CN111893317A - A kind of high-alumina slag system for nickel flash furnace smelting and its use - Google Patents
A kind of high-alumina slag system for nickel flash furnace smelting and its use Download PDFInfo
- Publication number
- CN111893317A CN111893317A CN202010880913.2A CN202010880913A CN111893317A CN 111893317 A CN111893317 A CN 111893317A CN 202010880913 A CN202010880913 A CN 202010880913A CN 111893317 A CN111893317 A CN 111893317A
- Authority
- CN
- China
- Prior art keywords
- furnace smelting
- flash furnace
- slag system
- nickel
- slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 82
- 239000002893 slag Substances 0.000 title claims abstract description 58
- 238000003723 Smelting Methods 0.000 title claims abstract description 44
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 41
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 33
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 10
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 10
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 10
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 10
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 10
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 10
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 6
- 229910001845 yogo sapphire Inorganic materials 0.000 claims abstract description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 21
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 8
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 claims description 5
- 238000002844 melting Methods 0.000 abstract description 11
- 230000008018 melting Effects 0.000 abstract description 10
- 238000000926 separation method Methods 0.000 abstract description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 42
- 239000000395 magnesium oxide Substances 0.000 description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- -1 oxygen ions Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 241001062472 Stokellia anisodon Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/02—Obtaining nickel or cobalt by dry processes
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明属于镍闪速炉熔炼技术领域,公开一种用于镍闪速炉熔炼的高铝渣系及其用途,高铝渣系中以质量百分数计,含有:Fe 45%‑52%、MgO 6.5%‑12%、SiO218%‑24%、CaO 0.2%‑2.0%、Al2O39.5%‑15.5%、MnO 1.5%‑5.5%。本发明提供的高铝渣系,能够保证镍闪速炉熔炼的顺利进行,实现降低炉渣熔化性温度的同时保持炉渣良好的粘流特性和渣锍分离能力。
The invention belongs to the technical field of nickel flash furnace smelting, and discloses a high-alumina slag system for nickel flash furnace smelting and use thereof. 6.5%-12%, SiO2 18%-24%, CaO 0.2%-2.0%, Al2O3 9.5%-15.5%, MnO 1.5%-5.5%. The high-alumina slag system provided by the invention can ensure the smooth progress of the nickel flash furnace smelting, and can reduce the melting temperature of the slag while maintaining the good viscous flow characteristics of the slag and the separation ability of the slag matte.
Description
技术领域technical field
本发明属于镍闪速炉熔炼技术领域,主要涉及一种用于镍闪速炉熔炼的高铝渣系及其用途。The invention belongs to the technical field of nickel flash furnace smelting, and mainly relates to a high-alumina slag system used for nickel flash furnace smelting and use thereof.
背景技术Background technique
适宜的冶炼渣系是实现镍闪速炉熔炼炉况稳定顺行的基础条件之一。镍闪速炉熔炼的重要原料是硫化镍矿石,但近年来随着含镍量高,杂质含量低的高级硫化镍矿的逐渐消耗,镁含量高的镍矿逐渐成为可能的镍冶炼原料。高含量的氧化镁导致炉渣的熔点和粘度发生变化,这使镍闪速熔炉的冶炼过程偏离了其正常的最佳控制点。目前,企业用于冶炼镍矿石的闪速炉中的MgO含量高达约6%-10%。为了确保合理的熔炼粘度范围,镍矿中MgO每增加一点,就需要显着提高熔炼温度,这会导致熔炼能耗的增加。在实际生产中,对于高镁型硫化镍矿闪速炉冶炼,生成的高镁型镍闪速炉熔炼渣,其熔化性温度高达1250℃以上,为了降低熔化性温度目前生产过程中选择添加SiO2,以降低熔融温度并确保炉渣的流动性。然而,该策略导致炉渣量显着增加,每生产1t镍,产生渣量高达6t,并且铁以硅酸铁的形式存在,使得随后的还原和利用变得困难。因此如何改进镍闪速炉熔炼渣的冶金性能成为生产中降低能耗,节约成本的关键。Appropriate smelting slag system is one of the basic conditions for realizing the stable and forward condition of nickel flash furnace smelting furnace. The important raw material for nickel flash furnace smelting is nickel sulfide ore, but in recent years, with the gradual consumption of high-grade nickel sulfide ore with high nickel content and low impurity content, nickel ore with high magnesium content has gradually become a possible raw material for nickel smelting. High levels of magnesia lead to changes in the melting point and viscosity of the slag, which pushes the nickel flash furnace smelting process away from its normal optimum control point. At present, the MgO content in flash furnaces used by enterprises to smelt nickel ore is as high as about 6%-10%. In order to ensure a reasonable range of smelting viscosity, every little increase of MgO in nickel ore requires a significant increase in smelting temperature, which leads to an increase in smelting energy consumption. In actual production, for high-magnesium nickel sulfide ore flash furnace smelting, the resulting high-magnesium nickel flash furnace smelting slag has a melting temperature of over 1250 °C. In order to reduce the melting temperature, SiO is currently added in the production process. 2 , to reduce the melting temperature and ensure the fluidity of the slag. However, this strategy resulted in a significant increase in the amount of slag, up to 6t for every 1t of nickel produced, and the presence of iron in the form of iron silicate, making subsequent reduction and utilization difficult. Therefore, how to improve the metallurgical properties of nickel flash furnace smelting slag has become the key to reducing energy consumption and saving costs in production.
发明内容SUMMARY OF THE INVENTION
为解决现有冶炼过程中存在的问题,本发明的目的在于提供一种用于镍闪速炉熔炼的高铝渣系及其用途,以改善炉渣的粘性流动特性,降低熔炼温度,降低镍闪速熔炼过程中的能耗。In order to solve the problems existing in the existing smelting process, the purpose of the present invention is to provide a high-alumina slag system for nickel flash furnace smelting and its use, so as to improve the viscous flow characteristics of the slag, reduce the smelting temperature, and reduce the nickel flash. Energy consumption during rapid smelting.
本发明的目的通过如下技术方案实现:The object of the present invention is achieved through the following technical solutions:
一种用于镍闪速炉熔炼的高铝渣系,按质量百分比计,包括如下组分:A high-alumina slag system for nickel flash furnace smelting, by mass percentage, comprises the following components:
Fe 52%-61.1%、MgO 6.5%-12%、SiO2 18%-21.5%、CaO 1.20%、Al2O3 9.5%-15.5%、MnO 0.2%。Fe 52%-61.1%, MgO 6.5%-12%, SiO2 18%-21.5%, CaO 1.20%, Al2O3 9.5%-15.5%, MnO 0.2%.
优选的,MgO与SiO2的质量比为0.27-0.67,Al2O3和SiO2的质量比为0.39-0.86。Preferably, the mass ratio of MgO to SiO 2 is 0.27-0.67, and the mass ratio of Al 2 O 3 to SiO 2 is 0.39-0.86.
优选的,当所述用于镍闪速炉熔炼的高铝渣系中MgO质量含量为6.5%-8%时,MgO与SiO2的质量比为0.27-0.35,Al2O3和SiO2的质量比为0.40-0.63。Preferably, when the mass content of MgO in the high-alumina slag system for nickel flash furnace smelting is 6.5%-8%, the mass ratio of MgO to SiO 2 is 0.27-0.35, and the ratio of Al 2 O 3 to SiO 2 is 0.27-0.35. The mass ratio is 0.40-0.63.
优选的,当所述用于镍闪速炉熔炼的高铝渣系中MgO质量含量为8%-10%时,MgO与SiO2的质量比为0.35-0.55,Al2O3和SiO2的质量比为0.63-0.72。Preferably, when the mass content of MgO in the high-alumina slag system for nickel flash furnace smelting is 8%-10%, the mass ratio of MgO to SiO 2 is 0.35-0.55, and the ratio of Al 2 O 3 to SiO 2 is 0.35-0.55. The mass ratio is 0.63-0.72.
优选的,当所述用于镍闪速炉熔炼的高铝渣系中MgO质量含量为10%-12%时,MgO与SiO2的质量比为0.55-0.67,Al2O3和SiO2的质量比为0.72-0.86。Preferably, when the mass content of MgO in the high-alumina slag system for nickel flash furnace smelting is 10%-12%, the mass ratio of MgO to SiO 2 is 0.55-0.67, and the ratio of Al 2 O 3 to SiO 2 is 0.55-0.67. The mass ratio is 0.72-0.86.
本发明上述的高铝渣系的用途,该高铝渣系用于硫化镍矿的闪速炉熔炼过程。The application of the high-alumina slag system of the present invention, the high-alumina slag system is used in the flash furnace smelting process of nickel sulfide ore.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明用于镍闪速炉熔炼的高铝渣系中MgO的质量百分含量为6.5%-12%、SiO2的质量百分含量为18%-21.5%,在该配比下可以实现降低炉渣熔化性温度,同时保持炉渣良好的粘流特性和渣锍分离能力。本发明以Al2O3代替额外添加的石英砂,可实现每生产1t镍,将渣量可控制在5.6t以内;同时减少了渣中SiO2与MgO、FeO生高熔点的铁橄榄石、铁镁橄榄石的比重,降低了炉渣熔化性温度。在渣系中Al2O3质量百分比为9.5%-15.5%的条件下,为了控制界面张力,保持良好的渣锍分离效果,需添加适量的MnO(占Al2O39.6wt%-57wt%);此外,渣系中的MgO、FeO和CaO提供大量的自由氧离子,阻断因Al3+增加带来的硅、铝离子网状结构,降低了炉渣粘度。The mass percentage content of MgO in the high-alumina slag system used for nickel flash furnace smelting is 6.5%-12%, and the mass percentage content of SiO 2 is 18%-21.5%. Under this ratio, the reduction can be achieved. The melting temperature of the slag, while maintaining the good viscous flow characteristics of the slag and the separation ability of the slag matte. The invention replaces the additionally added quartz sand with Al 2 O 3 , which can realize that every 1 t of nickel produced can control the amount of slag within 5.6 t; The specific gravity of the forsterite reduces the melting temperature of the slag. Under the condition that the mass percentage of Al 2 O 3 in the slag system is 9.5%-15.5%, in order to control the interfacial tension and maintain a good slag matte separation effect, it is necessary to add an appropriate amount of MnO (accounting for Al 2 O 3 9.6wt%-57wt% ); in addition, MgO, FeO and CaO in the slag system provide a large amount of free oxygen ions, block the network structure of silicon and aluminum ions caused by the increase of Al 3+ , and reduce the viscosity of the slag.
附图说明Description of drawings
图1为粘度与Al2O3和SiO2的质量比的关系。Figure 1 shows the relationship between viscosity and the mass ratio of Al 2 O 3 and SiO 2 .
图2为熔化性温度与Al2O3和SiO2的质量比的关系。Fig. 2 shows the relationship between the melting temperature and the mass ratio of Al 2 O 3 and SiO 2 .
具体实施方式Detailed ways
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例对本发明作进一步详细的说明。In order to make the content of the present invention easier to understand clearly, the present invention will be further described in detail below according to specific embodiments.
本发明用于镍闪速炉熔炼的高铝渣系,按质量百分比计由以下组分组成:Fe52%-61.1%、MgO 6.5%-12%、SiO2 18%-21.5%、CaO 1.20%、Al2O3 9.5%-15.5%、MnO0.2%。The high-alumina slag system used for nickel flash furnace smelting in the present invention is composed of the following components by mass percentage: Fe52%-61.1%, MgO 6.5%-12%, SiO2 18%-21.5%, CaO 1.20%, Al 2 O 3 9.5%-15.5%, MnO 0.2%.
所述镍闪速炉熔炼过程为硫化镍矿的闪速炉熔炼过程,其中MgO/SiO2为0.27-0.67,Al2O3/SiO2为0.39-0.86。The nickel flash furnace smelting process is a flash furnace smelting process of nickel sulfide ore, wherein MgO/SiO 2 is 0.27-0.67, and Al 2 O 3 /SiO 2 is 0.39-0.86.
当镍闪速炉熔炼的高铝渣系中MgO 6.5%-8%时,MgO/SiO2为0.27-0.35,Al2O3/SiO2为0.40-0.63。When the MgO 6.5%-8% in the high-alumina slag system smelted in the nickel flash furnace, the MgO/SiO 2 is 0.27-0.35, and the Al 2 O 3 /SiO 2 is 0.40-0.63.
当镍闪速炉熔炼的高铝渣系中MgO 8%-10%时,MgO/SiO2为0.35-0.55,Al2O3/SiO2为0.63-0.72。When the high alumina slag system smelted by nickel flash furnace contains 8%-10% MgO, MgO/SiO 2 is 0.35-0.55, and Al 2 O 3 /SiO 2 is 0.63-0.72.
当镍闪速炉熔炼的高铝渣系中MgO 10%-12%时,MgO/SiO2为0.55-0.67,Al2O3/SiO2为0.72-0.86。When MgO is 10%-12% in the high alumina slag system smelted in nickel flash furnace, MgO/SiO 2 is 0.55-0.67, and Al 2 O 3 /SiO 2 is 0.72-0.86.
实施例Example
表1为镍闪速炉熔炼渣系的主要组分组成表,表中各物质以质量百分数计,表中1号样本为现有镍闪速炉熔炼渣系组成,2~4号样本分别为本发明实施例1~实施例3高铝渣系组成。Table 1 is the composition table of the main components of the nickel flash furnace smelting slag system, each substance in the table is calculated in mass percentage, the No. 1 sample in the table is the composition of the existing nickel flash furnace smelting slag system, and the No. 2 to No. 4 samples are respectively Examples 1 to 3 of the present invention are composed of high-alumina slag systems.
表1Table 1
以化学纯试剂按照表1进行配渣,用Brookfield DV-II+高温熔体物性测定仪,采用旋转法对表1中的渣系进行粘度-熔化性温度测试实验,结果如图1和图2所示。在粘度测量过程中,在Pt坩埚中放置约150g样品。以5℃/min的速度将样品加热至1500℃,并保持在约240min的温度下充分反应。主轴以较低的旋转速度缓慢注入流体渣中。然后将样品缓慢冷却至1100℃,每次测量都在样品保持一定温度10min后实施,以保证样品均匀稳定。通过计算机上的软件计算并记录粘度值。Use chemically pure reagents to prepare slag according to Table 1, and use Brookfield DV-II+ high temperature melt physical property analyzer to conduct viscosity-melting temperature test experiments on the slag system in Table 1 by rotating method. The results are shown in Figure 1 and Figure 2. Show. During the viscosity measurement, about 150 g of the sample was placed in a Pt crucible. The sample was heated to 1500°C at a rate of 5°C/min and kept at a temperature of about 240min to fully react. The spindle is slowly injected into the fluid slag at a low rotational speed. Then the sample was slowly cooled to 1100 °C, and each measurement was performed after the sample was kept at a certain temperature for 10 min to ensure the sample was uniform and stable. The viscosity value is calculated and recorded by software on the computer.
从图1和图2可以看出,随着实验组炉渣成分朝本发明提供的渣系成分变化,炉渣的熔化性温度从1256℃逐步降低至1127℃,且高温下粘度保持在0.25Pa·S以下。本发明提供的渣系,能够保证捏闪速炉熔炼的顺利进行,实现降低炉渣熔化性温度的同时保持炉渣良好的粘流特性和渣锍分离能力。It can be seen from Figure 1 and Figure 2 that as the composition of the slag in the experimental group changes to the slag composition provided by the present invention, the melting temperature of the slag gradually decreases from 1256°C to 1127°C, and the viscosity remains at 0.25Pa·S at high temperature the following. The slag system provided by the invention can ensure the smooth progress of the smelting in the kneading flash furnace, and can reduce the melting temperature of the slag while maintaining the good viscous flow characteristics of the slag and the separation ability of the slag matte.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010880913.2A CN111893317B (en) | 2020-08-27 | 2020-08-27 | High-aluminum slag system for nickel flash furnace smelting and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010880913.2A CN111893317B (en) | 2020-08-27 | 2020-08-27 | High-aluminum slag system for nickel flash furnace smelting and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111893317A true CN111893317A (en) | 2020-11-06 |
CN111893317B CN111893317B (en) | 2022-07-29 |
Family
ID=73224604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010880913.2A Active CN111893317B (en) | 2020-08-27 | 2020-08-27 | High-aluminum slag system for nickel flash furnace smelting and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111893317B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4818289A (en) * | 1984-12-21 | 1989-04-04 | Outokumpu Oy | Method for utilizing slag from metal production |
US5593493A (en) * | 1995-06-26 | 1997-01-14 | Krofchak; David | Method of making concrete from base metal smelter slag |
CN104152714A (en) * | 2014-08-01 | 2014-11-19 | 西安建筑科技大学 | Method for smelting nickel-copper from sulfide ores by virtue of pyrogenic process and extracting iron |
CN106834729A (en) * | 2016-12-05 | 2017-06-13 | 重庆材料研究院有限公司 | A kind of nickel base superalloy electroslag remelting slag |
CN207877601U (en) * | 2017-12-12 | 2018-09-18 | 江苏省冶金设计院有限公司 | A kind of system that melting nickel slag prepares forsterite |
CN109439893A (en) * | 2018-11-20 | 2019-03-08 | 广东广青金属科技有限公司 | Stainless steel slag blast furnace sinter method |
-
2020
- 2020-08-27 CN CN202010880913.2A patent/CN111893317B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4818289A (en) * | 1984-12-21 | 1989-04-04 | Outokumpu Oy | Method for utilizing slag from metal production |
US5593493A (en) * | 1995-06-26 | 1997-01-14 | Krofchak; David | Method of making concrete from base metal smelter slag |
CN104152714A (en) * | 2014-08-01 | 2014-11-19 | 西安建筑科技大学 | Method for smelting nickel-copper from sulfide ores by virtue of pyrogenic process and extracting iron |
CN106834729A (en) * | 2016-12-05 | 2017-06-13 | 重庆材料研究院有限公司 | A kind of nickel base superalloy electroslag remelting slag |
CN207877601U (en) * | 2017-12-12 | 2018-09-18 | 江苏省冶金设计院有限公司 | A kind of system that melting nickel slag prepares forsterite |
CN109439893A (en) * | 2018-11-20 | 2019-03-08 | 广东广青金属科技有限公司 | Stainless steel slag blast furnace sinter method |
Non-Patent Citations (1)
Title |
---|
盛广宏等: "《镍工业冶金渣的资源化》", 《金属矿山》 * |
Also Published As
Publication number | Publication date |
---|---|
CN111893317B (en) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102276153B (en) | Composition for high-property heat-resisting corrosion-resisting glass fiber | |
JP5826386B2 (en) | Refractory block and glass melting furnace | |
CN108213365B (en) | A kind of non-reacted covering slag of high-aluminum steel | |
CN105588781B (en) | A kind of device and method for measuring field trash rate of dissolution in metallurgy clinker | |
CN100494411C (en) | Refining slag agent for aluminum-calcium-strontium composite premelted molten steel refining outside the furnace | |
CN111893317B (en) | High-aluminum slag system for nickel flash furnace smelting and application thereof | |
CN102912082A (en) | Low-alkalinity synthetic slag for external refining of boiler tube steel | |
CN104743876A (en) | Glass composition | |
CN1151287C (en) | Steel drum refining furnace deep desulfurization slag | |
CN113621749B (en) | Method for improving reduction efficiency of iron in steel slag of iron converter by using rice hull ash | |
CN116516082A (en) | Low-cost and high-efficiency molten iron slag removing method | |
CN111961881B (en) | A kind of additive applied in nickel flash furnace smelting process and using method thereof | |
JPH08141713A (en) | Molding powder for continuous casting of steel | |
CN112226625B (en) | Quaternary slag system for electroslag remelting steel production and application thereof | |
CN105136614B (en) | A kind of device and method for determining titanium-containing slag electrorheological property | |
CN109338036B (en) | A high-performance LF refining slag | |
CN114354837A (en) | Analysis method for determining content of iron oxide in magnesia refractory material | |
Wang et al. | Effect of B2O3 and CaF2 on viscosity of ladle refining slag | |
CN106892568B (en) | The mineral wool powder and production method and mineral wool of large-scale production mineral wool | |
CN111286683A (en) | Slag system for iron-based amorphous alloy strip and preparation method of iron-based amorphous alloy strip | |
CN100580100C (en) | LF furnace refining slag for aluminum-containing steel | |
CN118595409A (en) | A high oxidizing continuous casting protection slag for high titanium steel | |
CN115141000B (en) | Smoke inhibitor for hot-metal bottle and preparation method and application thereof | |
CN114054698B (en) | A fluorine-free environment-friendly continuous casting flux for ultra-high aluminum steel | |
CN111036868B (en) | Application of covering slag in high-pulling-speed continuous casting peritectic steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |