CN111912837B - 基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检测方法 - Google Patents

基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检测方法 Download PDF

Info

Publication number
CN111912837B
CN111912837B CN202010543918.6A CN202010543918A CN111912837B CN 111912837 B CN111912837 B CN 111912837B CN 202010543918 A CN202010543918 A CN 202010543918A CN 111912837 B CN111912837 B CN 111912837B
Authority
CN
China
Prior art keywords
boron carbide
electrochemiluminescence
bpy
nanosheet
glassy carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010543918.6A
Other languages
English (en)
Other versions
CN111912837A (zh
Inventor
梁汝萍
李雅捷
邱建丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202010543918.6A priority Critical patent/CN111912837B/zh
Publication of CN111912837A publication Critical patent/CN111912837A/zh
Application granted granted Critical
Publication of CN111912837B publication Critical patent/CN111912837B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检测方法,属于电致化学发光技术领域。将碳化硼纳米片涂覆在玻碳电极表面制备碳化硼纳米片修饰玻碳电极,碳化硼纳米片可增强吡啶钌的ECL效率,得到强而稳定的吡啶钌的阳极ECL信号。当溶液中存在Hg2+时,Hg2+与吡啶钌竞争与碳化硼的作用位点,使得吡啶钌的阳极ECL信号下降,ECL信号下降的程度与Hg2+浓度的对数呈线性,据此构建基于碳化硼纳米片增强吡啶钌ECL效应的Hg2+检测方法,并应用于环境水样中Hg2+浓度的检测,具有选择性高、线性范围宽和检测限低的优点,有良好的应用前景。

Description

基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检 测方法
技术领域
本发明涉及一种基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检测方法,属于电致化学发光技术领域。
背景技术
目前,汞被广泛认为是环境污染中最危险的污染物和毒性最大的元素之一。环境中的汞以多种形式存在,如汞离子(Hg2+)、硫化汞(HgS)、甲基汞(CH3Hg+)、乙基汞(C2H5Hg+)、苯汞(C6H5Hg+)等。Hg2+是汞污染中最稳定的形式之一,因此对Hg2+的研究和检测尤为重要。进入人体内的汞可能导致脑损伤和肾功能衰竭,严重威胁人类健康。为了防止汞中毒事件发生,我国根据《中华人民共和国环境保护法》所制定的生活饮用水和农田灌溉水的水质标准,规定汞含量不得超过0.001mg/L(即5nM)。目前,常用的检测Hg2+的方法主要有冷蒸汽原子吸收光谱法、原子发射光谱法、荧光光谱法、酶联免疫吸附法、高效液相色谱法等。这些技术虽然在测定Hg2+方面有一定优势,但大多需要昂贵笨重的仪器、样品制备复杂。因此,迫切需要建立简单、快速、廉价的方法监测汞残留和污染。与上述方法相比,电致化学发光法(ECL)具有样品制备过程简单、灵敏度高、成本低等优点,是一种有广阔发展前景的方法。三联吡啶钌(Ru(bpy)3 2+)作为传统的电致化学发光试剂应用非常广泛,其常用的阳极共反应剂为三丙胺和三乙胺等胺类,然而这些共反应剂毒性大,背景信号高,因此,开发新型无毒的ECL共反应剂具有重要意义。
碳化硼(B4C)别名黑钻石,是已知最坚硬的三种材料之一(其他两种为金刚石、立方相氮化硼),可由电炉中用碳还原三氧化二硼制得。B4C密度低、机械强度大、有良好的电导率和催化活性、耐化学腐蚀、高温稳定性和化学稳定性,常作为耐磨材料、陶瓷增强相,尤其在轻质装甲,反应堆中子吸收剂等方面使用。近年来,B4C在电化学上用作电极材料或充电电池和燃料电池的催化剂载体引起广泛关注。然而,尚未见B4C在电致化学发光领域应用的报道,亦未见将B4C用于吡啶钌ECL共反应剂并检测Hg2+的报道。
发明内容
本发明的目的在于提供一种基于碳化硼纳米片增强吡啶钌电致化学发光效应的Hg2+检测方法,它具有检测灵敏度高、检测范围宽、检测限低、选择性好的优点。
基于碳化硼纳米片增强吡啶钌电致化学发光效应的Hg2+检测方法,其步骤如下:
S1碳化硼纳米片修饰玻碳电极的制备;
S2以碳化硼纳米片修饰玻碳电极作为工作电极,将工作电极、参比电极和对电极一起置于含有Ru(bpy)3 2+和不同浓度Hg2+的磷酸盐缓冲溶液中,构成以碳化硼纳米片为Ru(bpy)3 2+电致化学发光共反应剂的碳化硼-Ru(bpy)3 2+电致化学发光体系,采用MPI-E型电致化学发光检测仪测量+0.5~+1.2V电位范围内的电致化学发光信号;
S3将Hg2+加入到含Ru(bpy)3 2+的磷酸盐缓冲溶液中时,Ru(bpy)3 2+的阳极电致化学发光信号减弱,该信号减弱的程度与Hg2+浓度的对数呈良好的线性关系,据此构建基于碳化硼纳米片增强Ru(bpy)3 2+电致化学发光效应的Hg2+检测方法,并用于对环境水体中Hg2+的灵敏检测。
碳化硼纳米片修饰玻碳电极的制备方法,步骤如下:
S101碳化硼纳米片的制备:将4mg块状碳化硼溶于8mL超纯水中,在细胞破壁机中冰浴条件下粉碎6h,在8000rpm的离心转速下离心3分钟取上清液,将上清液置于60℃真空干燥箱中干燥5h,制成碳化硼纳米片,称重后用超纯水重新分散并超声2h使其分散均匀,得到碳化硼纳米片溶液;
S102电极预处理:用超纯水浸湿的滤纸擦拭玻碳电极表面,再分别用1.0μm、0.3μm和0.05μm的氧化铝糊在麂皮上抛光至玻碳电极表面呈镜面,将电极分别置于体积比为1:1的HNO3:H2O、无水乙醇和超纯水中以40%功率超声1分钟,将清洗干净的电极用氮气吹干;
S103制备碳化硼纳米片修饰玻碳电极:将步骤S101制备的10μL浓度为0.5mg/mL的碳化硼纳米片溶液滴涂在经步骤S102处理干净的玻碳电极表面,自然晾干,制成碳化硼纳米片修饰玻碳电极。
作为优选,磷酸盐缓冲溶液的浓度为0.1M,pH为7.5,含0.1M氯化钾。
本发明方法应用于检测Hg2+时,Ru(bpy)3 2+的阳极电致化学发光信号与Hg2+浓度的对数在0.001-5000nM范围内呈良好的线性关系,检测限低至0.3pM。
本发明相较于现有技术,其有益效果是:
(1)本发明提出了以碳化硼纳米片为Ru(bpy)3 2+的新型阳极ECL共反应剂新体系,揭示了Hg2+抑制碳化硼纳米片催化Ru(bpy)3 2+的ECL信号的发光机理。
(2)本发明发展的基于碳化硼纳米片增强Ru(bpy)3 2+的ECL效应的Hg2+检测方法,具有灵敏度高、检测范围宽、检测限低、选择性好的优点。
(3)本发明以碳化硼纳米片作为Ru(bpy)3 2+的ECL共反应剂,替代了传统毒害性较大的胺类共反应剂,有利于环境保护。
附图说明
图1是(A)B4C纳米片的透射电镜图,内插图为B4C纳米片的高分辨透射电镜图;(B)B4C纳米片的选择区域衍射图;(C)B4C纳米片的XRD图;(D)商用B4C(黑线)和本发明制备的B4C纳米片(红线)的傅里叶变换红外光谱。
图2是ECL传感器的构建过程以及对Hg2+检测的原理示意图。
图3是(A)ECL图和(B)循环伏安图:(a)GCE在Ru(bpy)3 2+溶液中,(b)B4C/GCE在磷酸盐缓冲溶液中,(c)B4C/GCE在Ru(bpy)3 2+溶液中,(d)B4C/GCE在Ru(bpy)3 2++5μM Hg2+溶液中。Ru(bpy)3 2+浓度为100μM;磷酸盐缓冲溶液浓度为0.1M,pH为7.5,含0.1M氯化钾。电化学发光曲线和循环伏安曲线的测试条件:扫描速率100mV/s,扫描范围+0.5V~+1.2V(vs.Ag/AgCl),光电倍增管电压800V。
图4是(A)对不同浓度Hg2+(0,0.001,0.005,0.01,0.02,0.05,0.1,1.0,10,20,50,100,200,500,1000和5000nM)的ECL强度-时间曲线;(B)检测Hg2+的校准曲线。ECL的测试条件同图3A。
图5是对Hg2+检测的选择性图,Hg2+浓度为5μM,其它离子浓度均为50μM。
具体实施方式
下面结合附图和具体实施例对本发明作进一步阐述,本发明并不限于此;
实施例1
B4C纳米片的制备及表征
B4C纳米片的制备:将4mg块状B4C溶于8mL超纯水中,在细胞破壁机中冰浴条件下粉碎6h,在8000rpm的离心转速下离心3分钟取上清液,将上清液置于60℃真空干燥箱中干燥5h,制成B4C纳米片,称重后用超纯水重新分散并超声2h使其分散均匀,得到B4C纳米片溶液。
采用透射电子显微镜(TEM)对B4C纳米片的形貌进行表征,由图1(A)可见,B4C纳米片为极薄片状,从内插图的高倍透射电镜表征可见B4C纳米片清晰的晶格衍射条纹,用Gatan Digital Micrograph量得晶格间距为0.45nm,对应于B4C纳米片的(101)晶面;由图1(B)的晶格衍射图可见单晶态B4C纳米片的(101)和(104)晶面;图1(C)为采用X射线衍射仪对B4C纳米片进行表征,与标准卡片的衍射峰一致,表明本发明方法成功制备了B4C纳米片;图1(D)是对B4C纳米片进行的红外表征图谱,可见按本发明超声剥离法制备的B4C纳米片的C-B伸缩振动的红外特征吸收峰没有改变(1080cm-1,1542cm-1),O-H伸缩振动特征吸收峰(3420cm-1)有明显增强。以上表征结果表明B4C纳米片的成功制备。
实施例2
ECL传感器的构建及表征
用超纯水浸湿的滤纸擦拭玻碳电极(GCE)表面,再分别在含1.0μm、0.3μm和0.05μm的氧化铝糊的麂皮上抛光至GCE表面呈镜面,将电极分别置于体积比为1:1的HNO3:H2O、无水乙醇和超纯水中以40%功率超声1分钟,将清洗干净的GCE用氮气吹干;将10μL浓度为0.5mg/mL的B4C纳米片溶液滴涂在处理干净的GCE表面,在室温下自然晾干,制成B4C纳米片修饰GCE电极,即ECL传感器,ECL传感器的构建过程以及对Hg2+检测的原理示意图如图2所示。
图3(A)为本发明方法构建的ECL传感器的响应现象图。在含Ru(bpy)3 2+的磷酸盐缓冲溶液中,GCE上呈现出Ru(bpy)3 2+的微弱ECL发射信号峰(曲线a);当把B4C纳米片修饰到GCE表面后,在B4C/GCE上出现了强且稳定的ECL发射信号峰(曲线c),比GCE上的ECL信号扩大了约50倍。然而,当磷酸盐缓冲溶液中不含Ru(bpy)3 2+时,在B4C/GCE上并未观察到明显的ECL发射信号峰(曲线b)。以上结果表明,B4C/GCE在含Ru(bpy)3 2+的磷酸盐缓冲溶液中的强且稳定的ECL发射信号峰来自于Ru(bpy)3 2+,而非B4C纳米片,而且,B4C纳米片作为Ru(bpy)3 2+的ECL共反应剂有效增强了Ru(bpy)3 2+的ECL发射信号。向含Ru(bpy)3 2+的磷酸盐缓冲溶液中加入Hg2+,则B4C/GCE上Ru(bpy)3 2+的ECL发射信号强度显著下降(曲线d)。
采用循环伏安法(CV)对ECL传感器的构建过程进行表征,由图3(B)可见,在GCE上观察到一个典型的Ru(bpy)3 2+的可逆氧化还原峰(曲线a);B4C/GCE上Ru(bpy)3 2+的氧化电位负移,氧化电流明显增大(曲线c)。而当磷酸盐缓冲溶液中不含Ru(bpy)3 2+时,在B4C/GCE上并未观察到明显的氧化电流(曲线b)。向含Ru(bpy)3 2+的磷酸盐缓冲溶液中加入Hg2+,B4C/GCE上Ru(bpy)3 2+的氧化电流强度显著下降(曲线d)。这个现象进一步表明B4C纳米片对Ru(bpy)3 2+的电化学发光具有良好的催化作用。
实施例3
ECL传感器对Hg2+的检测
(1)B4C纳米片浓度、Ru(bpy)3 2+浓度、pH的优化
对B4C纳米片浓度、Ru(bpy)3 2+浓度、pH值等条件进行了优化。先考察了B4C纳米片浓度对ECL传感器对Hg2+响应的影响,随着B4C纳米片浓度的增大,Hg2+对Ru(bpy)3 2+在B4C/GCE上的ECL信号的猝灭效果越明显,当B4C纳米片浓度为0.5mg/mL时猝灭率达到最大,因此,选择B4C纳米片的浓度为0.5mg/mL。然后考察了Ru(bpy)3 2+浓度对Hg2+检测的影响,随着Ru(bpy)3 2+浓度的增大,Hg2+对Ru(bpy)3 2+在B4C/GCE上的ECL信号的猝灭效果越明显,当Ru(bpy)3 2+浓度为100μM时猝灭效果最好,因此,选择Ru(bpy)3 2+浓度为100μM。还考察了磷酸盐缓冲溶液pH值对Hg2+检测的影响,实验结果表明pH过大或过小均不利于Hg2+检测,当pH为7.5时Hg2+对Ru(bpy)3 2+的ECL信号的猝灭效果最佳,因此,本发明选择检测Hg2+的pH值为7.5。
(2)对Hg2+浓度的分析检测
在优化条件下,采用MPI-E型电致化学发光检测仪测量B4C/GCE对Ru(bpy)3 2+的ECL响应信号。由图4(A)可见,随着Hg2+浓度的增加,Ru(bpy)3 2+在B4C/GCE上的ECL信号逐渐减小,Ru(bpy)3 2+在B4C/GCE上的ECL信号强度与Hg2+浓度的对数(lnC)在0.001-5000nM范围内呈现良好的线性关系,对Hg2+的检测限低至0.3pM图4(B),优于已报道检测Hg2+的方法。例如,Yang等研制的免标记Hg2+比色纳米传感器的线性范围1.0nM-100μM,检测限0.7nM(YangP C,Wu T,Lin Y W.Label-free colorimetric detection of mercury(II)ions basedon gold nanocatalysis.Sensors,2018,18(9):2807)。Rao等在Se掺杂的ZnO纳米棒表面配位3-巯基丙酸构建的荧光纳米探针对Hg2+检测的线性范围为0.001-100nM,检测限为1pM(Rao A V R K,Reddy R B,Sengupta S,et al.Efficient“turn-on”nanosensor by dualemission-quenching mechanism of functionalized Se doped ZnO nanorods formercury(II)detection.Applied Nanoscience,2018,8(8):1973-1987)。Tang等基于聚(5-甲酰基吲哚)/还原氧化石墨烯制备的ECL传感器对Hg2+检测的线性范围为0.01nM-100nM,检测限为2.48pM(Tang Y,Li J,Guo Q,et al.An ultrasensitiveelectrochemiluminescence assay for Hg2+through graphene quantum dots and poly(5-formylindole)nanocomposite.Sensors and Actuators B:Chemical,2019,282:824-830)。本发明以B4C纳米片为Ru(bpy)3 2+的新型ECL共反应剂可增强Ru(bpy)3 2+的ECL效率,揭示了Hg2+抑制B4C纳米片催化Ru(bpy)3 2+的ECL效果的发光机理,据此建立的Hg2+检测方法具有灵敏度高、检测范围宽、检测限低的优点。
(3)方法的选择性
图5是本发明方法对Hg2+检测的选择性实验结果,可见,5μM Hg2+对Ru(bpy)3 2+在B4C/GCE上的ECL信号的猝灭率很高,而50μM的其它金属离子的猝灭效率都很低,表明本发明方法构建的ECL传感器对Hg2+的检测具有良好的选择性。因此,本发明方法实现了对Hg2+的选择性检测,具有良好的应用前景。
此外,本发明以B4C纳米片作为Ru(bpy)3 2+的ECL共反应剂,不仅减小了共反应剂的用量,还替代了传统毒害性较大的胺类共反应剂,有利于环境保护。
(4)环境水样检测
为了验证本发明方法制备的ECL传感器的实际应用效果,从自来水、润溪湖和赣江分别采集水样,用膜过滤除去水样中的不溶物,再分别向水样中加入0.1nM、100nM和1000nMHg2+标准溶液,使用本发明制备的ECL传感器进行分析。结果表明,本发明方法对Hg2+的回收率为96%-104%,相对标准偏差在1.9%-4.2%之间。以上结果表明,本发明开发的ECL传感器是定量检测环境水样中Hg2+的超灵敏且可靠方法。

Claims (4)

1.基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检测方法,其特征在于,步骤如下:
S1碳化硼纳米片修饰玻碳电极的制备;
S2以碳化硼纳米片修饰玻碳电极作为工作电极,将工作电极、参比电极和对电极一起置于含有Ru(bpy)3 2+和不同浓度Hg2+的磷酸盐缓冲溶液中,构成以碳化硼纳米片为Ru(bpy)3 2+电致化学发光共反应剂的碳化硼-Ru(bpy)3 2+电致化学发光体系,采用MPI-E型电致化学发光检测仪测量+0.5~+1.2V电位范围内的电致化学发光信号;
S3将Hg2+加入到含Ru(bpy)3 2+的磷酸盐缓冲溶液中时,Ru(bpy)3 2+的阳极电致化学发光信号减弱,该信号减弱的程度与Hg2+浓度的对数呈良好的线性关系,据此构建基于碳化硼纳米片增强Ru(bpy)3 2+电致化学发光效应的Hg2+检测方法,并用于对环境水体中Hg2+的灵敏检测。
2.如权利要求1所述基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检测方法,其特征在于,所述步骤S1中碳化硼纳米片修饰玻碳电极的制备步骤如下:
S101碳化硼纳米片的制备:将4mg块状碳化硼溶于8mL超纯水中,在细胞破壁机中冰浴条件下粉碎6h,在8000rpm的离心转速下离心3分钟取上清液,将上清液置于60℃真空干燥箱中干燥5h,制成碳化硼纳米片,称重后用超纯水重新分散并超声2h使其分散均匀,得到浓度为0.5mg/mL的碳化硼纳米片溶液;
S102电极预处理:用超纯水浸湿的滤纸擦拭玻碳电极表面,再分别用1.0μm、0.3μm和0.05μm的氧化铝糊在麂皮上抛光至玻碳电极表面呈镜面,将电极分别置于体积比为1:1的HNO3:H2O、无水乙醇和超纯水中以40%功率超声1分钟,将清洗干净的电极用氮气吹干;
S103制备碳化硼纳米片修饰玻碳电极:将步骤S101制备的10μL浓度为0.5mg/mL的碳化硼纳米片溶液滴涂在经步骤S102处理干净的玻碳电极表面,自然晾干,制成碳化硼纳米片修饰玻碳电极。
3.如权利要求1所述基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检测方法,其特征在于,所述步骤S2中磷酸盐缓冲溶液的浓度为0.1M,pH为7.5,含0.1M氯化钾。
4.如权利要求1所述基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检测方法,其特征在于,对Hg2+检测的线性范围为0.001-5000nM,检测限低至0.3pM。
CN202010543918.6A 2020-06-15 2020-06-15 基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检测方法 Active CN111912837B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010543918.6A CN111912837B (zh) 2020-06-15 2020-06-15 基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010543918.6A CN111912837B (zh) 2020-06-15 2020-06-15 基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检测方法

Publications (2)

Publication Number Publication Date
CN111912837A CN111912837A (zh) 2020-11-10
CN111912837B true CN111912837B (zh) 2021-07-20

Family

ID=73238130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010543918.6A Active CN111912837B (zh) 2020-06-15 2020-06-15 基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检测方法

Country Status (1)

Country Link
CN (1) CN111912837B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092565B (zh) * 2021-03-29 2021-12-14 南昌大学 一种基于电致化学发光效应的亚砷酸根检测方法
CN115414930B (zh) * 2022-08-26 2023-10-31 重庆医科大学 Ru(bpy)32+阳极或阴极共反应物及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
An ultrasensitive electrochemiluminescence assay for Hg2+ through graphene quantum dots and poly(5-formylindole) nanocomposite;Yun Tang et.al;《Sensors & Actuators: B. Chemical》;20181129;第282卷;第824-830页 *
CARBON-BASED MATERIALS FOR ECL DETECTION;S. Benetto et.al;《IEEE》;20121231;483-486 *
Efficient "turn-on" nanosensor by dual emission-quenching mechanism of functionalized Se doped ZnO nanorods for mercury (II) detection;A. V. R. Krishna Rao et.al;《Applied Nanoscience》;20180920;第8卷;1973-1987 *
Label-Free Colorimetric Detection of Mercury (II) Ions Based on Gold Nanocatalysis;Pei-Chia Yang et.al;《Sensors》;20180825;第18卷;14 pages *
Rapid Detection of Mercury Ions Based on Nitrogen-Doped Graphene Quantum Dots Accelerating Formation of Manganese Porphyrin;Dong Peng et.al;《ACS Sensors》;20180418;第3卷;1040-1047 *
Regenerable Carbohydrazide-Linked Fluorescent Covalent Organic Frameworks for Ultrasensitive Detection and Removal of Mercury;Wei-Rong Cui et.al;《ACS Sustainable Chemistry & Engineering》;20191205;第8卷;445-451 *

Also Published As

Publication number Publication date
CN111912837A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
Yang et al. A disposable and sensitive non-enzymatic glucose sensor based on 3D graphene/Cu2O modified carbon paper electrode
Bobrowski et al. Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe (III)–TEA–BrO 3− catalytic system
CN111912837B (zh) 基于碳化硼纳米片增强吡啶钌电致化学发光效应的汞离子检测方法
He et al. A voltammetric sensor based on eosin Y film modified glassy carbon electrode for simultaneous determination of hydroquinone and catechol
Mališić et al. Exploration of MnO2/carbon composites and their application to simultaneous electroanalytical determination of Pb (II) and Cd (II)
Yu et al. Electrochemical Behavior and Determination of L‐Tyrosine at Single‐walled Carbon Nanotubes Modified Glassy Carbon Electrode
CN104677973B (zh) 一种电化学传感器测定辛基酚的方法
Liu et al. High‐Performance Alkaline Seawater Electrolysis with Anomalous Chloride Promoted Oxygen Evolution Reaction
Zhao et al. Sensitive voltammetric response of p‐nitroaniline on single‐wall carbon nanotube‐ionic liquid gel modified glassy carbon electrodes
Wu et al. A simple, cost-effective and selective analysis of glucose via electrochemical impedance sensing based on copper and nitrogen co-doped carbon quantum dots
Li et al. Facile synthesis of NiO/CuO/reduced graphene oxide nanocomposites for use in enzyme-free glucose sensing
Zhang et al. Copper/hexagonal boron nitride nanosheet composite as an electrochemical sensor for nitrite determination
Bano et al. The non-enzymatic electrochemical detection of glucose and ammonia using ternary biopolymer based-nanocomposites
Li et al. Ti/TiO2 electrode preparation using laser anneal and its application to determination of chemical oxygen demand
Fu et al. Simple preparation and highly selective detection of silver ions using an electrochemical sensor based on sulfur-doped graphene and a 3, 3′, 5, 5′-tetramethylbenzidine composite modified electrode
Lin et al. Nano-composite of Co 3 O 4 and Cu with enhanced stability and catalytic performance for non-enzymatic electrochemical glucose sensors
Zhang et al. Flexible microsensor made of boron-doped graphene quantum dots/ZnO nanorod for voltammetric sensing of hydroquinone
CN112730559A (zh) 检测pcb72的光电适配体传感器的制备方法及应用
Zhu et al. Acid-etched Fe/Fe 2 O 3 nanoparticles encapsulated into carbon cloth as a novel voltammetric sensor for the simultaneous detection of Cd 2+ and Pb 2
Liu et al. Simultaneous detection of Cd2+ and Pb2+ with a bismuth film/sulfur and nitrogen co-doped porous graphene electrode
Pop et al. Amperometric Detection of 4‐Chlorophenol on Two Types of Expanded Graphite Based Composite Electrodes
Zou et al. The facile synthesis of a Co 3 O 4–NiNP composite as an electrochemical non-enzymatic sensing platform for small chemical molecules
Fadillah et al. A novel electrochemical synthesis of TiO2 nanoparticles and its application as bisphenol-B sensor
Wang et al. A Nonenzymatic Sensor Based on {PEI/[P2W17V-CNTs/PEI-CuO] 10/P2W17V-CNTs} Nanocomposite Film for the Sensitive Determination of Iodate
Ma et al. A Novel Photoelectrochemical Glucose Sensor Based on Graphene-CdS Nanocomposites Decorated with CoOxNanosheets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant