述旋转阈值或所述时间阈值中的一者或多者。
7.一种无线设备,包括:
天线阵列;
无线电部件,所述无线电部件能够操作地耦接到所述天线阵列;以及
处理元件,所述处理元件能够操作地耦接到所述无线电部件;
其中所述无线设备被配置为:
建立与蜂窝基站的蜂窝链路,
为所述蜂窝链路选择第一接收波束配置;
使用所述第一接收波束配置来接收下行链路数据波束;
至少部分地基于所述无线设备的运动感测信息来选择第二接收波束配置作为对所述第一接收波束配置的可能修改;以及
确定相对于使用所述第一接收波束配置时,使用所述第二接收波束配置时所述下行链路数据波束的信号强度或信噪比中的一者或多者是否改善。
8.根据权利要求7所述的无线设备,其中为了确定相对于使用所述第一接收波束配置时,使用所述第二接收波束配置时所述下行链路数据波束的信号强度或信噪比中的一者或多者是否改善,所述无线设备被进一步配置为:
根据与所述蜂窝基站的所述蜂窝链路,使用用于一个或多个时隙的所述第二接收波束配置来接收所述下行链路数据波束;以及
将当使用所述第一接收波束配置接收时的下行链路数据波束的信号强度和信噪比中的一者或多者与当使用所述第二接收波束配置接收时的下行链路数据波束的信号强度和信噪比中的一者或多者进行比较。
9.根据权利要求8所述的无线设备,其中在使用所述第二接收波束配置接收所述下行链路数据波束的所述一个或多个时隙之后,所述无线设备被进一步配置为:
如果确定相对于使用所述第一接收波束配置时,使用所述第二接收波束配置时所述下行链路数据波束的信号强度或信噪比中的一者或多者没有改善,则使用所述第一接收波束配置来接收所述下行链路数据波束;
如果确定相对于使用所述第一接收波束配置时,使用所述第二接收波束配置时所述下行链路数据波束的信号强度或信噪比中的一者或多者有所改善,则使用所述第二接收波束配置来接收所述下行链路数据波束。
10.根据权利要求7所述的无线设备,其中所述无线设备被进一步配置为:
至少部分地基于所述无线设备的运动感测信息来确定启用用于选择可能的接收波束配置修改的一个或多个触发,其中确定启用用于选择可能的接收波束配置修改的所述一个或多个触发至少部分地基于使用来自所述蜂窝基站的参考信号的接收波束配置选择不满足一个或多个接收波束配置选择条件,
其中选择所述第二接收波束配置作为对所述第一接收波束配置的可能修改还至少部分地基于检测到用于选择可能的接收波束配置修改的触发。
11.根据权利要求10所述的无线设备,其中所述无线设备被进一步配置为:
确定已发生无线设备切换或已向所述无线设备提供新的参考信号配置中的一者或多者;以及
至少部分地基于确定已发生无线设备切换或已向所述无线设备提供新的参考信号配置中的一者或多者,至少部分地基于所述无线设备的运动感测信息来重新评估是否启用用于选择可能的接收波束配置修改的一个或多个触发。
12.根据权利要求7所述的无线设备,
其中所述第二接收波束配置使用与所述第一接收波束配置相同的接收波束码字,其中相对于所述第一接收波束配置在所述第二接收波束配置中一个或多个天线元件被扰动。
13.根据权利要求7所述的无线设备,
其中所述第二接收波束配置使用与所述第一接收波束配置不同的接收波束码字。
14.一种方法,包括:
由无线设备:
建立与蜂窝基站的蜂窝链路;
为所述蜂窝链路选择接收波束配置;
使用所选择的接收波束配置来接收下行链路数据波束;
至少部分地基于所述无线设备相对于所述无线设备的先前位置的估计旋转来选择对所述接收波束配置的可能修改;
确定对所述接收波束配置的所述可能修改是否改善下行链路数据波束接收;以及
至少部分地基于对所述接收波束配置的所述可能修改是否改善下行链路数据波束接收来确定是否根据对所述接收波束配置的所述可能修改来修改所述蜂窝链路的所述接收波束配置。
15.根据权利要求14所述的方法,其中所述方法还包括:
如果确定对所述接收波束配置的所述可能修改不改善下行链路数据波束接收,则确定不修改所述蜂窝链路的所述接收波束配置;以及
如果确定对所述接收波束配置的所述可能修改会改善下行链路数据波束接收,则确定修改所述蜂窝链路的所述接收波束配置。
16.根据权利要求14所述的方法,其中所述方法还包括:
在没有运动感测信息的情况下使用来自所述蜂窝基站的参考信号来执行接收波束配置选择;
确定在没有运动感测信息的情况下使用来自所述蜂窝基站的参考信号的所述接收波束配置选择不满足一个或多个接收波束配置选择条件;
至少部分地基于确定在没有运动感测信息的情况下使用来自所述蜂窝基站的参考信号的所述接收波束配置选择不满足一个或多个接收波束配置选择条件,至少部分地基于所述无线设备的运动感测信息来确定用于选择对所述接收波束配置的可能修改的一个或多个触发;以及
检测用于选择对所述接收波束配置的可能修改的触发,
其中至少部分地基于检测用于选择对所述接收波束配置的可能修改的所述触发,至少部分地基于所述无线设备相对于所述无线设备的先前位置的估计旋转来选择对所述接收波束配置的可能修改。
17.根据权利要求16所述的方法,其中所述一个或多个接收波束配置选择条件包括以下中的一者或多者:
在没有运动感测信息的情况下使用来自所述蜂窝基站的参考信号的接收波束配置选择导致针对至少特定数量的测量结果选择相同的接收波束配置;或者
针对至少特定数量的测量结果,来自所述蜂窝基站的同步信号的信号强度值与来自所述蜂窝基站的数据信道的信号强度值相差小于差值阈值。
18.根据权利要求16所述的方法,其中所述一个或多个触发包括以下中的一者或多者:
检测到所述无线设备旋转大于旋转阈值的量;或者
检测到自用于选择对所述接收波束配置的可能修改的先前触发以来已经过去大于时间阈值的时间量。
19.根据权利要求14所述的方法,其中所述方法还包括:
从至少第一取向范围和第二取向范围确定所述无线设备的当前取向范围;以及
至少部分地基于来自与所述无线设备的所述当前取向范围相关联的测量表的测量数据来执行波束搜索。
20.根据权利要求14所述的方法,其中所述方法还包括:
确定所述无线设备的取向;
确定所述无线设备的一个或多个天线面板是当前方位角面板以及所述无线设备的一个或多个天线面板是当前仰角面板;以及
执行波束搜索,其中在所述波束搜索中优先考虑所述方位角面板上的波束跟踪。
CN202010381451.XA 2019-05-08 2020-05-08 使用下行链路数据接收和运动感测信息的波束跟踪 Active CN111918300B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962845188P 2019-05-08 2019-05-08
US62/845,188 2019-05-08
US16/865,827 US11658726B2 (en) 2019-05-08 2020-05-04 Beam tracking using downlink data reception and motion sensing information
US16/865,827 2020-05-04

Publications (2)

Publication Number Publication Date
CN111918300A true CN111918300A (zh) 2020-11-10
CN111918300B CN111918300B (zh) 2024-04-05

Family

ID=73047766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010381451.XA Active CN111918300B (zh) 2019-05-08 2020-05-08 使用下行链路数据接收和运动感测信息的波束跟踪

Country Status (2)

Country Link
US (1) US11658726B2 (zh)
CN (1) CN111918300B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507333A (zh) * 2021-06-22 2021-10-15 深圳大学 波束追踪方法和相关设备
WO2022120556A1 (en) * 2020-12-08 2022-06-16 Qualcomm Incorporated Techniques for sensor based beam adjustment

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110753388B (zh) * 2018-07-23 2021-08-20 华为技术有限公司 一种波束管理方法和相关设备
US11128366B2 (en) * 2019-06-17 2021-09-21 Qualcomm Incorporated Triggered sidelink quasi-colocation parameter update
US11627613B2 (en) 2019-12-13 2023-04-11 Apple Inc. Mechanism for low latency communication using historical beam information
EP4140053A1 (en) * 2020-04-20 2023-03-01 Telefonaktiebolaget LM ERICSSON (PUBL) Beam management for a radio transceiver device
US11606762B2 (en) * 2020-07-17 2023-03-14 Qualcomm Incorporated Synchronization signal block-level sleep mode
EP4315931A1 (en) * 2021-03-30 2024-02-07 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatus for identifying a tilt angle for a wireless device
US20230043953A1 (en) * 2021-08-09 2023-02-09 Qualcomm Incorporated Reduced overhead beam sweep for initial access
WO2023201151A1 (en) * 2022-04-11 2023-10-19 Qualcomm Incorporated Techniques for channel state information reference signal-based user equipment beam selection

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522095B1 (en) * 2005-07-15 2009-04-21 Lockheed Martin Corporation Polygonal cylinder array antenna
CN103718591A (zh) * 2013-09-09 2014-04-09 华为技术有限公司 一种波束追踪的方法、装置和系统
CN103814529A (zh) * 2011-07-15 2014-05-21 三星电子株式会社 在无线通信系统中用于波束锁定的装置和方法
US20150185002A1 (en) * 2013-12-27 2015-07-02 Intel Corporation Apparatus, system and method of estimating an orientation of a mobile device
KR20170073531A (ko) * 2015-12-18 2017-06-28 한국전자통신연구원 단말 회전시 빔 트래킹 방법 및 이를 포함하는 단말
US20170346545A1 (en) * 2016-05-26 2017-11-30 Qualcomm Incorporated System and method for beam switching and reporting
US20170373740A1 (en) * 2016-06-24 2017-12-28 Asustek Computer Inc. Method and apparatus for ue beamforming and beam sweeping in a wireless communication system
CN107852220A (zh) * 2015-07-31 2018-03-27 英特尔公司 用于5g系统的接收波束指示
US20180132116A1 (en) * 2016-10-26 2018-05-10 Invensense Inc. Systems and methods for motion assisted communication
WO2018085601A1 (en) * 2016-11-02 2018-05-11 Idac Holdings, Inc. Group-based beam management
WO2018204255A1 (en) * 2017-05-03 2018-11-08 Idac Holdings, Inc. Beam recovery mechanism

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7340279B2 (en) * 2001-03-23 2008-03-04 Qualcomm Incorporated Wireless communications with an adaptive antenna array
US20120064841A1 (en) * 2010-09-10 2012-03-15 Husted Paul J Configuring antenna arrays of mobile wireless devices using motion sensors
EP2761695B1 (en) * 2011-09-30 2020-10-21 Intel Corporation Method and apparatus for directional proxmity detection
CN104125021B (zh) * 2013-04-28 2016-12-28 华为技术有限公司 一种识别移动终端的运动状态的方法及移动终端
WO2015088419A1 (en) * 2013-12-13 2015-06-18 Telefonaktiebolaget L M Ericsson (Publ) Wireless device, network node, methods therein, for respectively sending and receiving a report on quality of transmitted beams
US20180159607A1 (en) * 2015-04-30 2018-06-07 Nokia Solutions And Networks Oy Rf beamforming control in a communication system
US11394447B2 (en) * 2016-03-03 2022-07-19 Idac Holdings, Inc. Methods and apparatus for beam control in beamformed systems
US11184851B2 (en) * 2016-07-18 2021-11-23 Netgear, Inc. Power management techniques for a power sensitive wireless device
CN114980334A (zh) 2016-08-11 2022-08-30 康维达无线有限责任公司 波束管理
US20200068462A1 (en) * 2016-11-04 2020-02-27 Telefonaktiebolaget Lm Ericsson (Publ) Measurement Report Triggering for Groups of Reference Signals
US10601492B2 (en) * 2017-01-05 2020-03-24 Futurewei Technologies, Inc. Device/UE-oriented beam recovery and maintenance mechanisms
US10090909B2 (en) * 2017-02-24 2018-10-02 At&T Mobility Ii Llc Maintaining antenna connectivity based on communicated geographic information
EP3621211A4 (en) * 2017-05-01 2020-10-21 NTT DoCoMo, Inc. USER TERMINAL DEVICE AND WIRELESS COMMUNICATION PROCEDURE
EP4013122A1 (en) * 2017-05-04 2022-06-15 Beijing Xiaomi Mobile Software Co., Ltd. Beam-based measurement configuration
JP2020112354A (ja) * 2017-05-11 2020-07-27 シャープ株式会社 端末装置、ロケーションサーバおよび端末装置における方法
CN107652220B (zh) 2017-09-20 2021-03-16 台州学院 一种检测半胱氨酸的荧光探针的制备方法及应用技术
US20190103908A1 (en) 2017-10-02 2019-04-04 Mediatek Inc. Method for Uplink Beam Indication for Wireless Communication System with Beamforming
US11456830B2 (en) * 2018-01-09 2022-09-27 Qualcomm Incorporated Aperiod tracking reference signal
US10616774B2 (en) * 2018-02-09 2020-04-07 Futurewei Technologies, Inc. Method and device for communications in millimeter-wave networks
US10727929B2 (en) * 2018-06-04 2020-07-28 Qualcomm Incorporated Receive beam selection for measuring a reference signal
WO2020152803A1 (ja) * 2019-01-23 2020-07-30 ソニー株式会社 端末装置及び方法
US10931346B2 (en) * 2019-02-21 2021-02-23 Qualcomm Incorporated Techniques for using rotation vectors for beam management in high frequency wireless networks
US10873947B2 (en) * 2019-02-27 2020-12-22 Cisco Technology, Inc. Internet of things (IoT) device location tracking using midambles

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522095B1 (en) * 2005-07-15 2009-04-21 Lockheed Martin Corporation Polygonal cylinder array antenna
CN103814529A (zh) * 2011-07-15 2014-05-21 三星电子株式会社 在无线通信系统中用于波束锁定的装置和方法
CN103718591A (zh) * 2013-09-09 2014-04-09 华为技术有限公司 一种波束追踪的方法、装置和系统
US20150185002A1 (en) * 2013-12-27 2015-07-02 Intel Corporation Apparatus, system and method of estimating an orientation of a mobile device
CN107852220A (zh) * 2015-07-31 2018-03-27 英特尔公司 用于5g系统的接收波束指示
KR20170073531A (ko) * 2015-12-18 2017-06-28 한국전자통신연구원 단말 회전시 빔 트래킹 방법 및 이를 포함하는 단말
US20170346545A1 (en) * 2016-05-26 2017-11-30 Qualcomm Incorporated System and method for beam switching and reporting
US20170373740A1 (en) * 2016-06-24 2017-12-28 Asustek Computer Inc. Method and apparatus for ue beamforming and beam sweeping in a wireless communication system
US20180132116A1 (en) * 2016-10-26 2018-05-10 Invensense Inc. Systems and methods for motion assisted communication
WO2018085601A1 (en) * 2016-11-02 2018-05-11 Idac Holdings, Inc. Group-based beam management
WO2018204255A1 (en) * 2017-05-03 2018-11-08 Idac Holdings, Inc. Beam recovery mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022120556A1 (en) * 2020-12-08 2022-06-16 Qualcomm Incorporated Techniques for sensor based beam adjustment
CN113507333A (zh) * 2021-06-22 2021-10-15 深圳大学 波束追踪方法和相关设备

Also Published As

Publication number Publication date
CN111918300B (zh) 2024-04-05
US11658726B2 (en) 2023-05-23
US20200358515A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
CN111918300B (zh) 使用下行链路数据接收和运动感测信息的波束跟踪
US20220399929A1 (en) Beam Failure Recovery Using Contention Based Random Access
US11540183B2 (en) Consecutive conditional handovers
US11937328B2 (en) Millimeter wave link reliability and power efficiency improvements using sensor input
US20230020681A1 (en) Determining a Radio Access Technology Availability Indicator to Present
US20230284132A1 (en) Application and Service Context Aware Cell Selection
US11627613B2 (en) Mechanism for low latency communication using historical beam information
WO2022067848A1 (en) Configuring and providing physical downlink control channel communications with improved reliability
US20220386222A1 (en) Autonomous Cell Measurements
WO2022027254A1 (en) Cross-cell beam failure recovery
WO2022067851A1 (en) Performing physical uplink shared channel transmissions with improved reliability
WO2021159324A1 (en) Channel state information reporting
US11917424B2 (en) Signaling a quasi-colocation update with aperiodic reference signals
WO2023115453A1 (en) Nr ssb measurements with cca for 60ghz range
WO2023236108A1 (en) Conditional handover configuration in a non-terrestrial network
US20220303086A1 (en) Using Aperiodic Reference Signals for a Spatial Relationship Update
US20230284057A1 (en) CSSF Design for UE with NeedForGap Capability
US20240080743A1 (en) Conditional Handover Candidate Cell Selection
US20240114476A1 (en) Synchronization and Resource Allocation for Sidelink Positioning
US20230148159A1 (en) Latency Reduction in a Multi-Beam Wireless Communication System
WO2022067850A1 (en) Configuring physical uplink shared channel transmissions with improved reliability
WO2022067849A1 (en) Physical downlink control channel reception with improved reliability
US20230156607A1 (en) System and Method for Closed-loop Uplink Power Control
CN113395774A (zh) 使用传感器输入实现的毫米波链路的可靠性和功率效率的改善

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant