CN111895908A - 一种滑坡堰塞坝应急处置的遥感无人机定向数据采集方法 - Google Patents

一种滑坡堰塞坝应急处置的遥感无人机定向数据采集方法 Download PDF

Info

Publication number
CN111895908A
CN111895908A CN202010610285.6A CN202010610285A CN111895908A CN 111895908 A CN111895908 A CN 111895908A CN 202010610285 A CN202010610285 A CN 202010610285A CN 111895908 A CN111895908 A CN 111895908A
Authority
CN
China
Prior art keywords
digital
image
aerial vehicle
unmanned aerial
landslide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010610285.6A
Other languages
English (en)
Inventor
王如宾
阳龙
赵颖
徐卫亚
王环玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN202010610285.6A priority Critical patent/CN111895908A/zh
Publication of CN111895908A publication Critical patent/CN111895908A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/28Measuring arrangements characterised by the use of optical techniques for measuring areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

本发明公开了一种滑坡堰塞坝应急处置的遥感无人机定向数据采集方法,该方法利用无人机低空飞行器搭载遥感传感器,应用数字遥测遥控、GPS差分定位、倾斜摄影,激光测距定向采集数据;将采集的数据利用影像数据处理方法进行图像模拟,在GIS的支持下对影像中堰塞湖的边界进行数字化,求得流域面积;通过计算求得堰塞坝体积;结合正摄影像图对数字影像进行内定向、相对定向、绝对定向,生成数字高程模型DEM,将单片正射影像进行镶嵌,生成数字正摄影像图DOM。本发明解决了传统航空航天监测受地形、气象限制,成本高、更新周期长、安全性差的问题,为滑坡堰塞坝应急处置提供直观、准确的数据。

Description

一种滑坡堰塞坝应急处置的遥感无人机定向数据采集方法
技术领域
本发明涉及山体滑坡形成堰塞坝应急处置的数据采集方法,尤其涉及一种滑坡堰塞坝应急处置的遥感无人机定向数据采集方法。
背景技术
堰塞湖是指在地震、山体滑坡、火山喷发的作用下,由火山熔岩流、冰碛物或泥石流的原因造成堵截山谷,蓄水后形成的湖泊。
堰塞体多由松散土石构成,渗流和力学稳定性较差,极易发生崩塌,对下游形成洪峰。近年来,因地震、暴雨诱发山体滑坡形成的堰塞坝,已经给人们的生命和财产带来严重的威胁,如何对其进行应急处置已成为一个亟需解决的技术问题。
遥感技术被广泛应用于气象观测、地图绘测、军事侦查和灾害监测领域。而该技术在堰塞坝监测领域的应用却有诸多限制。传统的航空遥感及航天卫星遥感需耗费大量人力物力,清晰度低、更新周期长、成本高,且安全性差,且监测受地形、气象限制,加之堰塞坝大多地形地貌及气象条件复杂,增加了遥感数据获取的难度。
发明内容
发明目的:本发明提供一种滑坡堰塞坝应急处置的遥感无人机定向数据采集方法,以解决现有技术中监测受地形、气象限制,成本高、更新周期长以及安全性差的问题。
技术方案:本发明滑坡堰塞坝应急处置的遥感无人机定向数据采集方法,该方法包括以下步骤:
(1)利用无人机低空飞行器搭载遥感传感器,应用数字遥测遥控、GPS差分定位、倾斜摄影,激光测距定向采集数据;
(2)将采集的数据利用影像数据处理方法进行图像模拟,在GIS的支持下对影像中堰塞湖的边界进行数字化,求得流域面积;
(3)通过计算求得堰塞坝体积;
(4)结合正摄影像图对数字影像进行内定向、相对定向、绝对定向,生成数字高程模型DEM(DigitalElevationModel),该模型是数字地面模型DTM(DigitalElevationModel)中的最基本的部分,是对地球表面地形地貌的一种离散的数学表达。
将单片正射影像进行镶嵌,生成数字正摄影像图DOM。
堰塞坝体积计算方法为:
Figure BDA0002561821180000011
其中,S为每个地面单元的面积,H为高程差值分布图各对应地面单元的值。
步骤(4)中,计算得出流域面积和堰塞坝体积后,结合正射影像图,在GIS的支持下对数字影像进行内定向、相对定向、绝对定向,生成数字高程模型DEM,按反解法做单元数字微分纠正,将单片正射影像进行镶嵌,生成数字正摄影像图DOM。
数字正摄影像图是具有正射投影性质的遥感影像,数字正摄影像图是以航摄相片或遥感影像为基础形成的具有地形图的几何精度和影像特征的影像数据库。
数字高程模型是通过有限的地形高程数据实现对地面地形的数字化模拟。数字高程模型DEM表示区域D上的三维向量有限序列,用函数形式描述为:
Vi=Xi,Yi,Zi;i=1,2,...,n
式中,Xi,Yi是平面坐标,Zi是(Xi,Yi)对应的高程。
有益效果:与现有技术相比,本发明具有以下优点:
(1)本发明利用无人机低空飞行器搭载轻便遥感传感器,解决传统航空航天监测技术受地形、气象限制,成本高、更新周期长、安全性差的问题。
(2)遥感无人机采集到的影像,经过识别和计算得出流域面积和堰塞坝体积等信息后,在GIS技术支持下生成数字正摄影像图(DOM)和数字高程模型(DEM),为滑坡堰塞坝应急处置提供直观、准确的数据。
附图说明
图1为本发明方法流程示意图。
具体实施方式
如图1所示,本发明滑坡堰塞坝应急处置的遥感无人机定向数据采集方法包括以下步骤:
(1)利用无人机低空飞行器搭载轻便遥感传感器,应用数字遥测遥控、GPS差分定位、倾斜摄影,激光测距定向采集数据;
(2)将前者采集的数据利用影像数据处理进行图像模拟,在GIS的支持下对影像中堰塞湖的边界进行数字化,求得流域面积;
(3)按以下方法得出堰塞坝体积:
Figure BDA0002561821180000021
其中,S为每个地面单元的面积,H为高程差值分布图各对应地面单元的值;
(4)结合正摄影像图在GIS的支持下对数字影像进行内定向、相对定向、绝对定向,生成数字高程模型DEM,按反解法做单元数字微分纠正,将单片正射影像进行镶嵌,生成数字正摄影像图DOM。

Claims (6)

1.一种滑坡堰塞坝应急处置的遥感无人机定向数据采集方法,其特征在于:包括以下步骤:
(1)利用无人机低空飞行器搭载遥感传感器,应用数字遥测遥控、GPS差分定位、倾斜摄影,激光测距定向采集数据;
(2)将采集的数据利用影像数据处理方法进行图像模拟,在GIS的支持下对影像中堰塞湖的边界进行数字化,求得流域面积;
(3)求得堰塞坝体积;
(4)结合正摄影像图对数字影像进行内定向、相对定向、绝对定向,生成数字高程模型DEM,将单片正射影像进行镶嵌,生成数字正摄影像图DOM。
2.根据权利要求1所述的滑坡堰塞坝应急处置的遥感无人机定向数据采集方法,其特征在于:所述的堰塞坝体积计算方法如下:
Figure FDA0002561821170000011
其中,S为每个地面单元的面积,H为高程差值分布图各对应地面单元的值。
3.根据权利要求1所述的滑坡堰塞坝应急处置的遥感无人机定向数据采集方法,其特征在于:步骤(4)中,计算得出流域面积和堰塞坝体积后,结合正射影像图在GIS的支持下对数字影像进行内定向、相对定向、绝对定向,生成数字高程模型DEM,按反解法做单元数字微分纠正,将单片正射影像进行镶嵌,生成数字正摄影像图DOM。
4.根据权利要求1所述的滑坡堰塞坝应急处置的遥感无人机定向数据采集方法,其特征在于:所述数字正摄影像图是以航摄相片或遥感影像为基础形成的具有地形图的几何精度和影像特征的影像数据库。
5.根据权利要求1所述的滑坡堰塞坝应急处置的遥感无人机定向数据采集方法,其特征在于:所述数字高程模型通过有限的地形高程数据实现对地面地形的数字化模拟。
6.根据权利要求1至5中任一项所述的滑坡堰塞坝应急处置的遥感无人机定向数据采集方法,其特征在于:所述数字高程模型用函数形式描述为:
Vi=(Xi,Yi,Zi);i=1,2,...,n
式中,Xi,Yi是平面坐标,Zi是(Xi,Yi)对应的高程。
CN202010610285.6A 2020-06-30 2020-06-30 一种滑坡堰塞坝应急处置的遥感无人机定向数据采集方法 Pending CN111895908A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010610285.6A CN111895908A (zh) 2020-06-30 2020-06-30 一种滑坡堰塞坝应急处置的遥感无人机定向数据采集方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010610285.6A CN111895908A (zh) 2020-06-30 2020-06-30 一种滑坡堰塞坝应急处置的遥感无人机定向数据采集方法

Publications (1)

Publication Number Publication Date
CN111895908A true CN111895908A (zh) 2020-11-06

Family

ID=73208000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010610285.6A Pending CN111895908A (zh) 2020-06-30 2020-06-30 一种滑坡堰塞坝应急处置的遥感无人机定向数据采集方法

Country Status (1)

Country Link
CN (1) CN111895908A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113432549A (zh) * 2021-06-25 2021-09-24 华东师范大学 一种基于无人机摄影测量的潮沟三维参量提取方法及系统
CN113792992A (zh) * 2021-08-25 2021-12-14 应急管理部国家自然灾害防治研究院 一种基于遥感大数据的滑坡崩塌应急评价方法及系统
CN113867410A (zh) * 2021-11-17 2021-12-31 武汉大势智慧科技有限公司 一种无人机航拍数据的采集模式识别方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492874B1 (ko) * 2014-05-12 2015-02-23 동국지리정보(주) 지아이에스 및 기준점 위치정보 확인을 통한 수치지도 제작 방법을 적용하는 장치
CN105783878A (zh) * 2016-03-11 2016-07-20 三峡大学 一种基于小型无人机遥感的边坡变形检测及量算方法
US9587951B1 (en) * 2014-06-15 2017-03-07 Qatar University Qstp-B Map matching methods and system for tracking and determining improved position of reference assets
CN107860367A (zh) * 2017-11-03 2018-03-30 广州地理研究所 一种基于低空无人机遥感的群发性滑坡灾害体积快速提取方法
CN108681337A (zh) * 2018-05-21 2018-10-19 河北艺海机器人科技有限公司 一种涵洞或桥梁专用巡查无人机及无人机巡查方法
CN109472864A (zh) * 2017-09-07 2019-03-15 广州极飞科技有限公司 一种高程瓦片地图的生成方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492874B1 (ko) * 2014-05-12 2015-02-23 동국지리정보(주) 지아이에스 및 기준점 위치정보 확인을 통한 수치지도 제작 방법을 적용하는 장치
US9587951B1 (en) * 2014-06-15 2017-03-07 Qatar University Qstp-B Map matching methods and system for tracking and determining improved position of reference assets
CN105783878A (zh) * 2016-03-11 2016-07-20 三峡大学 一种基于小型无人机遥感的边坡变形检测及量算方法
CN109472864A (zh) * 2017-09-07 2019-03-15 广州极飞科技有限公司 一种高程瓦片地图的生成方法和装置
CN107860367A (zh) * 2017-11-03 2018-03-30 广州地理研究所 一种基于低空无人机遥感的群发性滑坡灾害体积快速提取方法
CN108681337A (zh) * 2018-05-21 2018-10-19 河北艺海机器人科技有限公司 一种涵洞或桥梁专用巡查无人机及无人机巡查方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭晨: "无人机摄影测量技术在金沙江白格滑坡", 《灾害学》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113432549A (zh) * 2021-06-25 2021-09-24 华东师范大学 一种基于无人机摄影测量的潮沟三维参量提取方法及系统
CN113792992A (zh) * 2021-08-25 2021-12-14 应急管理部国家自然灾害防治研究院 一种基于遥感大数据的滑坡崩塌应急评价方法及系统
CN113792992B (zh) * 2021-08-25 2022-06-10 应急管理部国家自然灾害防治研究院 一种基于遥感大数据的滑坡崩塌应急评价方法及系统
CN113867410A (zh) * 2021-11-17 2021-12-31 武汉大势智慧科技有限公司 一种无人机航拍数据的采集模式识别方法和系统
CN113867410B (zh) * 2021-11-17 2023-11-03 武汉大势智慧科技有限公司 一种无人机航拍数据的采集模式识别方法和系统

Similar Documents

Publication Publication Date Title
Nikolakopoulos et al. UAV vs classical aerial photogrammetry for archaeological studies
CN111895908A (zh) 一种滑坡堰塞坝应急处置的遥感无人机定向数据采集方法
Goncalves et al. UAV photogrammetry for topographic monitoring of coastal areas
Dewitte et al. Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LIDAR approach in western Belgium
Sesli et al. Monitoring the changing position of coastlines using aerial and satellite image data: an example from the eastern coast of Trabzon, Turkey
KR20210117243A (ko) 시계열 드론 영상을 활용한 연안지역 침식 퇴적 변화 분석 방법
US20210310807A1 (en) Camera-Based Liquid Stage Measurement
Luo et al. Optimization of UAVs‐SfM data collection in aeolian landform morphodynamics: a case study from the Gonghe Basin, China
Cilek et al. Generation of high-resolution 3-D maps for landscape planning and design using UAV technologies
Jin et al. Shipborne Mobile photogrammetry for 3D mapping and landslide detection of the water-level fluctuation zone in the three gorges reservoir area, China
Özcan et al. Modeling morphodynamic processes in meandering rivers with UAV-based measurements
Lin et al. Micro-UAV based remote sensing method for monitoring landslides in three gorges reservoir, China
Lu et al. Using UAV-SfM to monitor the dynamic evolution of a beach on Penghu Islands.
Song et al. Preliminary 3D assessment of coastal erosion by data integration between airborne LiDAR and DGPS field observations
Vaccher et al. The application of UAV-derived SfM-MVS photogrammetry for the investigation of storm wave boulder deposits on a small rocky island in the semi-enclosed Northern Adriatic Sea
Saruulzaya Thermokarst lake dynamics in the continuous and isolated permafrost zones, Mongolia
Van Alphen A Technique-Based Approach to Structure-from-Motion: Applications to Human-Coastal Environments
Zhang et al. Method for UAV-based 3D topography reconstruction of tidal creeks
Sha et al. Local 3D scene fine detection analysis of circular landform on the southern edge of Dinosaur Valley
Yücel et al. 3D modelling of historical remains using unmanned aerial vehicle, a case study: Gallipoli Peninsula
Muzirafuti et al. UAV Photogrammetry-Based Mapping of Sicilian Pocket Beaches: First Approach
Pal et al. Modeling and analysis of digital surface models using high-resolution UAV images
Yun et al. Observation on the Shoreline Changes Using Digital Aerial Imagery for Bangamoeri Beaches
CN103177255A (zh) 一种基于多分辨率数字高程模型的潮间带提取方法
Lalak et al. The analysis of the accuracy of digital terrain model (Dtm) obtained from high resolution geoeye-1 satellite imagery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201106

RJ01 Rejection of invention patent application after publication