CN111892350A - 一种提升水泥砂浆、混凝土抗折强度的方法 - Google Patents

一种提升水泥砂浆、混凝土抗折强度的方法 Download PDF

Info

Publication number
CN111892350A
CN111892350A CN202010629821.7A CN202010629821A CN111892350A CN 111892350 A CN111892350 A CN 111892350A CN 202010629821 A CN202010629821 A CN 202010629821A CN 111892350 A CN111892350 A CN 111892350A
Authority
CN
China
Prior art keywords
cement mortar
cement
coating
flexural strength
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010629821.7A
Other languages
English (en)
Other versions
CN111892350B (zh
Inventor
李维红
包亦望
向忆寒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN202010629821.7A priority Critical patent/CN111892350B/zh
Publication of CN111892350A publication Critical patent/CN111892350A/zh
Application granted granted Critical
Publication of CN111892350B publication Critical patent/CN111892350B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/08Producing shaped prefabricated articles from the material by vibrating or jolting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/29Producing shaped prefabricated articles from the material by profiling or strickling the material in open moulds or on moulding surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B13/00Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
    • B28B13/02Feeding the unshaped material to moulds or apparatus for producing shaped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • B28B19/0015Machines or methods for applying the material to surfaces to form a permanent layer thereon on multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/003Methods for mixing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5076Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00508Cement paints
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明公开了一种提升水泥砂浆、混凝土抗折强度的方法,具体包括:1)试模底部刷油;2)将膨胀剂与水泥按设定的比例混合均匀,加入水搅拌后形成液态涂层立即刷到试模底部,形成底面涂层;3)按步骤2)中相同比例,将膨胀剂与水泥混合而成的干粉均匀地撒到底面涂层表面作为过渡层;4)立即浇筑水泥砂浆构件;5)在水泥砂浆构件的基体临近初凝时,用硬毛刷进行拉毛处理;6)把步骤3)中剩余的干粉再均匀地撒到水泥砂浆构件的基体表面作为过渡层;7)再制备与步骤2)中相同的液态涂层,将其刷在步骤6)的过渡层上,形成表面涂层。此方法简单、经济,易操作,且不受构件尺寸和形状的限制,抗折强度提升效果较显著,具有较好应用前景。

Description

一种提升水泥砂浆、混凝土抗折强度的方法
技术领域
本发明属于土木工程技术领域,具体涉及一种提升水泥砂浆、混凝土抗折强度的方法。
背景技术
随着建筑工业的发展,建筑材料的运用也越来越广,水泥混凝土因具有较高的抗压强度以及施工方便、成本低廉等优点,成为实际工程中应用最广、用量最多的建筑材料。但由于自身脆性大,抗折强度低,抗渗、抗冲击性能不足等缺点,致使其在实际应用中也受到一些限制。为了克服这些缺点,预应力混凝土技术自20世纪50年代被引入中国,并广泛应用于房屋建筑、道路桥梁及其他特殊建筑设施。此外,添加各种增强剂提高强度也非常流行,如黄广南等将聚丙烯纤维掺入水泥砂浆中来提高水泥砂浆的抗折强度,提高幅度范围在1.7%~13.96%之间;程伟伟等研究了不同钢纤维掺量对混凝土抗折强度的影响,当钢纤维掺量达到3%的体积率时,混凝土抗折强度有65.01%的提升;黄坤等通过在水泥砂浆中加入剑麻纤维,研究了不同长度的剑麻纤维在不同纤维密集度下对水泥砂浆抗折强度的影响;范杰等研究了聚乙烯醇(PVA)纤维及其掺量对水泥砂浆抗折强度影响,其28d抗折强度相对于未掺PVA纤维的空白砂浆提高了24.83%。另外,将矿物掺合料、外加剂等掺入水泥混凝土中来提升其强度的方法也被广泛研究,如刘慧娴等研究了偏高岭土、粉煤灰、矿粉、硅灰等矿物掺合料对水泥砂浆抗折性能的影响规律,偏高岭土掺量为15%时,水泥砂浆56d抗折强度提升了28.6%;董猛等将不同比例的偏高岭土与矿渣、粉煤灰复合掺入水泥砂浆,发现当水胶比一定时,不论是偏高岭土与矿渣二元复掺,还是偏高岭土、粉煤灰与矿渣三元复掺,都可以提高水泥胶砂的早期抗折强度;杨斌等研究了粉煤灰与矿渣在单掺和复掺情况下对混凝土强度的影响,试验结果表明单掺粉煤灰的混凝土早期抗折强度较高;Mohammed M.Salman等研究了纳米二氧化钛颗粒部分替代水泥对砂浆的抗折强度的影响,28d抗弯强度提高了15.1%;黄国华等研究了外加剂对水泥混凝土路面抗折强度的影响,试验表明引气剂含量在4%-5%时混凝土抗折强度有最大值;程朝霞等研究了外加剂及其相互作用对水泥胶砂试件抗折强度的影响,发现膨胀剂对其早期和后期强度影响最大。
综上所述,目前在提升水泥混凝土抗折强度方面,可以通过对构件施加预应力或掺入纤维、掺合料、外加剂等方法进行处理,但这些方法操作较复杂且成本较高。
发明内容
本申请以提高水泥砂浆、混凝土构件抗折强度为目的,将膨胀剂与水泥混合而成的涂层掺入水泥砂浆及混凝土构件表面,样品硬化过程中形成表面残余压应力来提升抗折强度,为水泥混凝土抗折强度的提升提供一种简单经济的新方法。
为实现上述目的,本申请的技术方案为:一种提升水泥砂浆、混凝土抗折强度的方法,具体包括:
1)试模底部刷油;
2)将膨胀剂与水泥按设定的比例混合均匀,加入水搅拌后形成液态涂层立即刷到试模底部,形成底面涂层;
3)按步骤2)中相同比例,将膨胀剂与水泥混合而成的干粉均匀地撒到底面涂层表面作为过渡层;
4)立即浇筑水泥砂浆构件;
5)在水泥砂浆构件的基体临近初凝时,用带有一定硬度的刷子进行拉毛处理,提高基体与涂层之间的粘结力;
6)把步骤3)中剩余的干粉再均匀地撒到水泥砂浆构件的基体表面作为过渡层;
7)再制备与步骤2)中相同的液态涂层,将其刷在步骤6)的过渡层上,形成表面涂层;构件示意图,如图1所示。
进一步的,所述涂层中膨胀剂与水泥设定的比例为1:9~9:1之间。
进一步的,所述底面涂层、表面涂层的厚度<1mm。
进一步的,所述水泥砂浆构件的基体由水泥:水:标准砂=2:1:6混合而成。
进一步的,所述底面涂层、表面涂层中水泥标号高于基体中水泥标号。
进一步的,所述膨胀剂为钙钒石和氢氧化钙双膨胀源膨胀剂。
为获得表面残余压应力,通过上述方法制备出具有双面涂层的水泥砂浆构件。
进一步的,制备完成的水泥砂浆构件,立即放入养护箱中养护,24h后拆模,再放入水中养护。
本发明由于采用以上技术方案,能够取得如下的技术效果:本申请提供的利用表面残余压应力提升水泥砂浆、混凝土构件抗折强度的方法,能显著提高其早期及后期强度,7d及28d抗折强度提升率分别在40%和30%以上。该方法弥补了水泥混凝土抗折强度低的缺点,对水泥混凝土材料的应用与发展有促进作用。此方法简单、经济实用,易操作,且不受构件尺寸和形状的限制,具有较好应用前景。
附图说明
图1为构件示意图。
图中序号说明:1、表面涂层,2、底面涂层,3、水泥砂浆构件的基体。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:以此为例对本申请做进一步的描述说明。
实施例1
本实施例提供一种提升水泥砂浆、混凝土抗折强度的方法,其以膨胀剂与高强水泥为4:6比例混合而成的双面涂层水泥砂浆构件为例,具体实施方式如下:
步骤1、称重:分别称取试验所需的干粉材料42.5R普通硅酸盐水泥(OPC42.5R)450g、标准砂1350g、52.5R普通硅酸盐水泥(OPC52.5R)60g、钙钒石和氢氧化钙双膨胀源膨胀剂(
Figure BDA0002568148500000041
-Ⅳ)40g,再用250ml量筒量取225ml自来水备用。
步骤2、制备涂层及过渡层:将上述60g OPC52.5R水泥与40g
Figure BDA0002568148500000051
-Ⅳ膨胀剂一同倒入容器中,手动搅拌均匀,从中称取两份10g已混合均匀的干粉作为双面涂层备用,剩余80g干粉作为过渡层备用,再用两支5ml注射剂分别抽取5ml自来水。
步骤3、施加底面涂层:首先将三联模底部刷油;再将上述步骤2准备的10g干粉与5ml水一同倒入容器中手动搅拌均匀,立即用刷子将液态涂层均匀地刷在三联模底部(涂层厚度<1mm);将步骤2中80g干粉用0.3mm筛子均匀地撒一层到涂层上面(覆盖涂层即可,不需全部撒上去)。
步骤4、制备水泥砂浆基体:操作步骤3的同时,另一位操作人员将450gOPC42.5R水泥一次性加入JJ-5型水泥胶砂搅拌机的搅拌锅中,再将量取好的225ml水加入搅拌锅中,然后进行搅拌,并按照提示加入1350g标准砂;把制备好的水泥砂浆分两次装入三联模内,并振实、刮平。
步骤5、施加表面涂层:在水泥砂浆基体临近初凝时,用带有一定硬度的刷子进行拉毛处理(提高基体与涂层之间的粘结力),把步骤3中剩余的干粉均匀地撒到水泥砂浆基体的表面作为过渡层,再将步骤2中另一份10g干粉与5ml水混合并搅拌均匀,立即刷到过渡层上(涂层厚度<1mm),再用刮刀刮平。
步骤6、养护方式:将制备完成的双面涂层水泥砂浆试件立即放入养护温度为20±0.5℃的标准养护箱中养护24h后拆模,再放入水中养护至28d。
步骤7、力学性能测试:力学性能测试依据GB/T 17671—1999《水泥胶砂强度检验方法(ISO法)》标准,按上述试件制备方法制作40mm×40mm×160mm的棱柱体试件进行抗折强度测试,并与未涂层试件强度进行对比,以确定抗折强度提升率。
经测试:该涂层水泥砂浆试件28d抗折强度为11.4MPa,未涂层试件28d抗折强度为8.5MPa,抗折强度提升率为34.1%;28d抗压强度为57.5MPa,与未涂层试件的28d抗压强度50.8MPa相比,也有小幅提升。
该结果表明,引入表面残余压应力是提升水泥砂浆、混凝土构件抗折强度的一种有效方法。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (7)

1.一种提升水泥砂浆、混凝土抗折强度的方法,其特征在于,具体包括:
1)试模底部刷油;
2)将膨胀剂与水泥按设定的比例混合均匀,加入水搅拌后形成液态涂层立即刷到试模底部,形成底面涂层;
3)按步骤2)中相同比例,将膨胀剂与水泥混合而成的干粉均匀地撒到底面涂层表面作为过渡层;
4)立即浇筑水泥砂浆构件;
5)在水泥砂浆构件的基体临近初凝时,用带有一定硬度的刷子进行拉毛处理;
6)把步骤3)中剩余的干粉再均匀地撒到水泥砂浆构件的基体表面作为过渡层;
7)再制备与步骤2)中相同的液态涂层,将其刷在步骤6)的过渡层上,形成表面涂层。
2.根据权利要求1所述一种提升水泥砂浆、混凝土抗折强度的方法,其特征在于,所述涂层中膨胀剂与水泥设定的比例为1:9~9:1之间。
3.根据权利要求1所述一种提升水泥砂浆、混凝土抗折强度的方法,其特征在于,所述底面涂层、表面涂层的厚度<1mm。
4.根据权利要求1所述一种提升水泥砂浆、混凝土抗折强度的方法,其特征在于,所述水泥砂浆构件的基体由水泥:水:标准砂=2:1:6混合而成。
5.根据权利要求4所述一种提升水泥砂浆、混凝土抗折强度的方法,其特征在于,所述底面涂层、表面涂层中水泥标号高于基体中水泥标号。
6.根据权利要求1所述一种提升水泥砂浆、混凝土抗折强度的方法,其特征在于,所述膨胀剂为钙钒石和氢氧化钙双膨胀源膨胀剂。
7.通过上述权利要求1-6任一种方法制备出具有双面涂层的水泥砂浆构件。
CN202010629821.7A 2020-07-03 2020-07-03 一种提升水泥砂浆、混凝土抗折强度的方法 Active CN111892350B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010629821.7A CN111892350B (zh) 2020-07-03 2020-07-03 一种提升水泥砂浆、混凝土抗折强度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010629821.7A CN111892350B (zh) 2020-07-03 2020-07-03 一种提升水泥砂浆、混凝土抗折强度的方法

Publications (2)

Publication Number Publication Date
CN111892350A true CN111892350A (zh) 2020-11-06
CN111892350B CN111892350B (zh) 2022-04-15

Family

ID=73191438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010629821.7A Active CN111892350B (zh) 2020-07-03 2020-07-03 一种提升水泥砂浆、混凝土抗折强度的方法

Country Status (1)

Country Link
CN (1) CN111892350B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114701061A (zh) * 2022-04-22 2022-07-05 德清红朝岗石科技有限公司 一种石面装饰材料的新生产工艺
CN114953097A (zh) * 2022-05-24 2022-08-30 东北大学 一种混合菌种micp加固尾砂浸泡养护试验的试件制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803432A (zh) * 2006-01-24 2006-07-19 浙江工业大学 一种混凝土砂浆界面处理方法
US20110045242A1 (en) * 2008-05-15 2011-02-24 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate and method for producing the same
CN104684864A (zh) * 2012-08-21 2015-06-03 Sika技术股份公司 用于建筑应用的多用途砂浆或水泥组合物
CN104761172A (zh) * 2015-04-23 2015-07-08 江苏苏博特新材料股份有限公司 一种利用含铝工业废渣的混凝土高效膨胀剂、其制备方法及其应用
CN110723988A (zh) * 2019-11-04 2020-01-24 景德镇陶瓷大学 一种梯度涂层预应力增强建筑陶瓷制品及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803432A (zh) * 2006-01-24 2006-07-19 浙江工业大学 一种混凝土砂浆界面处理方法
US20110045242A1 (en) * 2008-05-15 2011-02-24 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate and method for producing the same
CN104684864A (zh) * 2012-08-21 2015-06-03 Sika技术股份公司 用于建筑应用的多用途砂浆或水泥组合物
CN104761172A (zh) * 2015-04-23 2015-07-08 江苏苏博特新材料股份有限公司 一种利用含铝工业废渣的混凝土高效膨胀剂、其制备方法及其应用
CN110723988A (zh) * 2019-11-04 2020-01-24 景德镇陶瓷大学 一种梯度涂层预应力增强建筑陶瓷制品及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
叶建雄: "《建筑材料基础实验》", 30 November 2016, 中国建材工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114701061A (zh) * 2022-04-22 2022-07-05 德清红朝岗石科技有限公司 一种石面装饰材料的新生产工艺
CN114953097A (zh) * 2022-05-24 2022-08-30 东北大学 一种混合菌种micp加固尾砂浸泡养护试验的试件制备方法

Also Published As

Publication number Publication date
CN111892350B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN110105018B (zh) 一种改性粗骨料、及利用该改性粗骨料制得的纤维纳米再生混凝土及其制备方法
Sahmaran et al. Workability of hybrid fiber reinforced self-compacting concrete
Güneyisi et al. A study on reinforcement corrosion and related properties of plain and blended cement concretes under different curing conditions
AU2013305128B2 (en) Multi-purpose mortar or cement compositions for construction applications
Sojobi et al. Optimization of gas-solid carbonation conditions of recycled aggregates using a linear weighted sum method
Tayeb et al. Effect of marble powder on the properties of self-compacting sand concrete
AU2002212131B2 (en) Method for producing concrete or mortar using a vegetal aggregate
Ramujee Development of low calcium flyash based geopolymer concrete
CN111892350B (zh) 一种提升水泥砂浆、混凝土抗折强度的方法
Benabed et al. Effect of limestone powder as a partial replacement of crushed quarry sand on properties of self-compacting repair mortars
Çınar et al. Effect of waste marble powder and fly ash on the rheological characteristics of cement based grout
Raj et al. Evaluation and mix design for ternary blended high strength concrete
Gelim et al. Mechanical and physical properties of fly ash foamed concrete
Xu et al. Research on the formulation and properties of a high-performance geopolymer grouting material based on slag and fly ash
CN108516783A (zh) 一种混杂纤维加气墙体材料及其制备方法
Tjahjono et al. The study of Oil Palm Shell (OPS) lightweight concrete using superplasticizer, silica fume, and fly ash
Gorlenko et al. Fine-grained concrete fibre-reinforced by secondary mineral wool raw material
CN115745432A (zh) 一种工业固废基绿色高性能路用胶凝材料及其应用
Korjakins et al. Utilisation of borosilicate glass waste as a micro-filler for concrete
Deng et al. Exploring macroscopic and microscopic impacts of alcohol amine modified with water-reducing agent on cementitious material and its application
Suryadi et al. The Effect of the Use of Recycled Coarse Aggregate on the Performance of Self-Compacting Concrete (SCC) and Its Application
Long et al. A study on the strength surplus coefficient of cement
Arjun et al. Experimental study on self-compacting concrete with foundry sand and glass powder
RU2386599C1 (ru) Фибробетонная смесь
GEBEYEHU OPTIMIZATION OF SUPERPLASTICIZER DOSAGE AND EFFECTS WITH LOCALLY PRODUCED CEMENTS ON READY-MIX CONCRETE PROPERTIES

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant