CN111898726A - Parameter optimization method for electric vehicle control system, computer equipment and storage medium - Google Patents
Parameter optimization method for electric vehicle control system, computer equipment and storage medium Download PDFInfo
- Publication number
- CN111898726A CN111898726A CN202010752788.7A CN202010752788A CN111898726A CN 111898726 A CN111898726 A CN 111898726A CN 202010752788 A CN202010752788 A CN 202010752788A CN 111898726 A CN111898726 A CN 111898726A
- Authority
- CN
- China
- Prior art keywords
- bee
- control system
- electric vehicle
- vehicle control
- bees
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 84
- 238000005457 optimization Methods 0.000 title claims abstract description 49
- 241000257303 Hymenoptera Species 0.000 claims abstract description 39
- 238000011156 evaluation Methods 0.000 claims abstract description 18
- 230000003044 adaptive effect Effects 0.000 claims abstract description 10
- 230000001174 ascending effect Effects 0.000 claims abstract description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 28
- 238000004590 computer program Methods 0.000 claims description 18
- 230000006870 function Effects 0.000 claims description 11
- 238000009827 uniform distribution Methods 0.000 claims description 9
- 238000012360 testing method Methods 0.000 claims description 6
- 241000256844 Apis mellifera Species 0.000 claims 30
- 238000004364 calculation method Methods 0.000 abstract description 4
- 238000013461 design Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000019637 foraging behavior Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Geometry (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- General Business, Economics & Management (AREA)
- Educational Administration (AREA)
- General Engineering & Computer Science (AREA)
- Tourism & Hospitality (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Marketing (AREA)
- Evolutionary Computation (AREA)
- Game Theory and Decision Science (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Health & Medical Sciences (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Hardware Design (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开了一种电动汽车控制系统参数优化方法、计算机设备及存储介质。本发明包括:1)定义初始蜂群,构建电动汽车控制系统的动态评价指标函数2)进行寻优,得到蜜蜂适应度;3)将蜜蜂按适应度进行升序排列,设排列前若干个蜜蜂为侦查蜂,剩余为跟随蜂;4)进行两者位置更新;在位置更新过程中,采用自适应搜索策略动态调整蜜蜂的寻优区域,并检验是否达到最大允许寻优步数,若未达到,则返回2);否则,转到5);5)找到当前种群中适应度最小的蜜蜂,蜜蜂各维所对应的值即为优化的电动汽车控制系统的参数值。本发明解决了电动汽车控制系统参数优化建模复杂,计算量大的问题。
The invention discloses a parameter optimization method of an electric vehicle control system, a computer device and a storage medium. The invention includes: 1) defining an initial bee colony, and constructing a dynamic evaluation index function of an electric vehicle control system; 2) performing optimization to obtain the fitness of the bees; 3) arranging the bees in ascending order of fitness, and setting the first several bees to be Investigate bees, and the rest are follower bees; 4) Update the positions of the two; in the process of position update, the adaptive search strategy is used to dynamically adjust the optimization area of the bees, and check whether the maximum allowable number of search steps is reached, if not, Then return to 2); otherwise, go to 5); 5) Find the bee with the smallest fitness in the current population, and the value corresponding to each dimension of the bee is the parameter value of the optimized electric vehicle control system. The invention solves the problems of complex parameter optimization modeling and large calculation amount of the electric vehicle control system.
Description
技术领域technical field
本发明属于汽车控制系统参数优化领域,尤其是一种电动汽车控制系统参数优化方法、计算机设备及存储介质。The invention belongs to the field of vehicle control system parameter optimization, in particular to an electric vehicle control system parameter optimization method, computer equipment and storage medium.
背景技术Background technique
电动汽车控制系统是一个复杂的多输入多输出的时变非线性系统,该系统可以用来保证电动汽车的稳定性和操纵性、提高完成任务的能力与车辆平顺性、增强车辆的安全及减轻驾驶员负担。电动汽车控制系统控制参数的设计已成为保证电动汽车行驶安全最直接、最重要的关键环节。很多工程师在实际设计电动汽车控制系统的过程中,都要面对具有内部隐含关系的复杂系统的参数设计和调节问题。尽管可以借助小扰动线性化方程进行控制系统的设计,但是这些线性化方程的各个输入量之间往往存在很强的耦合,而且希望的性能指标和控制器参数之间不存在明显的映射关系,这些都给控制器参数的选择带来了极大的困难。The electric vehicle control system is a complex multi-input and multi-output time-varying nonlinear system, which can be used to ensure the stability and maneuverability of electric vehicles, improve the ability to complete tasks and vehicle ride comfort, and enhance vehicle safety and mitigation. Driver burden. The design of the control parameters of the electric vehicle control system has become the most direct and important key link to ensure the safety of electric vehicles. In the process of actually designing electric vehicle control systems, many engineers have to face the problem of parameter design and adjustment of complex systems with internal implicit relationships. Although the control system can be designed with the help of small disturbance linearization equations, there is often a strong coupling between the various inputs of these linearization equations, and there is no obvious mapping relationship between the desired performance index and the controller parameters. All these bring great difficulty to the selection of controller parameters.
通常情况下,应用传统经典优化方法对电动汽车控制系统进行参数优化时,很难做到对系统预先约束的全方位考虑。现有应用线性规划和二次规划的方法,该类方法进行系统参数优化时需要针对电动汽车控制系统进行明确的数学定义和结构化的设计,然而实际操作过程中可能由于模型的不确定性而导致最终优化结果变差。另有应用整数规划和混合规划的方法,该类方法需要考虑电动汽车控制系统各参数间的内在联系和可能存在的耦合关系,会消耗大量时间来兼顾和平衡所调节的各个参数对系统多方面性能的影响,该过程往往也是费时费力的。如何能够在尽可能节省人力物力的条件下,按预定要求实现对电动汽车控制系统参数的快速、准确设计,是目前亟待解决的问题。Under normal circumstances, when applying traditional classical optimization methods to optimize parameters of electric vehicle control systems, it is difficult to fully consider the pre-constraints of the system. Existing methods of applying linear programming and quadratic programming require a clear mathematical definition and structured design for the electric vehicle control system when optimizing system parameters. lead to poor final optimization results. There are also methods of applying integer programming and hybrid programming. This type of method needs to consider the internal relationship and possible coupling relationship between the parameters of the electric vehicle control system, which will consume a lot of time to take into account and balance the adjusted parameters. Performance impact, the process is often time-consuming and labor-intensive. How to realize the fast and accurate design of the parameters of the electric vehicle control system according to the predetermined requirements under the condition of saving manpower and material resources as much as possible is an urgent problem to be solved at present.
蜂群算法是模仿蜜蜂觅食行为而提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解电动汽车控制系统的参数优化问题的特殊信息,只需要将系统超调量、稳态误差、调节时间等多个设计目标通过加权代数求和方式转化为单个优化目标,通过各蜜蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。每个蜜蜂通过在每一步的迭代计算过程中更新自身的位置,同时在移动的过程中对路径上可能存在的最优解进行搜寻。每次的迭代既是个体自身状态的更新,同时也是整个种群间信息交互并向全局最优逐渐收敛的过程。由于其对所处理问题几乎不需要先验知识,也几乎不提预设条件,所以蜂群算法在一大类控制系统的参数优化领域得到了广泛的应用。然而目前应用蜂群算法对电动汽车控制系统进行参数优化的过程中,算法可能因为对目标问题解空间搜索不充分而陷入局部最优导致最终无法获得全局最优解,也可能因为对目标问题解空间搜索范围过大而导致存在后期收敛速度慢的问题,这些问题都在一定程度上影响了应用蜂群算法对电动汽车控制系统进行参数优化的效果,进而影响了系统性能的发挥。The bee colony algorithm is an optimization method proposed by imitating the foraging behavior of bees. It is a specific application of the swarm intelligence idea. Multiple design objectives such as overshoot, steady-state error, and adjustment time are transformed into a single optimization objective through weighted algebraic summation. Faster convergence rate. Each bee updates its own position in the iterative calculation process of each step, and searches for the possible optimal solution on the path during the moving process. Each iteration is not only an update of the individual's own state, but also a process of information interaction between the entire population and a gradual convergence to the global optimum. Because it requires little prior knowledge of the problems it deals with, and hardly mentions preset conditions, the bee colony algorithm has been widely used in the field of parameter optimization of a large class of control systems. However, in the current process of applying the bee colony algorithm to optimize the parameters of the electric vehicle control system, the algorithm may fall into the local optimum due to insufficient search for the solution space of the target problem, resulting in the final failure to obtain the global optimal solution. The spatial search range is too large, which leads to the problem of slow convergence in the later stage. These problems affect the effect of applying the bee colony algorithm to the parameter optimization of the electric vehicle control system to a certain extent, and then affect the performance of the system.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服蜂群算法对电动汽车控制系统进行参数优化的过程中易陷入局部最优或收敛速度慢的缺点,提供一种电动汽车控制系统参数优化方法、计算机设备及存储介质。The purpose of the present invention is to overcome the shortcoming that the bee colony algorithm is easy to fall into the local optimum or the convergence speed is slow in the process of parameter optimization of the electric vehicle control system, and to provide a parameter optimization method, computer equipment and storage medium of the electric vehicle control system.
为达到上述目的,本发明采用以下技术方案予以实现:To achieve the above object, the present invention adopts the following technical solutions to realize:
一种基于改进蜂群算法的电动汽车控制系统参数优化方法,包括以下步骤:A method for optimizing parameters of an electric vehicle control system based on an improved bee colony algorithm, comprising the following steps:
1)定义初始蜂群,构建电动汽车控制系统的动态评价指标函数;1) Define the initial bee colony and construct the dynamic evaluation index function of the electric vehicle control system;
2)利用蜂群对电动汽车控制系统参数进行寻优,利用动态评价指标函数计算得到蜂群中的每个蜜蜂个体对应的适应度;2) Use the bee colony to optimize the parameters of the electric vehicle control system, and use the dynamic evaluation index function to calculate the fitness corresponding to each individual bee in the bee colony;
3)将蜂群个体按照其适应度进行升序排列,设排列中前若干个蜜蜂为侦查蜂,剩余的蜜蜂为跟随蜂;3) The bee colony individuals are arranged in ascending order according to their fitness, and the first several bees in the arrangement are set as scout bees, and the remaining bees are follower bees;
4)进行侦察蜂位置更新和跟随蜂位置更新;4) Update the position of the scout bee and the position of the follower bee;
在位置更新过程中,对每步搜索完成的蜜蜂个体采用自适应搜索策略调整其寻优区域,并判断是否达到最大允许寻优步数,若未达到,则返回步骤2);In the process of location update, adopt the adaptive search strategy to adjust the optimal search area for the individual bees that have completed the search in each step, and determine whether the maximum allowable number of optimal search steps is reached, if not, return to step 2);
否则,转到步骤5);Otherwise, go to step 5);
5)找到当前种群中适应度最小的蜜蜂个体,所述蜜蜂个体各维所对应的值即为最终优化所得到的电动汽车控制系统的参数值。5) Find the bee individual with the smallest fitness in the current population, and the value corresponding to each dimension of the bee individual is the parameter value of the electric vehicle control system obtained by the final optimization.
进一步的,步骤1)的具体过程为:Further, the specific process of step 1) is:
定义初始蜂群的维数为N×D维,其中,N表示蜂群总数,D表示蜜蜂个体所储存的电动汽车控制系统待优化参数的总数,则第n(n=1,2,…,N)个蜜蜂的第d(d=1,2,…,D)维元素Bn,d由下列公式给出:The dimension of the initial bee colony is defined as N×D dimension, where N represents the total number of bee colonies, and D represents the total number of parameters to be optimized for the electric vehicle control system stored by the individual bees, then the nth (n=1,2,…, The d (d=1,2,...,D)-dimensional element B n,d of N) bees is given by the following formula:
Bn,d=<x1,x2,…,xn>⊕<y1,y2,…,yd>B n,d =<x 1 ,x 2 ,…,x n >⊕<y 1 ,y 2 ,…,y d >
其中,〈x1,x2,…,xn>表示由x1,x2,…,xn构成的二进制数;<y1,y2,…,yd>表示由y1,y2,…,yd构成的二进制数;xi(i=1,...,n)是正整数X的二进制表达形式中的第i位,X满足条件:2X>N;yi(i=1,...,d)是与X互质的另一正整数Y的二进制表达式中的第i位,Y满足:2Y>D;⊕为异或操作算子;Bn,d表示第n个蜜蜂对电动汽车控制系统的第d个需要优化的参数的预估值。Among them, <x 1 ,x 2 ,…,x n >represents a binary number composed of x 1 ,x 2 ,…,x n ; <y 1 ,y 2 ,…,y d >represents a binary number composed of y 1 ,y 2 ,...,y d ; x i (i=1,...,n) is the ith bit in the binary representation of a positive integer X, X satisfies the condition: 2 X >N; y i (i= 1,...,d) is the ith bit in the binary expression of another positive integer Y that is relatively prime to X, and Y satisfies: 2 Y >D; ⊕ is the XOR operator; The estimated value of the nth bee for the dth parameter that needs to be optimized in the electric vehicle control system.
进一步的,步骤1)构建电动汽车控制系统的动态评价指标函数具体为:Further, step 1) constructing the dynamic evaluation index function of the electric vehicle control system is specifically:
J=ω1∫εdt+ω2σ+ω3γ+ω4κJ=ω 1 ∫εdt+ω 2 σ+ω 3 γ+ω 4 κ
其中,ε、σ、γ和κ为电动汽车控制系统性能的四项评价指标,分别为跟踪误差、超调百分比、上升时间和建立时间;ω1、ω2、ω3、ω4分别为四项评价指标所对应的权重系数;t为系统的测试时间。Among them, ε, σ, γ and κ are the four evaluation indicators of the performance of the electric vehicle control system, which are tracking error, overshoot percentage, rise time and settling time, respectively; ω 1 , ω 2 , ω 3 , and ω 4 are four is the weight coefficient corresponding to the evaluation index; t is the test time of the system.
进一步的,步骤2)中的寻优过程为:Further, the optimization process in step 2) is:
开始寻优时,预先设定权重系数初值: When starting the optimization, preset the initial value of the weight coefficient:
在寻优的过程中,首先给第一个权重系数ω1赋值,使得:ω2=ω3=ω4=0;In the optimization process, the first weight coefficient ω 1 is first assigned, so that: ω 2 =ω 3 =ω 4 =0;
当ε满足预设条件时,给第二个权重系数ω2赋值,使得:ω3=ω4=0;When ε meets the preset conditions, assign a value to the second weight coefficient ω 2 so that: ω 3 =ω 4 =0;
当ε和σ满足预设条件时,给第三个权重系数ω3赋值,使得: ω4=0;When ε and σ satisfy the preset conditions, the third weight coefficient ω 3 is assigned a value such that: ω 4 =0;
当ε、σ和γ满足预设条件时,给第四个权重系数ω4赋值,使得: When ε, σ and γ satisfy the preset conditions, the fourth weight coefficient ω 4 is assigned a value such that:
然后对每个蜜蜂B,求取其所对应的J值,即为其适应度。Then, for each bee B, the corresponding J value is obtained, which is its fitness.
进一步的,步骤4)中进行侦察蜂位置更新的过程为:Further, in step 4), the process of updating the position of the scout bee is:
第n个侦查蜂Bn的第j步运动按照以下方式进行:The j-th movement of the n-th scout bee B n is carried out as follows:
Bn(j)=Bn(j-1)+λn(j)Δn(j) Bn (j)= Bn (j-1)+ λn (j) Δn (j)
其中,λn为Bn的运动步长,Δn为Bn的运动方向,ω0为惯性权重用以设置前两步运动距离对下一步的贡献,为第(j-1)步时所有侦查蜂群的几何中心,μ1~U(0,1)和为具有均匀分布的随机变量。Among them, λ n is the movement step length of B n , Δ n is the movement direction of B n , ω 0 is the inertia weight used to set the contribution of the movement distance of the first two steps to the next step, is the geometric center of all reconnaissance bee colonies at step (j-1), μ 1 ~ U(0,1) and is a random variable with a uniform distribution.
进一步的,步骤4)中进行跟随蜂位置更新的过程为:Further, in step 4), the process of following the bee position update is:
第m个跟随蜂Bm的第j步运动按照以下方式进行:The j-th movement of the m-th follower bee B m proceeds as follows:
Bm(j)=Bm(j-1)+λm(j)Δm(j)B m (j)=B m (j-1)+λ m (j)Δ m (j)
其中,λm为Bm的运动步长,Δm为Bm的运动方向,ω0为惯性权重用以设置前两步运动距离对下一步的贡献,Bnm为距离Bm最近的第n个侦查蜂,μ3~U(0,1)和为具有均匀分布的随机变量。Among them, λ m is the motion step length of B m , Δ m is the motion direction of B m , ω 0 is the inertia weight used to set the contribution of the motion distance of the first two steps to the next step, and B nm is the nth nearest to B m . scout bees, μ 3 ~U(0,1) and is a random variable with a uniform distribution.
进一步的,步骤4)中采用自适应搜索策略动态调整蜜蜂的寻优区域具体为:Further, in step 4), adopting the adaptive search strategy to dynamically adjust the optimal search area of the bees is specifically:
对于第n个蜜蜂Bn(n=1,…,N)在第j步搜索完成后,采用以下的自适应搜索策略以动态调整其的寻优区域:For the n-th bee B n (n=1,...,N) after the j-th search is completed, the following adaptive search strategy is used to dynamically adjust its optimal area:
其中,和分别表示Bn在第j步搜索的上界和下界,为第j-1步时整个蜂群的几何中心,|| ||表示求取欧式距离,μ5~U(0,1)为具有均匀分布的随机变量。in, and respectively represent the upper and lower bounds of B n searched in the jth step, is the geometric center of the entire bee colony in the j-1th step, || || represents the Euclidean distance, μ 5 ~U(0,1) is a random variable with uniform distribution.
一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述基于改进蜂群算法的电动汽车控制系统参数优化方法的步骤。A computer device, comprising a memory, a processor, and a computer program stored in the memory and running on the processor, characterized in that, when the processor executes the computer program, the above-mentioned improved bee colony-based Algorithmic steps of an electric vehicle control system parameter optimization method.
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现上述基于改进蜂群算法的电动汽车控制系统参数优化方法的步骤。A computer-readable storage medium storing a computer program, characterized in that, when the computer program is executed by a processor, the steps of the above-mentioned method for optimizing parameters of an electric vehicle control system based on an improved bee colony algorithm are implemented .
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
一种基于改进蜂群算法的电动汽车控制系统参数优化方法,采用具有低差异度的蜜蜂种群对解空间进行自适应搜索,并在搜索的过程中动态调整每个蜜蜂的寻优区域,兼顾了算法的全局和局部寻优能力,使算法在搜索过程中既能避免陷入局部最优,同时又能保证其收敛速度,能够更为快速的逼近全局最优解;本发明解决了电动汽车控制系统参数优化过程中建模复杂,计算量大的问题,能够快速、准确的对电动汽车控制系统参数进行优化;经验证,相比于传统线性规划方法,经本发明的优化方法所优化的电动汽车控制系统在完成双移线任务时可以使得系统具有更好的稳定性和快速减小的侧向偏移误差。A method for parameter optimization of electric vehicle control system based on improved bee colony algorithm, which uses bee populations with low degree of variance to adaptively search the solution space, and dynamically adjusts the optimization area of each bee during the search process, taking into account the The global and local optimization capabilities of the algorithm enable the algorithm to avoid falling into the local optimum during the search process, and at the same time to ensure its convergence speed, and to approach the global optimal solution more quickly; the invention solves the problem of the electric vehicle control system. In the process of parameter optimization, the modeling is complex and the amount of calculation is large, and the parameters of the electric vehicle control system can be optimized quickly and accurately; it has been verified that compared with the traditional linear programming method, the electric vehicle optimized by the optimization method of the present invention can be optimized. The control system can make the system have better stability and quickly reduce the lateral offset error when completing the double line shifting task.
进一步的,本发明蜂群的定义使得所生成的蜂群尽可能均匀的分布于解空间中,生成蜜蜂序列具有低差异度。Further, the definition of the bee colony of the present invention makes the generated bee colony as evenly distributed in the solution space as possible, and the generated bee sequence has a low degree of difference.
本发明提供基于改进蜂群算法的电动汽车控制系统参数优化方法的计算机设备及存储介质,用于实现上述优化方法的具体步骤。The present invention provides a computer device and a storage medium for a method for optimizing parameters of an electric vehicle control system based on an improved bee colony algorithm, which are used to implement the specific steps of the above-mentioned optimization method.
附图说明Description of drawings
图1为电动汽车控制系统的结构示意图;Fig. 1 is the structural schematic diagram of electric vehicle control system;
图2为本发明的基于改进蜂群算法的参数优化的流程图;Fig. 2 is the flow chart of parameter optimization based on improved bee colony algorithm of the present invention;
图3为双移线工况下应用线性规划方法和本发明的方法所优化电动汽车控制系统的横摆角;Fig. 3 is the yaw angle of the electric vehicle control system optimized by applying the linear programming method and the method of the present invention under the double-lane shifting condition;
图4为双移线工况下应用线性规划方法和本发明的方法所优化电动汽车控制系统的横摆角速率;Fig. 4 is the yaw rate of the electric vehicle control system optimized by applying the linear programming method and the method of the present invention under the double-lane shift condition;
图5为双移线工况下应用线性规划方法和本发明的方法所优化电动汽车控制系统的质心侧偏角;Fig. 5 is the center-of-mass slip angle of the electric vehicle control system optimized by applying the linear programming method and the method of the present invention under the double-line shifting condition;
图6为双移线工况下应用线性规划方法和本发明的方法所优化电动汽车控制系统的侧向过载;Fig. 6 is the lateral overload of the electric vehicle control system optimized by applying the linear programming method and the method of the present invention under double line shifting conditions;
图7为双移线工况下应用线性规划方法和本发明的方法所优化电动汽车控制系统的侧向偏移误差;Fig. 7 is the lateral offset error of the electric vehicle control system optimized by applying the linear programming method and the method of the present invention under double line shifting conditions;
图8是本发明实施例中计算机设备的示意图。FIG. 8 is a schematic diagram of a computer device in an embodiment of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to make those skilled in the art better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only Embodiments are part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first", "second" and the like in the description and claims of the present invention and the above drawings are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used may be interchanged under appropriate circumstances such that the embodiments of the invention described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having" and any variations thereof, are intended to cover non-exclusive inclusion, for example, a process, method, system, product or device comprising a series of steps or units is not necessarily limited to those expressly listed Rather, those steps or units may include other steps or units not expressly listed or inherent to these processes, methods, products or devices.
下面结合附图对本发明做进一步详细描述:Below in conjunction with accompanying drawing, the present invention is described in further detail:
参见图1,图1为电动汽车控制系统的结构示意图,该控制系统通过车辆运行过程中的5个状态参数-横摆角φ、侧向过载ny、侧向偏移y、质心侧偏角β和横摆角速率r的反馈来生成所需要的横摆力矩输入和方向盘转角输入,φc和yc分别为横摆角和侧向偏移的指令信号。各个反馈通道中控制增益k1~k8即为目标系统需要优化的参数。Referring to Fig. 1, Fig. 1 is a schematic diagram of the structure of the electric vehicle control system. The control system passes the five state parameters during the operation of the vehicle - the yaw angle φ, the lateral overload ny , the lateral offset y, the center of mass slip angle β and yaw rate r are fed back to generate the required yaw moment input and steering wheel angle input, φ c and y c are the yaw angle and lateral offset command signals, respectively. The control gains k 1 to k 8 in each feedback channel are parameters that need to be optimized for the target system.
基于改进蜂群算法的电动汽车控制系统参数优化方法流程图如图2所示,针对图1中电动汽车控制系统的8个待优化参数k1~k8,定义初始蜂群的维数为N×D维,其中N=100表示蜂群总数,D=8表示每个蜜蜂个体所储存的电动汽车控制系统待优化参数的总数,算法最大允许寻优步数为500步;The flow chart of the parameter optimization method of the electric vehicle control system based on the improved bee colony algorithm is shown in Figure 2. For the eight parameters k 1 ~ k 8 to be optimized in the electric vehicle control system in Figure 1, the dimension of the initial bee colony is defined as N ×D dimension, where N=100 represents the total number of bee colonies, D=8 represents the total number of parameters to be optimized in the electric vehicle control system stored by each bee individual, and the maximum allowable number of optimization steps in the algorithm is 500 steps;
为了使得所生成的蜂群尽可能均匀的分布在解空间当中,利用以下方法来生成具有低差异度的蜜蜂序列,其中,第n(n=1,2,…,N)个蜜蜂的第d(d=1,2,…,D)维元素Bn,d由下列公式给出:In order to make the generated bee colonies as evenly distributed as possible in the solution space, the following method is used to generate a bee sequence with low degree of difference, where the dth of the nth (n=1,2,...,N) bee (d=1,2,...,D) dimensional element B n,d is given by the following formula:
Bn,d=<x1,x2,…,xn>⊕<y1,y2,…,yd>B n,d =<x 1 ,x 2 ,…,x n >⊕<y 1 ,y 2 ,…,y d >
其中,<x1,x2,…,xn>表示由x1,x2,…,xn构成的二进制数,<y1,y2,…,yd>表示由y1,y2,…,yd构成的二进制数,xi(i=1,...,n)是正整数X的二进制表达形式中的第i位,其中X的选取需要满足条件:2X>N,yi(i=1,...,d)是与X互质的另一正整数Y的二进制表达式中的第i位,其中Y的选取需要满足条件:2Y>D;⊕为异或操作算子;Bn,d表示第n个蜜蜂对电动汽车控制系统的第d个需要优化的参数的预估值;Among them, <x 1 ,x 2 ,…,x n >represents a binary number composed of x 1 ,x 2 ,…,x n , and <y 1 ,y 2 ,…,y d >represents a binary number composed of y 1 ,y 2 ,...,y d is composed of binary numbers, x i (i=1,...,n) is the ith bit in the binary representation of the positive integer X, where the selection of X needs to satisfy the conditions: 2 X >N, y i (i=1,...,d) is the ith bit in the binary expression of another positive integer Y that is relatively prime to X, and the selection of Y needs to satisfy the conditions: 2 Y >D; ⊕ is the exclusive OR Operation operator; B n,d represents the estimated value of the nth bee to the dth parameter that needs to be optimized in the electric vehicle control system;
步骤2:构建电动汽车控制系统动态评价指标函数J如下:Step 2: Construct the dynamic evaluation index function J of the electric vehicle control system as follows:
J=ω1∫εdt+ω2σ+ω3γ+ω4κJ=ω 1 ∫εdt+ω 2 σ+ω 3 γ+ω 4 κ
其中,ε、σ、γ和κ分别为电动汽车控制系统性能的四项评价指标:跟踪误差,超调百分比,上升时间和建立时间;ω1、ω2、ω3、ω4分别为四项评价指标所对应的权重系数;t为系统的测试时间;Among them, ε, σ, γ and κ are the four evaluation indicators of the electric vehicle control system performance: tracking error, overshoot percentage, rise time and settling time; ω 1 , ω 2 , ω 3 , and ω 4 are four items respectively The weight coefficient corresponding to the evaluation index; t is the test time of the system;
当对电动汽车控制系统参数开始寻优时,预先设定权重系数初值: 在算法寻优的过程中,首先给第一个权重系数ω1赋值,使得:ω2=ω3=ω4=0;当ε满足预设条件时,给第二个权重系数ω2赋值,使得: ω3=ω4=0;当ε和σ满足预设条件时,给第三个权重系数ω3赋值,使得:ω4=0;当ε、σ和γ满足预设条件时,给第四个权重系数ω4赋值,使得:然后对每个蜜蜂B,求取其所对应的J值,即为其适应度;When optimizing the parameters of the electric vehicle control system, the initial value of the weight coefficient is preset: In the process of algorithm optimization, the first weight coefficient ω 1 is first assigned, so that: ω 2 =ω 3 =ω 4 =0; when ε meets the preset condition, assign a value to the second weight coefficient ω 2 , so that: ω 3 =ω 4 =0; when ε and σ meet the preset conditions, assign a value to the third weight coefficient ω 3 , so that: ω 4 =0; when ε, σ and γ satisfy the preset conditions, assign a value to the fourth weight coefficient ω 4 so that: Then, for each bee B, the corresponding J value is obtained, which is its fitness;
步骤3:将整个种群的个体按其所对应的J值进行升序排列,设定其中前10%的蜜蜂为侦查蜂,后90%的蜜蜂为跟随蜂;在搜索过程中,第n个侦查蜂的第j步运动按照如下方式进行:Step 3: Arrange the individuals of the entire population in ascending order according to their corresponding J values, and set the top 10% of the bees as scout bees, and the last 90% of the bees as follower bees; during the search process, the nth scout bee The j-th motion of is performed as follows:
Bn(j)=Bn(j-1)+λn(j)Δn(j) Bn (j)= Bn (j-1)+ λn (j) Δn (j)
其中,λn为Bn的运动步长,Δn为Bn的运动方向,ω0为惯性权重用以设置前两步运动距离对下一步的贡献,为第j-1步时所有侦查蜂群的几何中心,μ1~U(0,1)和为具有均匀分布的随机变量;Among them, λ n is the movement step length of B n , Δ n is the movement direction of B n , ω 0 is the inertia weight used to set the contribution of the movement distance of the first two steps to the next step, is the geometric center of all reconnaissance bee colonies in step j-1, μ 1 ~ U(0,1) and is a random variable with uniform distribution;
第m个跟随蜂的第j步运动按照如下方式进行:m-th follower bee The j-th motion of is performed as follows:
Bm(j)=Bm(j-1)+λm(j)Δm(j)B m (j)=B m (j-1)+λ m (j)Δ m (j)
其中,λm为Bm的运动步长,Δm为Bm的运动方向,ω0为惯性权重用以设置前两步运动距离对下一步的贡献,Bnm为距离Bm最近的第n个侦查蜂,μ3~U(0,1)和为具有均匀分布的随机变量;Among them, λ m is the motion step length of B m , Δ m is the motion direction of B m , ω 0 is the inertia weight used to set the contribution of the motion distance of the first two steps to the next step, and B nm is the nth nearest to B m . scout bees, μ 3 ~U(0,1) and is a random variable with uniform distribution;
步骤4:为了兼顾算法的全局和局部寻优能力,第n个蜜蜂Bn(n=1,…,N)在第j步将采用如下的自适应搜索策略以动态调整其的寻优区域:Step 4: In order to take into account the global and local optimization capabilities of the algorithm, the nth bee B n (n=1,...,N) will use the following adaptive search strategy in the jth step to dynamically adjust its optimization area:
其中,和分别表示Bn在第j步搜索的上界和下界,为第j-1步时整个蜂群的几何中心,|| ||表示求取欧式距离,μ5~U(0,1)为具有均匀分布的随机变量;in, and respectively represent the upper and lower bounds of B n searched in the jth step, is the geometric center of the entire bee colony at the j-1th step, || || represents the Euclidean distance, μ 5 ~U(0,1) is a random variable with uniform distribution;
步骤5:当第j步的搜索完成之后,检验j是否达到最大允许寻优步数,如果未达到,则返回步骤2继续寻优,否则,停止计算,找出当前种群中J值最小的蜜蜂个体Bmin,该蜜蜂个体各维所对应的值(Bmin,1,Bmin,2,…,Bmin,D)即为最终优化所得到的电动汽车控制系统的参数值。Step 5: When the search of the jth step is completed, check whether j reaches the maximum allowable number of optimization steps. If not, return to
利用Simulink仿真环境下获得的数据进行测试和验证:Test and verify using data obtained in the Simulink simulation environment:
实施例Example
利用本发明方法所获得的电动汽车控制系统的8个最终优化参数k1~k8=[2.43780.0080-0.0377-45.6130-83.0195-3.511751.5439-0.1968]进行双移线工况测试。The 8 final optimized parameters k 1 to k 8 =[2.43780.0080-0.0377-45.6130-83.0195-3.511751.5439-0.1968] of the electric vehicle control system obtained by the method of the present invention are used to perform a double-line-shifting working condition test.
利用传统线性规划方法和本发明所提改进蜂群算法对电动汽车控制系统参数进行优化,然后对优化后的系统进行双移线工况测试,测试时间均为10秒。对比两种方法优化后系统的5个状态参数-横摆角、横摆角速率、质心侧偏角、侧向过载和侧向偏移误差,参见图3-图7,从图3~图6中可以看出,相比于传统线性规划方法,应用本发明方法所优化的控制系统可以使得电动汽车在双移线工况下具有更小的横摆角、横摆角速率、质心侧偏角和侧向过载的变化范围,提高了系统稳定性;从图7中可以看出应用本发明方法可以使得电动汽车在行驶的过程中侧向偏移误差更为快速的减小到零,提高了车辆对于指令跟踪的快速性。因此,在双移线工况下的工作状态可以看出:相比于传统线性规划方法,本发明方法所优化的电动汽车控制系统在完成双移线任务时可以使得系统具有更好的稳定性和快速减小的侧向偏移误差。The parameters of the electric vehicle control system are optimized by using the traditional linear programming method and the improved bee colony algorithm proposed by the present invention, and then the optimized system is tested under double line shifting conditions, and the test time is 10 seconds. Compare the five state parameters of the system optimized by the two methods - yaw angle, yaw angle rate, center of mass slip angle, lateral overload and lateral offset error, see Figure 3-Figure 7, from Figure 3-Figure 6 It can be seen that, compared with the traditional linear programming method, the control system optimized by the method of the present invention can make the electric vehicle have smaller yaw angle, yaw angle rate, and side-slip angle of the center of mass under the double-line shifting condition. It can be seen from FIG. 7 that the application of the method of the present invention can make the lateral offset error of the electric vehicle reduce to zero more quickly during the driving process, which improves the stability of the system. The speed with which the vehicle can track commands. Therefore, it can be seen from the working state under the condition of double line shifting: compared with the traditional linear programming method, the electric vehicle control system optimized by the method of the present invention can make the system have better stability when completing the task of double line shifting and a rapidly decreasing lateral offset error.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图8所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机程序被处理器执行时以实现基于改进蜂群算法的电动汽车控制系统参数优化方法。In one embodiment, a computer device is provided, and the computer device may be a server, and its internal structure diagram may be as shown in FIG. 8 . The computer device includes a processor, memory, a network interface, and a database connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system, a computer program, and a database. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. When the computer program is executed by the processor, the method for optimizing the parameters of the electric vehicle control system based on the improved bee colony algorithm is realized.
在一个实施例中,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现以下步骤:1)定义初始蜂群,构建电动汽车控制系统的动态评价指标函数;In one embodiment, a computer device is provided, which includes a memory, a processor, and a computer program stored in the memory and executable on the processor. When the processor executes the computer program, the following steps are implemented: 1) Define an initial bee colony , construct the dynamic evaluation index function of electric vehicle control system;
2)利用蜂群对电动汽车控制系统参数进行寻优,利用动态评价指标函数计算得到蜂群中的每个蜜蜂个体对应的适应度;2) Use the bee colony to optimize the parameters of the electric vehicle control system, and use the dynamic evaluation index function to calculate the fitness corresponding to each individual bee in the bee colony;
3)将蜂群个体按照其适应度进行升序排列,设排列中前若干个蜜蜂为侦查蜂,剩余的蜜蜂为跟随蜂;3) The bee colony individuals are arranged in ascending order according to their fitness, and the first several bees in the arrangement are set as scout bees, and the remaining bees are follower bees;
4)进行侦察蜂位置更新和跟随蜂位置更新;4) Update the position of the scout bee and the position of the follower bee;
在位置更新过程中,对每步搜索完成的蜜蜂个体采用自适应搜索策略调整其寻优区域,并判断是否达到最大允许寻优步数,若未达到,则返回步骤2);In the process of location update, adopt the adaptive search strategy to adjust the optimal search area for the individual bees that have completed the search in each step, and determine whether the maximum allowable number of optimal search steps is reached, if not, return to step 2);
否则,转到步骤5);Otherwise, go to step 5);
5)找到当前种群中适应度最小的蜜蜂个体,所述蜜蜂个体各维所对应的值即为最终优化所得到的电动汽车控制系统的参数值。5) Find the bee individual with the smallest fitness in the current population, and the value corresponding to each dimension of the bee individual is the parameter value of the electric vehicle control system obtained by the final optimization.
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:1)定义初始蜂群,构建电动汽车控制系统的动态评价指标函数;In one embodiment, a computer-readable storage medium is provided, on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented: 1) Define an initial bee colony, and construct a dynamic evaluation index of an electric vehicle control system function;
2)利用蜂群对电动汽车控制系统参数进行寻优,利用动态评价指标函数计算得到蜂群中的每个蜜蜂个体对应的适应度;2) Use the bee colony to optimize the parameters of the electric vehicle control system, and use the dynamic evaluation index function to calculate the fitness corresponding to each individual bee in the bee colony;
3)将蜂群个体按照其适应度进行升序排列,设排列中前若干个蜜蜂为侦查蜂,剩余的蜜蜂为跟随蜂;3) The bee colony individuals are arranged in ascending order according to their fitness, and the first several bees in the arrangement are set as scout bees, and the remaining bees are follower bees;
4)进行侦察蜂位置更新和跟随蜂位置更新;4) Update the position of the scout bee and the position of the follower bee;
在位置更新过程中,对每步搜索完成的蜜蜂个体采用自适应搜索策略调整其寻优区域,并判断是否达到最大允许寻优步数,若未达到,则返回步骤2);In the process of location update, adopt the adaptive search strategy to adjust the optimal search area for the individual bees that have completed the search in each step, and determine whether the maximum allowable number of optimal search steps is reached, if not, return to step 2);
否则,转到步骤5);Otherwise, go to step 5);
5)找到当前种群中适应度最小的蜜蜂个体,所述蜜蜂个体各维所对应的值即为最终优化所得到的电动汽车控制系统的参数值。5) Find the bee individual with the smallest fitness in the current population, and the value corresponding to each dimension of the bee individual is the parameter value of the electric vehicle control system obtained by the final optimization.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本发明所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by instructing relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage In the medium, when the computer program is executed, it may include the processes of the above-mentioned method embodiments. Wherein, any reference to memory, storage, database or other medium used in the various embodiments provided by the present invention may include non-volatile and/or volatile memory. Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory. Volatile memory may include random access memory (RAM) or external cache memory. By way of illustration and not limitation, RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。The above content is only to illustrate the technical idea of the present invention, and cannot limit the protection scope of the present invention. Any changes made on the basis of the technical solution according to the technical idea proposed by the present invention all fall within the scope of the claims of the present invention. within the scope of protection.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010752788.7A CN111898726B (en) | 2020-07-30 | 2020-07-30 | Parameter optimization method, equipment and storage medium for electric automobile control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010752788.7A CN111898726B (en) | 2020-07-30 | 2020-07-30 | Parameter optimization method, equipment and storage medium for electric automobile control system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111898726A true CN111898726A (en) | 2020-11-06 |
CN111898726B CN111898726B (en) | 2024-01-26 |
Family
ID=73182594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010752788.7A Active CN111898726B (en) | 2020-07-30 | 2020-07-30 | Parameter optimization method, equipment and storage medium for electric automobile control system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111898726B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116646568A (en) * | 2023-06-02 | 2023-08-25 | 陕西旭氢时代科技有限公司 | Fuel cell stack parameter optimizing method based on meta heuristic |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005285090A (en) * | 2003-12-24 | 2005-10-13 | Yamaha Motor Co Ltd | Multiobjective optimization apparatus, method, and program |
CN106875050A (en) * | 2017-04-01 | 2017-06-20 | 哈尔滨工业大学 | A kind of Engineering constraint parameter optimization method based on improvement chaos ant colony algorithm |
WO2017197626A1 (en) * | 2016-05-19 | 2017-11-23 | 江南大学 | Extreme learning machine method for improving artificial bee colony optimization |
CN108491670A (en) * | 2018-04-17 | 2018-09-04 | 常熟理工学院 | A kind of parameter matching of electronic logistic car driving motor and optimization method |
CN111123112A (en) * | 2020-01-10 | 2020-05-08 | 南昌大学 | A method for parameter identification of lithium-ion battery model based on artificial bee colony algorithm |
-
2020
- 2020-07-30 CN CN202010752788.7A patent/CN111898726B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005285090A (en) * | 2003-12-24 | 2005-10-13 | Yamaha Motor Co Ltd | Multiobjective optimization apparatus, method, and program |
WO2017197626A1 (en) * | 2016-05-19 | 2017-11-23 | 江南大学 | Extreme learning machine method for improving artificial bee colony optimization |
CN106875050A (en) * | 2017-04-01 | 2017-06-20 | 哈尔滨工业大学 | A kind of Engineering constraint parameter optimization method based on improvement chaos ant colony algorithm |
CN108491670A (en) * | 2018-04-17 | 2018-09-04 | 常熟理工学院 | A kind of parameter matching of electronic logistic car driving motor and optimization method |
CN111123112A (en) * | 2020-01-10 | 2020-05-08 | 南昌大学 | A method for parameter identification of lithium-ion battery model based on artificial bee colony algorithm |
Non-Patent Citations (2)
Title |
---|
宋晓琳;任祥喜;: "基于改进人工蜂群算法的复合电源电动车FSM-Fuzzy能量管理策略", 现代制造工程, no. 03 * |
宋月振;裴腾达;裴炳南;: "基于中心解的改进人工蜂群算法", 计算机应用, no. 04 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116646568A (en) * | 2023-06-02 | 2023-08-25 | 陕西旭氢时代科技有限公司 | Fuel cell stack parameter optimizing method based on meta heuristic |
CN116646568B (en) * | 2023-06-02 | 2024-02-02 | 陕西旭氢时代科技有限公司 | Fuel cell stack parameter optimizing method based on meta heuristic |
Also Published As
Publication number | Publication date |
---|---|
CN111898726B (en) | 2024-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111898206A (en) | A kind of parameter optimization method based on improved genetic algorithm, computer equipment and storage medium | |
Chen | Stability analysis and robustness design of nonlinear systems: an NN-based approach | |
Dang et al. | Event-triggered model predictive control with deep reinforcement learning for autonomous driving | |
CN103217899B (en) | Q function self adaptation dynamic programming method based on data | |
CN104932267B (en) | A kind of neural network lea rning control method of use eligibility trace | |
CN109933021A (en) | A vehicle platoon stability control method considering the uncertainty of vehicle dynamics parameters | |
CN112987577B (en) | A data-driven adaptive control method and device for an unmanned vehicle | |
CN112632860A (en) | Power transmission system model parameter identification method based on reinforcement learning | |
Taghavifar et al. | Use of artificial neural networks for estimation of agricultural wheel traction force in soil bin | |
CN117970782B (en) | Fuzzy PID control method based on fish scale evolution GSOM improvement | |
Kosic | Fast clustered radial basis function network as an adaptive predictive controller | |
CN116661307A (en) | Nonlinear system actuator fault PPB-SIADP fault-tolerant control method | |
Mahmoud et al. | Direct adaptive control for nonlinear systems using a TSK fuzzy echo state network based on fractional-order learning algorithm | |
Li et al. | Training a robust reinforcement learning controller for the uncertain system based on policy gradient method | |
Lu et al. | Friction coefficient estimation in servo systems using neural dynamic programming inspired particle swarm search | |
Lv et al. | Inverse-model-based iterative learning control for unknown MIMO nonlinear system with neural network | |
CN111898726A (en) | Parameter optimization method for electric vehicle control system, computer equipment and storage medium | |
Yang et al. | Direct adaptive control for a class of discrete‐time unknown nonaffine nonlinear systems using neural networks | |
CN113759724A (en) | Data-driven robot control method, device and computer equipment | |
Echevarrieta et al. | Speeding-up evolutionary algorithms to solve black-box optimization problems | |
CN117519129A (en) | A trajectory tracking control method, device, computer equipment and storage medium | |
CN117192990A (en) | Data-driven multi-time scale industrial process self-learning optimal operation control method | |
Chen et al. | Command filter‐based adaptive finite‐time control of fractional‐order nonlinear constrained systems with input saturation | |
Sieberg et al. | Representation of an integrated non-linear model-based predictive vehicle dynamics control system by a co-active neuro-fuzzy inference system | |
Liu et al. | LyZNet with Control: Physics-Informed Neural Network Control of Nonlinear Systems with Formal Guarantees |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |