CN111897986A - An image selection method, device, storage medium and terminal - Google Patents
An image selection method, device, storage medium and terminal Download PDFInfo
- Publication number
- CN111897986A CN111897986A CN202010604116.1A CN202010604116A CN111897986A CN 111897986 A CN111897986 A CN 111897986A CN 202010604116 A CN202010604116 A CN 202010604116A CN 111897986 A CN111897986 A CN 111897986A
- Authority
- CN
- China
- Prior art keywords
- image
- preprocessing
- library
- designated
- images
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010187 selection method Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 53
- 238000013507 mapping Methods 0.000 claims abstract description 19
- 238000007781 pre-processing Methods 0.000 claims description 98
- 238000003062 neural network model Methods 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 7
- 238000010276 construction Methods 0.000 claims description 6
- 230000008921 facial expression Effects 0.000 claims description 5
- 238000012163 sequencing technique Methods 0.000 claims 1
- 230000004044 response Effects 0.000 abstract description 10
- 238000012549 training Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000011176 pooling Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 241000190070 Sarracenia purpurea Species 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/55—Clustering; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/51—Indexing; Data structures therefor; Storage structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/53—Querying
- G06F16/538—Presentation of query results
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/54—Browsing; Visualisation therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/583—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Library & Information Science (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种图像选取方法、装置、存储介质及终端,所述方法包括:对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识,得到对应的标识信息;响应于用户的选取指定类别图像的第一选取指令,根据标识信息从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像,因此,采用本申请实施例,由于引入了能够对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识的标识信息,因此,能够根据上述标识信息对选取的指定图像进行精准标引,快速且智能地从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像。
The invention discloses an image selection method, device, storage medium and terminal. The method includes: comparing each second image in a second image library, the corresponding image category, and the relationship between each second image and the corresponding image category The mapping relationship is identified, and the corresponding identification information is obtained; in response to the user's first selection instruction for selecting an image of a designated category, at least one designated image is selected from the second image library according to the identification information as the designated image selected by the user, so , using the embodiment of the present application, since the identification information that can identify each second image in the second image library, the corresponding image category, and the mapping relationship between each second image and the corresponding image category is introduced, therefore, The selected designated image can be accurately indexed according to the above identification information, and at least one designated image can be quickly and intelligently selected from the second image library as the designated image selected by the user.
Description
技术领域technical field
本发明涉及图像处理技术领域,特别涉及一种图像选取方法、装置、存储介质及终端。The present invention relates to the technical field of image processing, and in particular, to an image selection method, device, storage medium and terminal.
背景技术Background technique
基于诸如图像采集装置,例如,摄像头等图像采集装置在各种场所的广泛应用,例如,家庭、办公场所、商场等场所的广泛实用,能够获取到大量的图像数据。A large amount of image data can be acquired based on the wide application of image acquisition devices such as image acquisition devices, such as cameras, in various places, for example, in homes, offices, shopping malls and other places.
与此同时,在摄像头等图像采集装置大量且多点部署的场景下,用户获取到大量图像数据,如果用户想要从上述大量图像数据中选取某一指定类别的图像,需要人工手动选取,这样,选取图像的过程过于繁琐,也往往引入用户的个人喜好倾向,具有不确定性。At the same time, in the scenario where a large number of image acquisition devices such as cameras are deployed at multiple points, the user obtains a large amount of image data. If the user wants to select an image of a specified category from the above-mentioned large amount of image data, it needs to be manually selected manually. , the process of selecting images is too cumbersome, and often introduces the user's personal preferences, which is uncertain.
或者,从上述大量图像数据中随机选择某一图像,这样,选取出的图像往往并不是用户指定类别的图像,这样,用户无法从上述大量图像数据中快速且智能地选取出指定类别的任意一个图像。Alternatively, an image is randomly selected from the above-mentioned large amount of image data. In this way, the selected image is often not an image of the category specified by the user, so that the user cannot quickly and intelligently select any one of the specified category from the above-mentioned large amount of image data. image.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供了一种图像选取方法、装置、存储介质及终端。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。Embodiments of the present application provide an image selection method, device, storage medium, and terminal. In order to provide a basic understanding of some aspects of the disclosed embodiments, a brief summary is given below. This summary is not intended to be an extensive review, nor is it intended to identify key/critical elements or delineate the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simplified form as a prelude to the detailed description that follows.
第一方面,本申请实施例提供了一种图像选取方法,所述方法包括:In a first aspect, an embodiment of the present application provides an image selection method, the method comprising:
由多个图像采集装置采集到的多个第一图像构建第一图像库;constructing a first image library from a plurality of first images collected by a plurality of image collection devices;
根据预处理模型,对所述第一图像库中的各个第一图像进行预处理,得到对应的第二图像,并由多个第二图像构建第二图像库;According to the preprocessing model, each first image in the first image library is preprocessed to obtain a corresponding second image, and a second image library is constructed from a plurality of second images;
根据用于对图像进行分类的预设神经网络模型,对所述第二图像库中的各个第二图像进行分类,得到对应的图像类别;Classify each second image in the second image library according to a preset neural network model for classifying images to obtain a corresponding image category;
对所述第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识,得到对应的标识信息;Identifying each second image in the second image library, the corresponding image category, and the mapping relationship between each second image and the corresponding image category, to obtain corresponding identification information;
响应于用户的选取指定类别图像的第一选取指令,根据所述标识信息从所述第二图像库中选取至少一个指定图像,作为用户选取出的指定图像。In response to the user's first selection instruction for selecting an image of a designated category, at least one designated image is selected from the second image library according to the identification information as the designated image selected by the user.
第二方面,本申请实施例提供了一种图像选取装置,所述装置包括:In a second aspect, an embodiment of the present application provides an image selection apparatus, and the apparatus includes:
第一图像库构建模块,用于由多个图像采集装置采集到的多个第一图像构建第一图像库;a first image library building module, configured to construct a first image library from a plurality of first images collected by a plurality of image acquisition devices;
预处理模块,用于根据预处理模型,对所述第一图像库中的各个第一图像进行预处理,得到对应的第二图像;a preprocessing module, configured to preprocess each first image in the first image library according to the preprocessing model to obtain a corresponding second image;
第二图像库构建模块,用于由所述预处理模块预处理得到的多个第二图像组成第二图像库;A second image library building module, configured to form a second image library with a plurality of second images preprocessed by the preprocessing module;
图像分类模块,用于根据用于对图像进行分类的预设神经网络模型,对所述第二图像库中的各个第二图像进行分类,得到对应的图像类别;an image classification module, configured to classify each second image in the second image library according to a preset neural network model for classifying images to obtain a corresponding image category;
标识模块,用于对所述第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识,得到对应的标识信息;an identification module, configured to identify each second image in the second image library, the corresponding image category, and the mapping relationship between each second image and the corresponding image category, to obtain corresponding identification information;
图像选取模块,用于响应于用户的选取指定类别图像的第一选取指令,根据所述标识信息从所述第二图像库中选取至少一个指定图像,作为用户选取出的指定图像。The image selection module is configured to select at least one designated image from the second image library according to the identification information as the designated image selected by the user in response to the user's first selection instruction for selecting an image of a designated category.
第三方面,本申请实施例提供一种计算机存储介质,所述计算机存储介质存储有多条指令,所述指令适于由处理器加载并执行上述的方法步骤。In a third aspect, an embodiment of the present application provides a computer storage medium, where the computer storage medium stores a plurality of instructions, and the instructions are suitable for being loaded by a processor and executing the above method steps.
第四方面,本申请实施例提供一种终端,可包括:处理器和存储器;其中,所述存储器存储有计算机程序,所述计算机程序适于由所述处理器加载并执行上述的方法步骤。In a fourth aspect, an embodiment of the present application provides a terminal, which may include: a processor and a memory; wherein, the memory stores a computer program, and the computer program is adapted to be loaded by the processor and execute the above method steps.
本申请实施例提供的技术方案可以包括以下有益效果:The technical solutions provided by the embodiments of the present application may include the following beneficial effects:
在本申请实施例中,对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识,得到对应的标识信息;响应于用户的选取指定类别图像的第一选取指令,根据标识信息从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像。由于本申请引入了能够对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识的标识信息,因此,能够根据上述标识信息对选取的指定图像进行精准标引,快速且智能地从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像。In the embodiment of the present application, each second image in the second image library, the corresponding image category, and the mapping relationship between each second image and the corresponding image category are identified, and corresponding identification information is obtained; The first selection instruction for selecting an image of a designated category, selects at least one designated image from the second image library according to the identification information as the designated image selected by the user. Since the present application introduces identification information that can identify each second image in the second image library, the corresponding image category, and the mapping relationship between each second image and the corresponding image category, the identification information can be used according to the above identification information. The selected designated image is accurately indexed, and at least one designated image is quickly and intelligently selected from the second image library as the designated image selected by the user.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the invention and together with the description serve to explain the principles of the invention.
图1是本申请实施例提供的一种图像选取方法的流程示意图;1 is a schematic flowchart of an image selection method provided by an embodiment of the present application;
图2是本申请实施例提供的一种图像选取装置的结构示意图;2 is a schematic structural diagram of an image selection device provided by an embodiment of the present application;
图3是本申请实施例提供的一种终端的结构示意图。FIG. 3 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
具体实施方式Detailed ways
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。The following description and drawings sufficiently illustrate specific embodiments of the invention to enable those skilled in the art to practice them.
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。It should be understood that the described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。Where the following description refers to the drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the illustrative examples below are not intended to represent all implementations consistent with the present invention. Rather, they are merely examples of apparatus and methods consistent with some aspects of the invention, as recited in the appended claims.
在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。此外,在本发明的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。In the description of the present invention, it should be understood that the terms "first", "second" and the like are used for descriptive purposes only, and should not be construed as indicating or implying relative importance. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations. Furthermore, in the description of the present invention, unless otherwise specified, "a plurality" means two or more. "And/or", which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone. The character "/" generally indicates that the associated objects are an "or" relationship.
到目前为止,现有的指定类别图像选取方法,要不是人工选取图像,这样图像选取的选取过程过于繁琐,耗时且耗力;要不是随机选取图像,这样,选取出的图像往往并不是用户指定种类的图像,图像选取的准确率低。为此,本申请提供了一种图像选取方法、装置、存储介质及终端,以解决上述相关技术问题中存在的问题。本申请提供的技术方案中,对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识,得到对应的标识信息;响应于用户的选取指定类别图像的第一选取指令,根据标识信息从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像。由于本申请引入了能够对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识的标识信息,因此,能够根据上述标识信息对选取的指定图像进行精准标引,快速且智能地从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像,下面采用示例性的实施例进行详细说明。So far, the existing methods for selecting images of designated categories, if the images are not manually selected, the selection process of image selection is too cumbersome, time-consuming and labor-intensive; if the images are not randomly selected, the selected images are often not the user's For the specified types of images, the accuracy of image selection is low. To this end, the present application provides an image selection method, device, storage medium and terminal to solve the problems existing in the above-mentioned related technical problems. In the technical solution provided by the present application, each second image in the second image library, the corresponding image category, and the mapping relationship between each second image and the corresponding image category are identified, and corresponding identification information is obtained; The user's first selection instruction for selecting an image of a designated category selects at least one designated image from the second image library according to the identification information as the designated image selected by the user. Since the present application introduces identification information that can identify each second image in the second image library, the corresponding image category, and the mapping relationship between each second image and the corresponding image category, the identification information can be used according to the above identification information. The selected designated images are accurately indexed, and at least one designated image is quickly and intelligently selected from the second image library as the designated image selected by the user, which will be described in detail below using an exemplary embodiment.
下面将结合附图1,对本申请实施例提供的图像选取方法进行详细介绍。该方法可依赖于计算机程序实现,可运行于图像选取装置上。该计算机程序可集成在应用中,也可作为独立的工具类应用运行。其中,本申请实施例中的图像选取装置可以为用户终端,包括但不限于:个人电脑、平板电脑、手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中用户终端可以叫做不同的名称,例如:用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、蜂窝电话、无绳电话、个人数字处理(personaldigital assistant,PDA)、5G网络或未来演进网络中的终端设备等。The image selection method provided by the embodiment of the present application will be described in detail below with reference to FIG. 1 . The method can be implemented by means of a computer program, and can be run on an image selection device. The computer program can be integrated into an application or run as a stand-alone utility application. The image selection apparatus in this embodiment of the present application may be a user terminal, including but not limited to: a personal computer, a tablet computer, a handheld device, a vehicle-mounted device, a wearable device, a computing device, or other processing devices connected to a wireless modem. User terminals may be called by different names in different networks, for example: user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication Equipment, user agent or user equipment, cellular phone, cordless phone, personal digital assistant (PDA), terminal equipment in 5G network or future evolution network, etc.
请参见图1,为本申请实施例提供了一种图像选取方法的流程示意图。如图1所示,本申请实施例的图像选取方法可以包括以下步骤:Referring to FIG. 1 , a schematic flowchart of an image selection method is provided in an embodiment of the present application. As shown in FIG. 1 , the image selection method in the embodiment of the present application may include the following steps:
S101,由多个图像采集装置采集到的多个第一图像构建第一图像库。S101, a first image library is constructed from a plurality of first images collected by a plurality of image collection devices.
在本步骤中,多个第一图像由分别布置在预设区域的多个图像采集装置采集得到、且多个图像采集装置之间无重叠采集区域。In this step, a plurality of first images are acquired by a plurality of image acquisition devices respectively arranged in a preset area, and there is no overlapping acquisition area among the plurality of image acquisition devices.
在实际应用场景中,图像采集装置可以为具有拍摄功能的摄像头。In practical application scenarios, the image acquisition device may be a camera with a shooting function.
例如,在某一具体应用场景中,某小区布置有二十台摄像头,这样,布置在该小区的二十台摄像头可以采集到多个第一图像,且上述二十台摄像头之间无重叠采集区域,这样,避免出现第一图像库中的任意第一图像与其它第一图像之间的重复采集图像的现象。For example, in a specific application scenario, twenty cameras are arranged in a cell, so that the twenty cameras arranged in the cell can capture multiple first images, and there is no overlap between the twenty cameras. In this way, the phenomenon of repeated acquisition of images between any first image in the first image library and other first images is avoided.
在此步骤中,第一图像库中的各个第一图像为图像采集装置采集到的原始图像,未经过任何图像处理的图像。In this step, each first image in the first image library is an original image collected by the image collection device, and an image that has not undergone any image processing.
S102,根据预处理模型,对第一图像库中的各个第一图像进行预处理,得到对应的第二图像,并由多个第二图像构建第二图像库。S102: Perform preprocessing on each first image in the first image library according to the preprocessing model to obtain a corresponding second image, and construct a second image library from a plurality of second images.
在一种可能的实现方式中,预处理模型包括能够突出关键信息要素集合中的至少一项关键信息要素的第一预处理模型,根据预处理模型,对第一图像库中的各个第一图像进行预处理,得到对应的第二图像包括以下步骤:In a possible implementation manner, the preprocessing model includes a first preprocessing model capable of highlighting at least one key information element in the set of key information elements, and according to the preprocessing model, each first image in the first image library is Performing preprocessing to obtain the corresponding second image includes the following steps:
根据第一预处理模型,对第一图像库中的各个第一图像进行第一预处理,得到对应的至少突出一项关键信息要素的第二图像,第一预处理为用于突出至少一项关键信息要素的预处理。According to the first preprocessing model, first preprocessing is performed on each first image in the first image library to obtain a corresponding second image highlighting at least one key information element, and the first preprocessing is used to highlight at least one item Preprocessing of key information elements.
在此步骤中,至少一项关键信息要素至少包括以下一项:In this step, at least one key information element includes at least one of the following:
第一图像中的主体物体的特征信息要素、第一图像中的主体物体的面部表情信息要素、第一图像中的主体物体的配饰信息要素。Feature information elements of the main object in the first image, facial expression information elements of the main object in the first image, and accessory information elements of the main object in the first image.
除了上述关键信息要素之外,还可以为其它关键信息要素,在此,对关键信息要素的内涵不做具体限制。In addition to the above key information elements, other key information elements may also be used, and the connotation of the key information elements is not specifically limited here.
在某一具体场景中,在第一图像为一只白色加菲猫的图片时,一项关键信息要素可以为:突出该白色加菲猫的白色毛发对应的毛发特征信息要素,则通过用于突出该毛发特征信息要素的第一预处理过程,将该图片的背景色做滤镜处理,得到对应的第二图像。In a specific scene, when the first image is a picture of a white Garfield, a key information element may be: highlighting the hair feature information element corresponding to the white hair of the white Garfield, then by using the information for highlighting the hair feature In the first preprocessing process of the information element, the background color of the picture is filtered to obtain the corresponding second image.
在第二图像中,背景色的蓝色底色,跟图片中的加菲猫的白色毛发形成鲜明对应,突出了该加菲猫的雪白白色毛发。In the second image, the blue undertone of the background color contrasts sharply with Garfield's white fur in the picture, accentuating the cat's snow-white fur.
上述的第一预处理过程仅仅是示例,在此不再赘述。可以根据不同具体应用场景的需求,对第一预处理模型对应的第一预处理过程进行调整,在此不再赘述。The above-mentioned first preprocessing process is only an example, and details are not repeated here. The first preprocessing process corresponding to the first preprocessing model may be adjusted according to the requirements of different specific application scenarios, which will not be repeated here.
需要说明的是,第一预处理模型是根据常规的模型构建方法建立起来的模型,在此对构建模型的方法不做赘述。一般构建模型的方法包括训练集合和测试集合。根据训练集合中的图像数据构建出最初训练模型,再根据测试集合中的图像数据对最初训练模型进行测试,并不断修正,得到修正后的训练模型。It should be noted that the first preprocessing model is a model established according to a conventional model building method, and the method for building a model is not described here. The general method of building a model includes a training set and a test set. The initial training model is constructed according to the image data in the training set, and then the initial training model is tested according to the image data in the test set, and the revised training model is obtained.
在一种可能的实现方式中,在根据第一预处理模型,对第一图像库中的各个第一图像进行预处理之前,所述方法还包括以下步骤:In a possible implementation manner, before each first image in the first image library is preprocessed according to the first preprocessing model, the method further includes the following steps:
读取至少一项关键信息要素;Read at least one key information element;
其中,关键信息要素至少包括以下一项:Among them, the key information elements include at least one of the following:
第一图像中的主体物体的特征信息要素、第一图像中的主体物体的面部表情信息要素、第一图像中的主体物体的配饰信息要素。Feature information elements of the main object in the first image, facial expression information elements of the main object in the first image, and accessory information elements of the main object in the first image.
除了上述关键信息要素之外,还可以为其它关键信息要素,在此,对关键信息要素的内涵不做具体限制。针对上述关键信息要素的描述烦请参见前述描述,在此不再赘述。In addition to the above key information elements, other key information elements may also be used, and the connotation of the key information elements is not specifically limited here. For the description of the above-mentioned key information elements, please refer to the foregoing description, which will not be repeated here.
在另一种可能的实现方式中,预处理模型包括能够去掉至少一个无关联背景物体和/或背景人的第二预处理模型,根据预处理模型,对第一图像库中的各个第一图像进行预处理,得到对应的第二图像还包括以下步骤:In another possible implementation manner, the preprocessing model includes a second preprocessing model capable of removing at least one unrelated background object and/or background person. According to the preprocessing model, each first image in the first image library is Performing preprocessing to obtain the corresponding second image further includes the following steps:
根据第二预处理模型,对第一图像库中的各个第一图像进行第二预处理,得到对应的去掉至少一个背景物体和/或背景人的第二图像,第二预处理为用于去掉至少一个无关联背景物体和/或背景人的预处理。According to the second preprocessing model, a second preprocessing is performed on each of the first images in the first image library to obtain a corresponding second image with at least one background object and/or background person removed, and the second preprocessing is for removing Preprocessing of at least one unrelated background object and/or background person.
在某一具体应用场景中,在当前第一图像中包括至少一个无关联背景物体和/或背景人时,例如,在当前第一图像为包括无关联背景物体,一个水杯的情况下,根据第二预处理模型对当前第一图像进行第二预处理,去掉该水杯,并替换成用户选取的完整背景图片,最终得到去掉无关联背景物体(水杯)的第二图像。In a specific application scenario, when the current first image includes at least one unrelated background object and/or background person, for example, in the case that the current first image includes unrelated background objects and a water glass, according to the first image The second preprocessing model performs second preprocessing on the current first image, removes the water cup, and replaces it with a complete background image selected by the user, and finally obtains a second image with the unrelated background object (water cup) removed.
上述仅仅示例了某一应用场景下,水杯为无关联背景物体的应用场景。在其它应用场景下,无关联背景物体还可以为鲜花,或者,风扇等与第一图像中的主体物体无任何关联的背景物体,在此不再赘述。The above only exemplifies an application scenario in which the water cup is an unrelated background object. In other application scenarios, the unrelated background object may also be a flower, or a background object such as a fan that has no relationship with the main object in the first image, and details are not described herein again.
需要说明的是,第二预处理模型是根据常规的模型构建方法建立起来的模型,在此对构建模型的方法不做赘述。一般构建模型的方法包括训练集合和测试集合。根据训练集合中的图像数据构建出最初训练模型,再根据测试集合中的图像数据对最初训练模型进行测试,并不断修正,得到修正后的训练模型。It should be noted that the second preprocessing model is a model established according to a conventional model building method, and the method for building the model is not described here. The general method of building a model includes a training set and a test set. The initial training model is constructed according to the image data in the training set, and then the initial training model is tested according to the image data in the test set, and the revised training model is obtained.
上述仅仅列举了两种预处理过程,除了上述罗列的两种预处理过程之外,还可以为其它预处理过程,在此不再一一赘述。The above only enumerates two preprocessing processes. In addition to the two preprocessing processes listed above, other preprocessing processes may also be used, which will not be repeated here.
S103,根据用于对图像进行分类的预设神经网络模型,对第二图像库中的各个第二图像进行分类,得到对应的图像类别。S103: Classify each second image in the second image library according to a preset neural network model for classifying images to obtain a corresponding image category.
在此步骤中,预设神经网络模型是基于VGG模型构建的神经网络模型,该模型的分类精准率更加精准,能够从第二图像库中精准地对图像进行分类,例如,哪些图片均是属于汽车这一类的图片,哪些图片均是属于宠物狗这一类的图片。In this step, the preset neural network model is a neural network model constructed based on the VGG model. The classification accuracy of this model is more accurate, and it can accurately classify images from the second image library, for example, which pictures belong to The pictures of cars, which pictures belong to the category of pet dogs.
由于VGG模型的网络层数更多以及卷积核更小,能够提取到更多的图像特征,进而提高了图片分类的精准率。但是,由于VGG模型网络复杂度较高,因此,构建模型的训练过程也更长,此外,对计算机硬件性能的要求也更高。Since the VGG model has more network layers and smaller convolution kernels, more image features can be extracted, thereby improving the accuracy of image classification. However, due to the high network complexity of the VGG model, the training process for building the model is also longer, and the requirements for computer hardware performance are also higher.
在具体应用场景中,可以根据第二图像库中的第二图像的数量,选择不同的预设神经网络模型。例如,在第二图像库中的第二图像的数量并不多,且对图像分类的识别准确率要求较高的情况下,可以选择上述VGG模型。In a specific application scenario, different preset neural network models may be selected according to the number of second images in the second image library. For example, in the case that the number of second images in the second image library is not large, and the recognition accuracy of image classification is required to be high, the above-mentioned VGG model can be selected.
在实际应用中,VGG模型具有以下优点:In practical applications, the VGG model has the following advantages:
小卷积核;将卷积核全部替换为3x3(极少用了1x1);Small convolution kernel; replace all convolution kernels with 3x3 (1x1 is rarely used);
小池化核;相比AlexNet的3x3的池化核,VGG全部为2x2的池化核;Small pooling kernel; compared to AlexNet's 3x3 pooling kernel, VGG is all 2x2 pooling kernel;
层数更深特征图更宽;由于卷积核专注于扩大通道数、池化专注于缩小宽和高,使得模型架构上更深更宽的同时,计算量的增加放缓;The feature map with deeper layers is wider; since the convolution kernel focuses on expanding the number of channels and pooling focuses on reducing the width and height, the model architecture is deeper and wider, while the increase in the amount of computation slows down;
全连接转卷积;网络测试阶段将训练阶段的三个全连接替换为三个卷积,测试重用训练时的参数,使得测试得到的全卷积网络因为没有全连接的限制,因而,可以接收任意宽或高为的输入。Full connection to convolution; in the network testing phase, the three full connections in the training phase are replaced by three convolutions, and the parameters during training are reused for testing, so that the fully convolutional network obtained under the test has no restrictions on full connections, so it can receive Input of any width or height.
在另一种具体应用场景中,在第二图像库中的第二图像的数量比较多,且对图像分别的识别准确率要求并不高的情况下,可以选择优化的卷积神经网络。例如,将卷积神经网络输入层的图片设置为预设大小的图片,通过卷积层对图片进行特征提取,池化层降低图像维度。在此,对图片的第一预设大小并不做具体限制。第2层卷积的输入是第1层卷积的输出,大小为第二预设大小,在此,对第二预设大小也不做具体限制。卷积层3至5层结构相同,均不再采用卷积层后接池化层的链接方式,而采用全卷积方式,尽可能多的提取图像特征。传入全连接层前,先对上一层得到的数据进行扁平化处理,把多维输入一维化,使全连接层链接效果更好。输出层的神经节点数是根据实际分类需求来确定的。此外,还对分类流程不断进行优化,对分类流程进行优化的方法为常规方法,在此不再赘述。In another specific application scenario, an optimized convolutional neural network can be selected when the number of second images in the second image library is relatively large, and the requirements for the respective recognition accuracy of the images are not high. For example, the image of the input layer of the convolutional neural network is set to the image of the preset size, the feature extraction is performed on the image through the convolution layer, and the pooling layer reduces the image dimension. Here, the first preset size of the picture is not specifically limited. The input of the second layer of convolution is the output of the first layer of convolution, and the size is the second preset size. Here, the second preset size is not specifically limited. Convolutional layers 3 to 5 have the same structure, and instead of using the convolutional layer followed by the pooling layer, the full convolution method is used to extract as many image features as possible. Before passing into the fully connected layer, the data obtained by the previous layer is flattened, and the multi-dimensional input is one-dimensional, so that the link effect of the fully connected layer is better. The number of neural nodes in the output layer is determined according to the actual classification requirements. In addition, the classification process is continuously optimized, and the method for optimizing the classification process is a conventional method, which will not be repeated here.
S104,对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识,得到对应的标识信息。S104: Identify each second image in the second image library, the corresponding image category, and the mapping relationship between each second image and the corresponding image category, to obtain corresponding identification information.
在此步骤中,标识信息除了上述信息之外,为了实现对各个第二图像的精准定位,还可以对图像采集装置进行图像采集的时间信息进行标识;时间信息可以具体到:某一天的某一个时刻。In this step, in addition to the above information, the identification information can also identify the time information of the image acquisition by the image acquisition device in order to achieve accurate positioning of each second image; the time information can be specific to: a certain date on a certain day time.
又例如,对图像采集装置进行图像采集的地址信息进行标识:地址信息可以具体到:某一个小区的某个建筑物内。For another example, the address information used for image collection by the image collection device is identified: the address information may be specific to: a certain building in a certain cell.
S105,响应于用户的选取指定类别图像的第一选取指令,根据标识信息从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像。S105, in response to the user's first selection instruction for selecting an image of a designated category, select at least one designated image from the second image library according to the identification information as the designated image selected by the user.
在实际应用中,选取出的指定图像可以为一张,也可以为多张,在此对指定图像的数量不做具体限制。In practical applications, the selected specified image may be one or multiple, and there is no specific limitation on the number of the specified images.
在一种可能的实现方式中,在根据标识信息从第二图像库中选取至少一个指定图像之后,所述方法还包括步骤:In a possible implementation manner, after selecting at least one designated image from the second image library according to the identification information, the method further includes the steps of:
响应于用户的选取指定显示设备的第二选取指令,将选取的至少一个指定图像显示于对应的显示设备,其中,第二选择指令中携带有指定显示设备的MAC地址信息。In response to the user's second selection instruction for selecting the designated display device, the selected at least one designated image is displayed on the corresponding display device, wherein the second selection instruction carries the MAC address information of the designated display device.
在此步骤中,可以通过显示设备的MAC地址信息实现对指定显示设备的精准定位。In this step, precise positioning of the specified display device can be achieved through the MAC address information of the display device.
在一种可能的实现方式中,将选取的至少一个指定图像显示于对应的显示设备包括以下步骤:In a possible implementation manner, displaying the selected at least one designated image on the corresponding display device includes the following steps:
在指定图像的数量为两个或两个以上的情况下,分别计算各个指定图像的权重值;When the number of specified images is two or more, calculate the weight value of each specified image respectively;
根据各个指定图像的图像权重值,对各个指定图像进行排序;Sort each specified image according to the image weight value of each specified image;
根据图像排序与图像在指定显示设备上的显示位置的对应关系,将各个指定图像显示于指定显示设备的对应位置上。Each designated image is displayed on the corresponding position of the designated display device according to the corresponding relationship between the order of the images and the display positions of the images on the designated display device.
在实际应用中,在选取的指定图像为两张或两张以上时,对各个指定图像的权重值进行计算的方法为常规常规方法,在此不再赘述。In practical applications, when two or more designated images are selected, the method for calculating the weight value of each designated image is a conventional method, which will not be repeated here.
在得到各个指定图像的权重值之后,对各个指定图像的权重值进行排序。在实际应用中,将指定图像的权重值最大的第一指定图像排在最前面,并将该权重值对应的指定图像显示于指定显示设备的中央区域,而将权重值最小的第二指定图像显示于指定显示设备的边界区域,例如,上边界,或者,下边界,或者左边界,或者右边界。在此仅仅示例了一种显示方法,还可以有其它显示方式,例如,将权重值最大的第一指定图像显示于指定显示设备的最上层,而将权重值最小的第二指定图像显示于第一指定图像的下一层,为了避免图像之间的互相遮挡,可以对各个图像的显示图层的透明度进行设置,例如,透明度设置成百分之五十,还可以根据不同应用场景,对显示方法进行修改,在此不再赘述。After the weight value of each designated image is obtained, the weight value of each designated image is sorted. In practical applications, the first designated image with the largest weight value of the designated image is ranked first, and the designated image corresponding to the weight value is displayed in the central area of the designated display device, and the second designated image with the smallest weight value is displayed. Displayed on the bounding area of the specified display device, for example, the top border, or the bottom border, or the left border, or the right border. Only one display method is exemplified here, and other display methods are also possible. For example, the first designated image with the largest weight value is displayed on the uppermost layer of the designated display device, and the second designated image with the smallest weight value is displayed on the top layer of the designated display device. When specifying the next layer of an image, in order to avoid mutual occlusion between images, the transparency of the display layer of each image can be set. The method is modified and will not be repeated here.
在本申请实施例中,对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识,得到对应的标识信息;响应于用户的选取指定类别图像的第一选取指令,根据标识信息从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像,由于本申请引入了能够对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识的标识信息。因此,能够根据上述标识信息对选取的指定图像进行精准标引,快速且智能地从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像。In the embodiment of the present application, each second image in the second image library, the corresponding image category, and the mapping relationship between each second image and the corresponding image category are identified, and corresponding identification information is obtained; The first selection instruction for selecting an image of a specified category, selects at least one specified image from the second image library according to the identification information, as the specified image selected by the user, because the present application introduces the ability to each second image library in the second image library. Identification information for identifying the image, the corresponding image category, and the mapping relationship between each second image and the corresponding image category. Therefore, the selected designated image can be accurately indexed according to the above identification information, and at least one designated image can be quickly and intelligently selected from the second image library as the designated image selected by the user.
下述为本发明装置实施例,可以用于执行本发明方法实施例。对于本发明装置实施例中未披露的细节,请参照本发明方法实施例。The following are apparatus embodiments of the present invention, which can be used to execute method embodiments of the present invention. For details not disclosed in the device embodiments of the present invention, please refer to the method embodiments of the present invention.
请参见图2,其示出了本发明一个示例性实施例提供的图像选取装置的结构示意图。该图像选取装置可以通过软件、硬件或者两者的结合实现成为终端的全部或一部分。该图像选取装置包括第一图像库构建模块10、预处理模块20、第二图像库构建模块30、图像分类模块40、标识模块50和图像选取模块60。Please refer to FIG. 2 , which shows a schematic structural diagram of an image selection apparatus provided by an exemplary embodiment of the present invention. The image selection device can be implemented as all or a part of the terminal through software, hardware or a combination of the two. The image selection apparatus includes a first image
具体而言,第一图像库构建模块10,用于由多个图像采集装置采集到的多个第一图像构建第一图像库;Specifically, the first image
预处理模块20,用于根据预处理模型,对第一图像库中的各个第一图像进行预处理,得到对应的第二图像;The
第二图像库构建模块30,用于由预处理模块20预处理得到的多个第二图像构建第二图像库;The second image
图像分类模块40,用于根据用于对图像进行分类的预设神经网络模型,对第二图像库中的各个第二图像进行分类,得到对应的图像类别;The
标识模块50,用于对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识,得到对应的标识信息;The
图像选取模块60,用于响应于用户的选取指定类别图像的第一选取指令,根据标识信息从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像。The
可选的,预处理模型包括能够突出关键信息要素集合中的至少一项关键信息要素的第一预处理模型,预处理模块20具体用于:Optionally, the preprocessing model includes a first preprocessing model capable of highlighting at least one key information element in the set of key information elements, and the
根据第一预处理模型,对第一图像库中的各个第一图像进行第一预处理,得到对应的至少突出一项关键信息要素的第二图像,第一预处理为用于突出至少一项关键信息要素的预处理。According to the first preprocessing model, first preprocessing is performed on each first image in the first image library to obtain a corresponding second image highlighting at least one key information element, and the first preprocessing is used to highlight at least one item Preprocessing of key information elements.
可选的,所述装置还包括:Optionally, the device further includes:
读取模块(在图2中未示出),用于在预处理模块20根据第一预处理模型,对第一图像库中的各个第一图像进行预处理之前,读取至少一项关键信息要素;其中,读取模块读取出的关键信息要素至少包括以下一项:第一图像中的主体物体的特征信息要素、第一图像中的主体物体的面部表情信息要素、第一图像中的主体物体的配饰信息要素。A reading module (not shown in FIG. 2 ), configured to read at least one item of key information before the
可选的,预处理模型包括能够去掉至少一个无关联背景物体和/或背景人的第二预处理模型,预处理模块20还具体用于:Optionally, the preprocessing model includes a second preprocessing model capable of removing at least one unrelated background object and/or background person, and the
根据第二预处理模型,对第一图像库中的各个第一图像进行第二预处理,得到对应的去掉至少一个背景物体和/或背景人的第二图像,第二预处理为用于去掉至少一个无关联背景物体和/或背景人的预处理。According to the second preprocessing model, a second preprocessing is performed on each of the first images in the first image library to obtain a corresponding second image with at least one background object and/or background person removed, and the second preprocessing is for removing Preprocessing of at least one unrelated background object and/or background person.
可选的,所述装置还包括:Optionally, the device further includes:
显示装置,用于在图像选取模块60根据标识信息从第二图像库中选取至少一个指定图像之后,响应于用户的选取指定显示设备的第二选取指令,将选取的至少一个指定图像显示于对应的显示设备,其中,第二选择指令中携带有指定显示设备的MAC地址信息。The display device is used for, after the
可选的,显示模块具体用于:Optionally, the display module is specifically used for:
在指定图像的数量为两个或两个以上的情况下,分别计算各个指定图像的权重值;When the number of specified images is two or more, calculate the weight value of each specified image respectively;
根据各个指定图像的图像权重值,对各个指定图像进行排序;Sort each specified image according to the image weight value of each specified image;
根据图像排序与图像在指定显示设备上的显示位置的对应关系,将各个指定图像显示于指定显示设备的对应位置上。Each designated image is displayed on the corresponding position of the designated display device according to the corresponding relationship between the order of the images and the display positions of the images on the designated display device.
可选的,多个第一图像由分别布置在预设区域的多个图像采集装置采集得到、且多个图像采集装置之间无重叠采集区域。Optionally, the multiple first images are acquired by multiple image acquisition devices respectively arranged in the preset area, and there is no overlapping acquisition area between the multiple image acquisition devices.
需要说明的是,上述实施例提供的图像选取装置在执行图像选取方法时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的图像选取装置与图像选取方法实施例属于同一构思,其体现实现过程详见方法实施例,这里不再赘述。It should be noted that, when the image selection apparatus provided in the above embodiments executes the image selection method, only the division of the above functional modules is used for illustration. , that is, dividing the internal structure of the device into different functional modules to complete all or part of the functions described above. In addition, the image selection device and the image selection method provided in the above embodiments belong to the same concept, and the implementation process of the image selection device is described in the method embodiment, which will not be repeated here.
在本申请实施例中,标识模块对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识,得到对应的标识信息;图像选取模块响应于用户的选取指定类别图像的第一选取指令,根据标识信息从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像。由于本申请引入了能够对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识的标识信息,因此,能够根据上述标识信息对选取的指定图像进行精准标引,快速且智能地从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像。In the embodiment of the present application, the identification module identifies each second image in the second image library, the corresponding image category, and the mapping relationship between each second image and the corresponding image category, to obtain corresponding identification information; The selection module selects at least one designated image from the second image library according to the identification information as the designated image selected by the user in response to the user's first selection instruction for selecting an image of a designated category. Since the present application introduces identification information that can identify each second image in the second image library, the corresponding image category, and the mapping relationship between each second image and the corresponding image category, the identification information can be used according to the above identification information. The selected designated image is accurately indexed, and at least one designated image is quickly and intelligently selected from the second image library as the designated image selected by the user.
本发明还提供一种计算机可读介质,其上存储有程序指令,该程序指令被处理器执行时实现上述各个方法实施例提供的图像选取方法。The present invention further provides a computer-readable medium on which program instructions are stored, and when the program instructions are executed by a processor, implement the image selection methods provided by the above-mentioned respective method embodiments.
本发明还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各个方法实施例所述的图像选取方法。The present invention also provides a computer program product containing instructions, which, when running on a computer, enables the computer to execute the image selection methods described in the above method embodiments.
请参见图3,为本申请实施例提供了一种终端的结构示意图。如图3所示,所述终端1000可以包括:至少一个处理器1001,至少一个网络接口1004,用户接口1003,存储器1005,至少一个通信总线1002。Referring to FIG. 3 , a schematic structural diagram of a terminal is provided in an embodiment of the present application. As shown in FIG. 3 , the terminal 1000 may include: at least one
其中,通信总线1002用于实现这些组件之间的连接通信。Among them, the
其中,用户接口1003可以包括显示屏(Display)、摄像头(Camera),可选用户接口1003还可以包括标准的有线接口、无线接口。The
其中,网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。Wherein, the
其中,处理器1001可以包括一个或者多个处理核心。处理器1001利用各种借口和线路连接整个电子设备1000内的各个部分,通过运行或执行存储在存储器1005内的指令、程序、代码集或指令集,以及调用存储在存储器1005内的数据,执行电子设备1000的各种功能和处理数据。可选的,处理器1001可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(ProgrammableLogic Array,PLA)中的至少一种硬件形式来实现。处理器1001可集成中央处理器(Central Processing Unit,CPU)、图像处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示屏所需要显示的内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器1001中,单独通过一块芯片进行实现。The
其中,存储器1005可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。可选的,该存储器1005包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。存储器1005可用于存储指令、程序、代码、代码集或指令集。存储器1005可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现上述各个方法实施例的指令等;存储数据区可存储上面各个方法实施例中涉及到的数据等。存储器1005可选的还可以是至少一个位于远离前述处理器1001的存储装置。如图3所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及图像选取应用程序。The
在图3所示的终端1000中,用户接口1003主要用于为用户提供输入的接口,获取用户输入的数据;而处理器1001可以用于调用存储器1005中存储的图像选取应用程序,并具体执行以下操作:In the terminal 1000 shown in FIG. 3 , the
由多个图像采集装置采集到的多个第一图像构建第一图像库;constructing a first image library from a plurality of first images collected by a plurality of image collection devices;
根据预处理模型,对第一图像库中的各个第一图像进行预处理,得到对应的第二图像,并由多个第二图像构建第二图像库;According to the preprocessing model, each first image in the first image library is preprocessed to obtain a corresponding second image, and the second image library is constructed from a plurality of second images;
根据用于对图像进行分类的预设神经网络模型,对第二图像库中的各个第二图像进行分类,得到对应的图像类别;Classify each second image in the second image library according to the preset neural network model for classifying images to obtain a corresponding image category;
对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识,得到对应的标识信息;Identifying each second image in the second image library, the corresponding image category, and the mapping relationship between each second image and the corresponding image category, to obtain corresponding identification information;
响应于用户的选取指定类别图像的第一选取指令,根据标识信息从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像。In response to the user's first selection instruction for selecting an image of a designated category, at least one designated image is selected from the second image library according to the identification information as the designated image selected by the user.
在一个实施例中,预处理模型包括能够突出关键信息要素集合中的至少一项关键信息要素的第一预处理模型,所述处理器1001在执行所述根据预处理模型,对第一图像库中的各个第一图像进行预处理,得到对应的第二图像时,具体执行以下操作:In one embodiment, the preprocessing model includes a first preprocessing model capable of highlighting at least one key information element in the set of key information elements, and the
根据第一预处理模型,对第一图像库中的各个第一图像进行第一预处理,得到对应的至少突出一项关键信息要素的第二图像,第一预处理为用于突出至少一项关键信息要素的预处理。According to the first preprocessing model, first preprocessing is performed on each first image in the first image library to obtain a corresponding second image highlighting at least one key information element, and the first preprocessing is used to highlight at least one item Preprocessing of key information elements.
在一个实施例中,所述处理器1001在执行在根据第一预处理模型,对第一图像库中的各个第一图像进行预处理之前,还执行以下操作:In one embodiment, before the
读取至少一项关键信息要素;Read at least one key information element;
其中,关键信息要素至少包括以下一项:Among them, the key information elements include at least one of the following:
第一图像中的主体物体的特征信息要素、第一图像中的主体物体的面部表情信息要素、第一图像中的主体物体的配饰信息要素。Feature information elements of the main object in the first image, facial expression information elements of the main object in the first image, and accessory information elements of the main object in the first image.
在一个实施例中,预处理模型包括能够去掉至少一个无关联背景物体的第二预处理模型,所述处理器1001在执行所述根据预处理模型,对第一图像库中的各个第一图像进行预处理,得到对应的第二图像时,还具体执行以下操作:In one embodiment, the preprocessing model includes a second preprocessing model capable of removing at least one irrelevant background object, and the
根据第二预处理模型,对第一图像库中的各个第一图像进行第二预处理,得到对应的去掉至少一个背景物体的第二图像,第二预处理为用于去掉至少一个无关联背景物体的预处理。According to the second preprocessing model, a second preprocessing is performed on each of the first images in the first image library to obtain a corresponding second image with at least one background object removed, and the second preprocessing is used to remove at least one unrelated background. Preprocessing of objects.
在一个实施例中,所述处理器1001在执行在所述根据标识信息从第二图像库中选取至少一个指定图像之后,还执行以下操作:In one embodiment, after the
响应于用户的选取指定显示设备的第二选取指令,将选取的至少一个指定图像显示于对应的显示设备,其中,第二选择指令中携带有指定显示设备的MAC地址信息。In response to the user's second selection instruction for selecting the designated display device, the selected at least one designated image is displayed on the corresponding display device, wherein the second selection instruction carries the MAC address information of the designated display device.
在一个实施例中,所述处理器1001在执行所述将选取的至少一个指定图像显示于对应的显示设备时,具体执行以下操作:In one embodiment, when the
在指定图像的数量为两个或两个以上的情况下,分别计算各个指定图像的权重值;When the number of specified images is two or more, calculate the weight value of each specified image respectively;
根据各个指定图像的图像权重值,对各个指定图像进行排序;Sort each specified image according to the image weight value of each specified image;
根据图像排序与图像在指定显示设备上的显示位置的对应关系,将各个指定图像显示于指定显示设备的对应位置上。Each designated image is displayed on the corresponding position of the designated display device according to the corresponding relationship between the order of the images and the display positions of the images on the designated display device.
在一个实施例中,多个第一图像由分别布置在预设区域的多个图像采集装置采集得到、且多个图像采集装置之间无重叠采集区域。In one embodiment, the plurality of first images are acquired by a plurality of image acquisition devices respectively arranged in a preset area, and there is no overlapping acquisition area among the plurality of image acquisition devices.
在本申请实施例中,对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识,得到对应的标识信息;响应于用户的选取指定类别图像的第一选取指令,根据标识信息从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像,由于本申请引入了能够对第二图像库中的各个第二图像、对应的图像类别以及各个第二图像和对应的图像类别之间的映射关系进行标识的标识信息。因此,能够根据上述标识信息对选取的指定图像进行精准标引,快速且智能地从第二图像库中选取至少一个指定图像,作为用户选取出的指定图像。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体或随机存储记忆体等。In the embodiment of the present application, each second image in the second image library, the corresponding image category, and the mapping relationship between each second image and the corresponding image category are identified, and corresponding identification information is obtained; The first selection instruction for selecting an image of a specified category, selects at least one specified image from the second image library according to the identification information, as the specified image selected by the user, because the present application introduces the ability to each second image library in the second image library. Identification information for identifying the image, the corresponding image category, and the mapping relationship between each second image and the corresponding image category. Therefore, the selected designated image can be accurately indexed according to the above identification information, and at least one designated image can be quickly and intelligently selected from the second image library as the designated image selected by the user. Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by instructing the relevant hardware through a computer program, and the program can be stored in a computer-readable storage medium, and the program is During execution, it may include the processes of the embodiments of the above-mentioned methods. Wherein, the storage medium can be a magnetic disk, an optical disk, a read-only storage memory, or a random storage memory, and the like.
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。The above disclosures are only the preferred embodiments of the present application, and of course, the scope of the rights of the present application cannot be limited by this. Therefore, equivalent changes made according to the claims of the present application are still within the scope of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010604116.1A CN111897986A (en) | 2020-06-29 | 2020-06-29 | An image selection method, device, storage medium and terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010604116.1A CN111897986A (en) | 2020-06-29 | 2020-06-29 | An image selection method, device, storage medium and terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111897986A true CN111897986A (en) | 2020-11-06 |
Family
ID=73206496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010604116.1A Pending CN111897986A (en) | 2020-06-29 | 2020-06-29 | An image selection method, device, storage medium and terminal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111897986A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108289224A (en) * | 2017-12-12 | 2018-07-17 | 北京大学 | A kind of video frame prediction technique, device and neural network is compensated automatically |
CN111008670A (en) * | 2019-12-20 | 2020-04-14 | 云南大学 | Fungus image identification method and device, electronic equipment and storage medium |
CN111126180A (en) * | 2019-12-06 | 2020-05-08 | 四川大学 | An automatic detection system for the severity of facial paralysis based on computer vision |
CN111222557A (en) * | 2019-12-31 | 2020-06-02 | Oppo广东移动通信有限公司 | Image classification method, device, storage medium and electronic device |
-
2020
- 2020-06-29 CN CN202010604116.1A patent/CN111897986A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108289224A (en) * | 2017-12-12 | 2018-07-17 | 北京大学 | A kind of video frame prediction technique, device and neural network is compensated automatically |
CN111126180A (en) * | 2019-12-06 | 2020-05-08 | 四川大学 | An automatic detection system for the severity of facial paralysis based on computer vision |
CN111008670A (en) * | 2019-12-20 | 2020-04-14 | 云南大学 | Fungus image identification method and device, electronic equipment and storage medium |
CN111222557A (en) * | 2019-12-31 | 2020-06-02 | Oppo广东移动通信有限公司 | Image classification method, device, storage medium and electronic device |
Non-Patent Citations (1)
Title |
---|
罗建豪 等: "《基于深度卷积特征的细粒度图像分类研究综述》", 《自动化学报》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105072337B (en) | Image processing method and device | |
CN109815843B (en) | Image processing method and related product | |
CN111179253A (en) | Product defect detection method, device and system | |
CN105320695B (en) | Picture processing method and device | |
CN110751218B (en) | Image classification method, image classification device and terminal equipment | |
CN108961183B (en) | Image processing method, terminal device and computer-readable storage medium | |
CN107302666A (en) | Photographic method, mobile terminal and computer-readable recording medium | |
US20190180267A1 (en) | Method and apparatus for binding bank card in payment application | |
CN112328823A (en) | Training method and device for multi-label classification model, electronic equipment and storage medium | |
CN111866392A (en) | Shooting prompting method, device, storage medium and electronic device | |
CN111444365A (en) | Image classification method and device, electronic equipment and storage medium | |
CN114155365A (en) | Model training method, image processing method and related device | |
CN110175975B (en) | Object detection method, device, computer readable storage medium and computer equipment | |
CN105760458A (en) | Picture processing method and electronic equipment | |
CN110019913A (en) | Picture match method, user equipment, storage medium and device | |
CN111597937B (en) | Fish gesture recognition method, device, equipment and storage medium | |
WO2024001309A1 (en) | Method and apparatus for generating and producing template for infrared thermal image analysis report | |
CN107391608B (en) | Picture display method and device, storage medium and electronic equipment | |
CN112069338A (en) | Picture processing method and device, electronic equipment and storage medium | |
JP2009123150A (en) | Object detection apparatus and method, object detection system and program | |
CN115037883A (en) | A kind of exposure parameter adjustment method, device, storage medium and electronic equipment | |
CN114022658B (en) | Target detection method, device, storage medium and terminal | |
CN111897986A (en) | An image selection method, device, storage medium and terminal | |
WO2016173278A1 (en) | Image management method and device | |
CN112070718A (en) | Method and device for determining regional quantization parameter, storage medium and terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201106 |
|
RJ01 | Rejection of invention patent application after publication |