CN111914839B - 基于YOLOv3的同步端到端车牌定位与识别方法 - Google Patents
基于YOLOv3的同步端到端车牌定位与识别方法 Download PDFInfo
- Publication number
- CN111914839B CN111914839B CN202010740113.0A CN202010740113A CN111914839B CN 111914839 B CN111914839 B CN 111914839B CN 202010740113 A CN202010740113 A CN 202010740113A CN 111914839 B CN111914839 B CN 111914839B
- Authority
- CN
- China
- Prior art keywords
- license plate
- loss
- network
- license
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 230000001360 synchronised effect Effects 0.000 title abstract description 10
- 238000001514 detection method Methods 0.000 claims abstract description 61
- 238000012549 training Methods 0.000 claims abstract description 25
- 238000012360 testing method Methods 0.000 claims abstract description 11
- 238000012795 verification Methods 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims abstract description 4
- 230000006870 function Effects 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 4
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 24
- 238000013527 convolutional neural network Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 13
- 238000004422 calculation algorithm Methods 0.000 description 12
- 238000013135 deep learning Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 230000011218 segmentation Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 6
- 238000005286 illumination Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 4
- 238000012706 support-vector machine Methods 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003708 edge detection Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000007477 logistic regression Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- HPTJABJPZMULFH-UHFFFAOYSA-N 12-[(Cyclohexylcarbamoyl)amino]dodecanoic acid Chemical compound OC(=O)CCCCCCCCCCCNC(=O)NC1CCCCC1 HPTJABJPZMULFH-UHFFFAOYSA-N 0.000 description 1
- IGRCWJPBLWGNPX-UHFFFAOYSA-N 3-(2-chlorophenyl)-n-(4-chlorophenyl)-n,5-dimethyl-1,2-oxazole-4-carboxamide Chemical compound C=1C=C(Cl)C=CC=1N(C)C(=O)C1=C(C)ON=C1C1=CC=CC=C1Cl IGRCWJPBLWGNPX-UHFFFAOYSA-N 0.000 description 1
- 102100032202 Cornulin Human genes 0.000 description 1
- 101000920981 Homo sapiens Cornulin Proteins 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013434 data augmentation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003702 image correction Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- HOWHQWFXSLOJEF-MGZLOUMQSA-N systemin Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)OC(=O)[C@@H]1CCCN1C(=O)[C@H]1N(C(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]2N(CCC2)C(=O)[C@H]2N(CCC2)C(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)C(C)C)CCC1 HOWHQWFXSLOJEF-MGZLOUMQSA-N 0.000 description 1
- 108010050014 systemin Proteins 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/62—Text, e.g. of license plates, overlay texts or captions on TV images
- G06V20/63—Scene text, e.g. street names
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computational Linguistics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010740113.0A CN111914839B (zh) | 2020-07-28 | 2020-07-28 | 基于YOLOv3的同步端到端车牌定位与识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010740113.0A CN111914839B (zh) | 2020-07-28 | 2020-07-28 | 基于YOLOv3的同步端到端车牌定位与识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111914839A CN111914839A (zh) | 2020-11-10 |
CN111914839B true CN111914839B (zh) | 2024-03-19 |
Family
ID=73286777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010740113.0A Active CN111914839B (zh) | 2020-07-28 | 2020-07-28 | 基于YOLOv3的同步端到端车牌定位与识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111914839B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112257720B (zh) * | 2020-11-20 | 2024-02-27 | 北京捍御者信息科技有限公司 | 提升车牌的中文字符自动检测识别率方法、装置及介质 |
CN112329881B (zh) * | 2020-11-20 | 2022-02-15 | 珠海大横琴科技发展有限公司 | 车牌识别模型训练方法、车牌识别方法及装置 |
CN112560608B (zh) * | 2020-12-05 | 2024-05-24 | 江苏爱科赛尔云数据科技有限公司 | 一种车辆车牌识别方法 |
CN113159153A (zh) * | 2021-04-13 | 2021-07-23 | 华南理工大学 | 一种基于卷积神经网络的车牌识别方法 |
CN113177528B (zh) * | 2021-05-27 | 2024-05-03 | 南京昊烽信息科技有限公司 | 基于多任务学习策略训练网络模型的车牌识别方法及系统 |
CN113642553B (zh) * | 2021-07-21 | 2024-05-28 | 陕西松洋通信科技有限公司 | 一种整体与部件目标检测相结合的非约束车牌精准定位方法 |
CN113903009B (zh) * | 2021-12-10 | 2022-07-05 | 华东交通大学 | 一种基于改进YOLOv3网络的铁路异物检测方法与系统 |
CN117152625B (zh) * | 2023-08-07 | 2024-10-22 | 西安电子科技大学 | 一种基于CoordConv和YOLOv5的遥感小目标识别方法、系统、设备及介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108009473A (zh) * | 2017-10-31 | 2018-05-08 | 深圳大学 | 基于目标行为属性视频结构化处理方法、系统及存储装置 |
CN108052859A (zh) * | 2017-10-31 | 2018-05-18 | 深圳大学 | 一种基于聚类光流特征的异常行为检测方法、系统及装置 |
CN110168559A (zh) * | 2017-12-11 | 2019-08-23 | 北京嘀嘀无限科技发展有限公司 | 用于识别和定位车辆周围物体的系统和方法 |
CN110619327A (zh) * | 2018-06-20 | 2019-12-27 | 湖南省瞬渺通信技术有限公司 | 一种复杂场景下基于深度学习的实时车牌识别方法 |
CN111310861A (zh) * | 2020-03-27 | 2020-06-19 | 西安电子科技大学 | 一种基于深度神经网络的车牌识别和定位方法 |
-
2020
- 2020-07-28 CN CN202010740113.0A patent/CN111914839B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108009473A (zh) * | 2017-10-31 | 2018-05-08 | 深圳大学 | 基于目标行为属性视频结构化处理方法、系统及存储装置 |
CN108052859A (zh) * | 2017-10-31 | 2018-05-18 | 深圳大学 | 一种基于聚类光流特征的异常行为检测方法、系统及装置 |
CN110168559A (zh) * | 2017-12-11 | 2019-08-23 | 北京嘀嘀无限科技发展有限公司 | 用于识别和定位车辆周围物体的系统和方法 |
CN110619327A (zh) * | 2018-06-20 | 2019-12-27 | 湖南省瞬渺通信技术有限公司 | 一种复杂场景下基于深度学习的实时车牌识别方法 |
CN111310861A (zh) * | 2020-03-27 | 2020-06-19 | 西安电子科技大学 | 一种基于深度神经网络的车牌识别和定位方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111914839A (zh) | 2020-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111914839B (zh) | 基于YOLOv3的同步端到端车牌定位与识别方法 | |
CN110059554B (zh) | 一种基于交通场景的多支路目标检测方法 | |
CN108171136B (zh) | 一种多任务卡口车辆以图搜图的系统及方法 | |
Li et al. | Traffic light recognition for complex scene with fusion detections | |
CN108875600A (zh) | 一种基于yolo的车辆信息检测和跟踪方法、装置及计算机存储介质 | |
CN112016605B (zh) | 一种基于边界框角点对齐和边界匹配的目标检测方法 | |
Zhang et al. | Road recognition from remote sensing imagery using incremental learning | |
Shen et al. | Vehicle detection in aerial images based on lightweight deep convolutional network and generative adversarial network | |
CN104978567A (zh) | 基于场景分类的车辆检测方法 | |
CN111178451A (zh) | 一种基于YOLOv3网络的车牌检测方法 | |
CN108734200B (zh) | 基于bing特征的人体目标视觉检测方法和装置 | |
CN112200186B (zh) | 基于改进yolo_v3模型的车标识别方法 | |
CN113177528B (zh) | 基于多任务学习策略训练网络模型的车牌识别方法及系统 | |
CN114049572A (zh) | 识别小目标的检测方法 | |
CN115170611A (zh) | 一种复杂交叉路口车辆行驶轨迹分析方法、系统及应用 | |
CN112990282A (zh) | 一种细粒度小样本图像的分类方法及装置 | |
Gong et al. | A two-level framework for place recognition with 3D LiDAR based on spatial relation graph | |
CN114298187B (zh) | 一种融合改进注意力机制的目标检测方法 | |
Yang et al. | A detection model of the complex dynamic traffic environment for unmanned vehicles | |
CN113723558A (zh) | 基于注意力机制的遥感图像小样本舰船检测方法 | |
Yang | Intelligent recognition of traffic signs based on improved YOLO v3 algorithm | |
CN112418207A (zh) | 一种基于自注意力蒸馏的弱监督文字检测方法 | |
Amrouche et al. | Real-time detection of vehicle license plates numbers | |
Yao et al. | Invoice detection and recognition system based on deep learning | |
CN115050044B (zh) | 一种基于MLP-Mixer的跨模态行人重识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240124 Address after: Room 709, No. 263, Gaotang Road, Tianhe District, Guangzhou, Guangdong 510000 Applicant after: Tewei Lexing (Guangzhou) Technology Co.,Ltd. Country or region after: China Address before: 443002 No. 8, University Road, Xiling District, Yichang, Hubei Applicant before: CHINA THREE GORGES University Country or region before: China |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A synchronous end-to-end license plate localization and recognition method based on YOLOv3 Granted publication date: 20240319 Pledgee: Industrial and Commercial Bank of China Limited Guangzhou tianpingjia sub branch Pledgor: Tewei Lexing (Guangzhou) Technology Co.,Ltd. Registration number: Y2024980019378 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right |