CN111886191A - 一种用于储存压缩空气能量的系统和方法 - Google Patents

一种用于储存压缩空气能量的系统和方法 Download PDF

Info

Publication number
CN111886191A
CN111886191A CN201980020929.1A CN201980020929A CN111886191A CN 111886191 A CN111886191 A CN 111886191A CN 201980020929 A CN201980020929 A CN 201980020929A CN 111886191 A CN111886191 A CN 111886191A
Authority
CN
China
Prior art keywords
energy
compressed gas
storage
casing
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980020929.1A
Other languages
English (en)
Inventor
罗曼·A·布莱克
莫里斯·B·杜西奥尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clean Tech Geomechanics Co ltd
Original Assignee
Clean Tech Geomechanics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clean Tech Geomechanics Co ltd filed Critical Clean Tech Geomechanics Co ltd
Publication of CN111886191A publication Critical patent/CN111886191A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G5/00Storing fluids in natural or artificial cavities or chambers in the earth
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/16Modification of mine passages or chambers for storage purposes, especially for liquids or gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/17Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/18Combinations of wind motors with apparatus storing energy storing heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/007Underground or underwater storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0678Concrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/0126One vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0142Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/031Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0149Type of cavity by digging cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0581Power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

本发明公开了一种用于存储压缩气体的储存容器,系统和方法。用于存储压缩气体的储存容器包括一设置在地下的钻井孔;一设置于钻井孔内的套管且其被水泥固定至周围的岩层上,被套管覆盖的钻井孔限定了用于存储压缩气体的空间;以及至少一个气体流量调节器,其密封在被套管覆盖的钻井孔的顶端,用于选择性地将压缩气体注入该空间或从该空间排出压缩气体,其中,钻井孔容积至少为20m3,且压缩气体的压力至少为5MPa。

Description

一种用于储存压缩空气能量的系统和方法
相关申请的交叉引用
本申请要求于2018年3月19日提交的美国临时专利申请62/644,696的优先权,其全部内容通过引用合并于此申请中。
技术领域
本申请主要涉及能量存储和生产,尤其涉及用于将能量存储为压缩空气的储存容器,系统和方法,以便达到延迟电能产生的目的。
背景技术
压缩空气能量存储(CAES,Compressed Air Energy Storage),液体空气能量存储(LAES,Liquid Air Energy Storage),水下水囊/静液压CAES是现有的能量存储技术的几种实施例。
CAES技术被建议用于设立在盐洞或含水层中的大型电网规格的CAES设施(>50MW),该设施可用于存储浪费或多余的电能,以应对高峰需求时期。当前网格规模的CAES技术已在德国(Huntdorf)和美国(Macintosh AL)已被应用,且较小规模的CAES技术已在多伦多和其他几个地方被应用。压缩空气的存储方式有多种:山洞(例如溶洞或古老的硬岩石矿井),多孔的可渗透含水层,液态空气储能(LAES)和水下水囊/静液压。
但是,对于洞穴和含水层,CAES设施依赖于适当的地质站点设置;例如地下盐穴,以便实现洞穴式存储。该标准限制了CAES设施的应用和地点设置,这可能导致为了向终端用户交付可调度能源,传输基础设施需要花费巨大成本。同时,受到洞穴式或含水层式CAES技术的投资成本影响,这些设施被以大型规模运营,可拓建性和适用性有限。
液态空气能量存储(LAES)也可用于存储能量,但是它依赖于大的表面覆盖面积,复杂的处理过程和大量的地面压力罐。地面压力罐存在安全和尺寸问题,且LAES技术是低压工艺,在给定的储存容器体积条件下,其能量输出有限。
水下水囊/静液压CAES同样需要设置在特定地点并且属于低压工艺。能量转换效率相对较低。LAES工艺和水下水囊/静水CAES工艺都持续地存在可扩展性和适用性有限的问题。
发明内容
在本申请中,术语“井”和“储存容器”可互换使用。术语“钻井孔”是指钻入地面的孔。所述钻井孔随后可以被诸如钢和水泥层之类的材料包裹。在一实施例中,本申请公开了一种地下能量储存容器。所述储存容器是一个被诸如钢和水泥层等材料覆盖其表面的钻井孔,其可以承受高压和高温。本申请的技术称为套管式钻井孔压缩空气存储(CWCAS,CasedWellbore Compressed Air Storage)技术。所述储存容器的套管的设置深度至少为500米。一钻井孔通过在地下地质层中钻孔形成,采用高等级钢材的一套管被水泥层固定至该钻井孔中,其深度通常为500m-1500m。所述套管的顶部和底部被完全密封。一高压井口装置盖住该井,其能够允许压缩空气注入和回流。
压缩气体可以被存储在设置于套管式井内的气密空间中。通过钻井搭建一套管式井可以方便地新增一储存容器,以便拓展总储存容量。由所述储存容器组成的阵列可以应用于存储压缩气体。
在一个实施例中,本申请还公开了一种采用套管式钻井孔压缩空气存储(CWCAS)技术的能量储存系统,其包括至少一个储存容器;一个与储存容器密封且以流体连通方式连接的压缩机,用于向套管式钻井孔内注入压力高达5MPa的气体;一个与套管式钻井孔密封且以流体连通的方式连接的发电机,用于利用井中排出压缩气体来生产电能。
储存容器和系统均的设置地点均不受限,且可以被设置于几乎任何位置。系统的储能能力可通过钻设额外的储存容器来轻松扩展。此外,因为整个储存容器都就地设置在地下岩石层中,储存容器和系统可以承受高达100MPa的压力,且安全风险可忽略不计。与同等的电池存储系统相比,CWCAS系统在其生命周期内造成的环境影响显着降低。
本申请的一实施例提供了一种用于存储压缩气体的储存容器,其包括:一设置于地下的钻井孔;一设置于钻井孔内的套管(即套管式钻井孔)且其被水泥固定至周围的岩层上,所述套管式钻井孔限定了用于存储压缩气体的空间;以及至少一个气体流量调节器,其被密封在所述套管式钻井孔的顶端,用于选择性地将压缩气体注入所述空间或从所述空间排出压缩气体,其中,钻井孔容积至少为20m3,且压缩气体的压力至少为5MPa。
本申请的另一实施例提供一种用于以压缩气体的形式存储能量的系统,该系统包括:一个或多个用于存储压缩气体的能量储存容器,各储能容器中至少有一个储存容器包括:一设置在地下的钻井孔;一设置于钻井孔内的套管且其被水泥固定至周围的岩层上,被套管覆盖的钻井孔限定了用于存储压缩气体的空间;以及至少一个气体流量调节器,其密封在被套管覆盖的钻井孔的顶端,用于选择性地将压缩气体注入该空间或从该空间排出压缩气体,其中,钻井孔容积至少为20m3,且压缩气体的压力至少为5MPa,至少一台地面气体压缩机与一个或多个储能容器密封且以流体连通的方式连接,以便压缩气体并向储存容器中注入压缩气体;至少一个地面气体膨胀机与一个或多个能量储存容器密封且通过流体连通的方式连接,以便利用从一个或多个储能容器中排出的压缩气体生产电能。
本申请的另一实施例提供了一种能量存储方法,其包括:通过将套管以水泥固定在在地下的钻井孔中形成至少一个储存容器,压缩地面上的气体;将压缩气体注入至少一个储存容器中,且压缩气体压力至少为5MPa。
附图说明
以下将通过实施例的方式给出参考,各附图展示了本申请实施例性实施例,其中:
图1是本申请的一实施例的实施例性能量存储系统的框图;
图2是本申请的一实施例的储存容器的剖面图。
图3是本申请的另一实施例的实施例性能量存储系统的框图;
图4是本申请的又一实施例的实施例性能量存储系统的框图;
在不同的图中可能已经使用了相似的附图标记来表示相似的组件。
具体实施方式
非高峰能量,多余能量或来自可再生能源(例如风能,太阳能和潮汐能)的非常规能源可以以压缩空气(CA,compressed air)的形式被存储,直到遇到需要额外能源的情况。例如,在安大略的一个温暖的晴天,各太阳能和风力发电场产生了过量的电能,由于不能在安大略消耗和储存,这些电能会被免费赠送或以低于成本的价格出售。
较小规模的压缩空气存储可以帮助社区和工业实体吸收更多的可再生能源并同时节省资金。例如,如果一个偏远的矿井安装了压缩空气存储系统,以在白天有风时将产生的多余能量以压缩空气的形式存储,随后压缩空气将能够产生电能,以便该矿井在其他时间运行。如果工业园区或社区与电网连接,则存储在压缩空气中的能量可以被转换为电能,并在高峰时段输送回电网,以降低工业园区或社区的能源成本。
以下通过一大型工业园区的实施例来展示能源储存的潜力。该园区可以建造压缩空气存储设施,并安装可提供3-4¢/kWh能量的风力涡轮机,并使用多余的风能或午夜时廉价的非高峰电能为压缩空气存储系统充电。在白天期间,当电网供应的电能成本较高时,压缩空气系统向工业园区提供电能。
1-50MWh的压缩空气存储系统可以使各个社区脱离电网,拥有社区自己的可再生能源和能源存储能力,而无需由外部机构/公用事业单位向社区供能和提供环境决策。具有风能和/或太阳能输入的CWCAS系统可以满足社区对电能的部分甚至绝大部分需求,从而使社区拥有更大的自主规划权,并通过减少对化石燃料的需求来使能源系统脱碳化。
图1展示了本申请的一实施例中将能量存储在压缩空气中的实施例性CWCAS系统10。该系统10可包括一能量源12,至少一个使用能量源12的能量生产压缩空气的空气压缩机14,至少一个用于存储压缩空气的储存容器16,以及至少一个利用释放自储存容器16的压缩空气生产能量的空气膨胀机18。地面上的地面设施可用于容纳空气压缩机14和空气膨胀机18和/或该设备其他相关组件以及储存容器16;包括应用于储存容器16的上表面部分的管道和阀。
在图1所示的实施例中,所述能量源12可以是从风电场产生的风能或从太阳能电场产生的太阳能。所述能量源12也可以是其他传统能源或可再生能源,例如天然气发电机组,水能,潮汐能或地热能。所述能量源12可以直接将能量供应给消费者使用。例如,所述能量源12可以产生电力并将其直接提供给公用电网,以供附近的工厂或住宅的消费者使用。由能量源12产生的能量也可以被转换成其他形式的存储,例如压缩气体,其包括空气。本申请选用空气进行举例,但是也可以应用其他气体,例如烟道气或CO2
在本申请中,所述空气压缩机14可以使用所述能量源12供应的能量来产生压缩空气。在一些实施例中,当能量源12产生的电能超过了消费者的需求时,或者当消费者在某个时段(例如深夜)不需要能量源12产生的电能时,能量源12产生的多余电能可以用来驱动空气压缩机14以产生压缩空气。在这种情况下,由能量源12产生的电能可以被转换成存储在压缩空气中的能量。
对于给定的应用需求,所述空气压缩机14需要具有一定规模以实现CWCAS系统的所需能量存储能力。在一个实施例中,所述空气压缩机14可能需要173-216kW的能量供应,保持在1750至7250PSI(12-50MPa)的工作压力范围,以及每分钟341至344标准立方英尺的流量(SCFM,Standard Cubic Feet per Minute)。
根据图3和图4所示的实施例,所述空气压缩机14可包括一压缩机14a。在一些实施例中,输入到空气压缩机14a中的空气流可具有0.151kg/s的流速,0.149m3/s的体积流率,0.1MPa的压力和30℃的温度。从空气压缩机14a输出的压缩空气流量具有0.151kg/s的流量,0.003m3/s的体积流率,50MPa的压力和250℃的温度。因此,空气压缩机14在压缩过程中增加了空气的压力和温度,并且在空气压缩过程中产生了热量。通过上述方式,来自能量源12的能量,例如电能,基本上被转换成了存储在压缩空气中的热量和机械能。
在一些实施例中,从空气压缩机14a输出的压缩空气流可以被直接注入并存储在储存容器16中,无需先冷却空气。
如果压缩空气具有高温,则在给定压力条件下的给定存储容积中,存储在储存容器16中的空气的温度将被降低。同时,高温可能会加速储存容器16的套管材料的腐蚀速度。在一些实施例中,如图3和4所示,所述空气压缩机14可进一步包括中间冷却器14b,该中间冷却器14b通过获取空气压缩过程中产生的热量来将压缩空气的温度降低到预期温度。所述中间冷却器14b可以是用于冷却压缩空气的机械装置,例如从压缩空气中去除一些热量的热交换器。从压缩机14a输出的压缩空气流可以被输入至从中间冷却器14b,并以0.151kg/s的流量,0.003m3/s的体积流率,50MPa(或7250PSI)的压力和200℃的温度并从中间冷却器流出。通过这样的方式,中间冷却器14b降低了压缩空气的温度并且从压缩空气中除去了一些热量。被中间冷却器14b获取的热量可以用来在其他过程进行加热,例如,利用图4中的热能管理系统15,在下文将阐述的空气膨胀阶段中加热从储存容器16排出的压缩空气。所述热能管理系统15可以包括一个用于储存热量的散热器。在一些实施例中,被中间冷却器14b捕获的热量可用于建筑物供暖或其他有益用途。所述热能管理系统15可以被容纳在上文所述的地面设施中。
从空气压缩机14输出的压缩空气可被输入至一个或多个储存容器16中进行存储。所述空气压缩机14处于密封且与一个或多个储存容器16流体互通的状态。例如,压缩空气可以通过一个或多个气密性管道,例如金属管道,从所述空气压缩机14流向一个或多个储存容器16。所述储存容器16可包括多个储存容器组成的阵列。
图2展示了一个实施例性的储存容器16,其可以是钻井孔162,该钻井孔162被可承受高压和高温的材料覆盖表面。例如,钻井孔162可以被由高等级钢材制成的套管166覆盖其表面。在钻井孔内的这种套管被水泥层168固定至周围的岩层上。在一优选实施例中,这种钻井孔的套管166采用额定高压(高达100MPa)和高温(高达200℃)的高等级钢材。
在图2的实施例中,储存容器或井16包括一钻井孔162和如前文所述的水泥层168,该钻井孔162被一根由耐高温高压材料制成套管166覆盖其表面。在图2所示的实施例中,钻井孔162可以是通过钻入地下地质层163形成的垂直钻井孔。通过将钻井孔162钻至一定深度,例如,至少500米,并采用高压-高温(HP-HT,high pressure-high temperature)等级的套管166和水泥层168覆盖储存容器16表面,所述储存容器16可为一HP-HT井。在一些实施例中,井16的深度可达到1500米。井的深度可以根据特定应用中能量存储规格所需的井的容积来变化。在一个实施例中,井16的深度范围为至少500m至1500m。在一些实施例中,随着钻井孔长度的延长,套管164和套管166的多个部分的套管直径可逐渐变小。
所述钻井孔162可以被开设在基本上任何类型的岩石或沉积物中。油田旋转钻探技术可用于在沉积岩中钻设HP-HT钻井孔。气锤钻井可用于钻设HP-HT钻井孔,以便在致密、低渗透性岩石(如花岗岩或非常致密的沉积物)中更快速地钻探。
所述水泥层168被设计为符合CWCAS运行的温度和压力范围,例如,基于套管166的数学建模和岩体的刚度进行设计。所述套管166和所述水泥层168均为耐腐蚀的。
得益于井16在地下地质层163中的深度,在深达1500米的井中,井16内存储的压缩空气的温度可保持在约200℃。
一气密的基塞170可被安装在套管166的底端,且一气密的顶部密封件或阀172可被安装在套管166的顶部,例如在地面以下20-50米处。所述套管166,基塞170和顶部密封件172共同限定了一个用于在井内存储压缩空气的气密体或气密空间。在一些实施例中,可以省去基塞170,并采用其他方式将套管166底端密封。所述顶部密封件172与供应管174连接,压缩空气可通过供应管174注入到储存容器16中或从储存容器16中排出。在一实施例中,供应管174的直径可为15cm或更小。
一高压井口176盖住所述套管166和供应管174。该井口176被设计为允许将压缩空气注入井16以及从井16排出压缩空气。所述供应管174与所述井口176气密地连接。所述井口176可为具有一个或多个阀或空气流量调节器的歧管,其保证了储存容器16可被恰当地管理。在一些实施例中,所述歧管能够选择性地,例如通过打开或关闭各个阀,允许空气压缩机14排出的压缩空气通过供应管174注入井16中进行存储。在一些实施例中,所述歧管能够选择性地,例如通过打开或关闭各个阀,允许被存储的压缩空气通过供应管174从储存容器中排出,从所述井16输送至所述空气膨胀机18。
受到原地限位影响,由于整个储存容器16都位于地下,且顶部密封件和安全阀设置于地面以下,例如大约25米深处,因此套管166可承受的压力高达100MPa,其安全风险可以忽略不计。如果发生任何破裂,压力只会将空气驱散到周围的岩体中,而不会对环境造成影响。
在一些实施例中,所述储存容器16可以具有20-30年的寿命周期。
在一些实施例中,所述套管166的内径为约30cm。井中的套管的直径可以根据给定应用场景中井16的能量存储规格所需求的容积来设定。在一个实施例中,井16的总深度为1000m,气压为50MPa,温度为200℃,其容积为每100米井长度容纳7m3。在该实施例中,每个储存容器或井16可以通过存储压缩空气来存储高达10MWh用于发电的能量。在一实施例中,在单个储存容器或井16中,在200℃下以25-50MPa的保守压力(conservative pressure)被存储在压缩空气中的能量,可产生约为5-10兆瓦时的能源,其中,该井的套管166的直径为30cm,深度为约1000米。
被存储在一个储存容器16中的压缩空气所储存的能量大小取决于井16的容积以及存储在其中的压缩空气的压力范围。在能源生产过程中空气温度也很关键。储存压缩空气的温度范围为50-250℃。井16的总体积通常可以是20-100m3,井16的深度可深达2000米,存储在井16中的压缩空气的压力可以是5MPa-100MPa,并且存储在井16中的压缩空气的温度可以是50℃-250℃。尽管在这些实施例中,储存容器16的设置方向被假设为垂直的,但是实际井的轮廓根据特定应用的需要可设置为倾斜的或水平的。井16的体积和深度可以相应地改变。
在CWACS系统的一个实施例中,一空气压缩机14的储存容器16的压力、充气时间和存储在储存容器16中的能量如下表所示:
Figure BDA0002692965780000071
存储在储存容器16中的总能量指的是储存容器16的压力由初始压力变化至最终压力期间注入储存容器16的压缩空气的能量。一个给定的井的充气时间还取决于在CWCAS系统中使用的压缩机设备的数量和规格。
在一些实施例中,空气压缩机14可包括两个或更多个空气压缩机单元以便同时压缩空气。通过上述方式,使容器16达到预期压力的充气时间将被缩短。例如,如果两个压缩机单元同时地压缩空气,所述充气时间可减少一半。同样,如果空气压缩机14具有较大的处理能力,例如更快的流速,则充电时间可会减少。
在一些实施例中,当一个储存容器16不足以存储由能量源12产生的能量时,所述系统10可以通过添加更多的井或储存容器16来扩展能量存储容量。如图1所示,所述储存容器16可包括用于存储压缩空气的井16a,16b,16c,16d和16e组成的阵列。在这种情况下,任意串联的相邻的井16a,16b,16c,16d和16e彼此液压连通,例如,该连通可通过歧管17实现。由于井16a,16b,16c,16d和16e中压缩空气的流动性,这些井中的气压可基本相同。一个或多个井16a,16b,16c,16d和16e可设有供应管174,以允许将压缩空气注入到储存容器16的阵列中或将压缩空气从储存容器16的阵列中排出。在包括作为储存容器16的多个井组成的阵列的系统10中,压缩空气可以被注入到至少一个或任意多个井16a,16b,16c,16d和16e中或被从至少一个或任意多个井16a,16b,16c,16d和16e中排出。系统10能够利用包括井的阵列16a,16b,16c,16d和16e的储存容器16同时充入和排出压缩空气。在此实施例中,为了进行举例说明,井的阵列包括五个井。井的实际数量可根据给定的储能项目设计设为更高或更低的数量。
由于储存容器的阵列具有更大的存储压缩空气的能力,被存储的总能量增加,因此压缩空气能够基于终端用户20的能量需求而被调度。因此,该储存容器的阵列在能源的可分配性,能源输出和成本节省方面具有使能源利用更优化的优势。例如,如果可获得廉价的过剩风能,则可同步将其缩并产生能量,从而将较低值的不规则能量转换为较高值的平稳能量。进一步,在压缩过程中产生的热量可直接用于加热在下文将要描述的空气膨胀过程中被排出的压缩空气,并且系统10可以分配储存容器阵列中的压缩空气以平稳地根据需求产生电能。
当需要将储存容器16中的压缩空气存储的能量转换成其他形式,例如电能时,压缩空气可以从储存容器16中被排放。在一个实施例中,从储存容器16中被排放并流入空气膨胀机18的压缩空气的流量为0.302kg/s,体积流率为0.005m3/s,压力为50MPa(或7250PSI),温度为200℃。如果被注入至所述储存容器16中的压缩空气的流量为0.151kg/s,则充气时间与排气时间之比为2:1。实际的充气时间与排气时间之比可根据项目要求和所选择的压缩机14和空气膨胀机18的类型调整。
所述空气膨胀机18与储存容器16以流体连通的方式连接。在一些实施例中,空气膨胀机18可利用存储在压缩空气中的能量生产电能。所述空气膨胀机18可根据能量输送要求和下文将说明的系统10的加热条件来进行选取。所述空气膨胀机18可包括多个膨胀和再加热阶段;该膨胀机系统18包括用于发电的涡轮机18a和涡轮机18b。在膨胀机系统18中,当高压气体从高压气流流入膨胀机时,气体使涡轮机旋转,该涡轮机与用于生产电能的发电机连接。该涡轮机通常通过一曲轴与发电机连接。然而,上述膨胀机-涡轮机系统18通常是集成的设备系统。膨胀机系统18可被选取以便处理CWCAS方法所需的高压。对于给定的应用场景,空气膨胀机18需要具有一定规格以实现CWCAS系统预期的能量输出能力。
在图3和图4所示的实施例中,空气膨胀机18可以包括一高压(HP,High Pressure)涡轮机18a和与HP涡轮机18a连接的低压(LP,Low Pressure)涡轮机18b。从储存容器16排出的高压压缩空气在HP涡轮机18a中膨胀,并且由于空气膨胀而使HP涡轮机18a旋转。随后,来自HP涡轮机18a的膨胀空气进一步膨胀并驱动LP涡轮机18b旋转。HP涡轮机18a和LP涡轮机18b的旋转将产生电能。所述空气膨胀机18可具有其他组成结构,如包括更多的涡轮机,例如在HP涡轮机和LP涡轮机之间设置一个或多个中压涡轮。涡轮机中的空气膨胀(从高压到低压)会消耗热量。为了避免使涡轮机冻结,涡轮机中的空气需要被重新加热。同时,对涡轮机中的空气进行再加热以增加空气的温度的过程也增加了涡轮机中的空气的膨胀效果,因此提高了产生电能的效率。在一些实施例中,通过重新加热涡轮中的压缩空气,其能量转换的效率将被增加,例如增加25%。
在一些实施例中,空气膨胀机18可以在从储存容器16排出的压缩空气流量恒定的条件下运行。在一些实施例中,对于工业用途,系统10可以将压缩空气以较低的压力(例如10–25MPa)储存在储存容器中,并可选择在指定的压力范围内运行的空气膨胀机18。
在一些实施例中,系统10可以是非绝热系统或绝热系统。在非绝热系统中,在压缩过程中空气压缩机14产生的热量不会被应用于空气膨胀过程,但可被以其他方式合理利用。
在一非绝热系统配置中,系统10可包括燃烧室18c,以便加热应用在HP涡轮机18a和LP涡轮机18b中的空气。在图3所示的实施例中,当系统10是非绝热系统时,被存储在压缩空气中的能量可被从储存容器16释放。所述压缩空气被燃烧室18c以燃烧(例如天然气或燃料)的方式加热。如前文所述,被加热的空气可在HP涡轮机18a和LP涡轮机18b中膨胀以产生电能。
在一个实施例中,随着空气在涡轮机18a和涡轮机18b中膨胀,空气的温度降低。在一些实施例中,从HP涡轮机18a排出的空气可具有0.302kg/s的流量,0.005m3/s的体积流率,15MPa的压力和100℃的温度。在这种情况下,如果提供给燃烧室18c以便重新加热涡轮机18a和涡轮机18b中的空气的燃料流量为0.03kg/s,则空气膨胀机18可产生高达5.5MWh的电能。因此,图3所示的非绝热系统中空气膨胀机18的能量转换效率约为55%,该数值是空气膨胀机18产生的能量与存储在储存容器16中的能量(例如10MWh)的比值。
假设非绝热系统的能量转换效率为55%,则下表展示了在不同增压情况下图3中所示的非绝热系统的示例性参数:
Figure BDA0002692965780000091
1MWh的电力可以满足约300户加拿大家庭一小时的电力需求。空气膨胀机18产生的总能量可基于空气膨胀机18或涡轮的类型以及空气通过每个涡轮之后的压降而变化。在一些实施例中,如果非绝热系统包括一个由4个储存容器16组成的阵列,则该系统可存储能够产生高达22MWh(5.5MWh×4)能量的压缩空气。
在图4所示的实施例中,当系统10是绝热系统时,空气压缩机14在空气压缩过程中产生的热量可被存储在热量存储介质中,例如热能管理系统15的散热器。在空气膨胀过程中,存储在热量存储介质中的热量可被取回,以加热空气膨胀机18的涡轮机中的空气。外部热量也可以由外部热源提供,例如燃烧室18c,外部热量用于加热在空气膨胀机18的涡轮中使用的空气,从而使空气被加热到更高的温度以产生更多的能量。在一些实施例中,当同时进行空气压缩和空气膨胀时,由空气压缩机14在空气压缩过程产生的热量可以直接提供给空气膨胀机18的涡轮中使用的空气。
在一些实施例中,通过所述热能管理系统15,从压缩过程中产生的一些热量可以随着井的充气过程存储在井16中。一些被产生的热量也可以用于其他有益的用途,例如用于空间加热。一些被产生的热量还可用于在空气膨胀机18的空气膨胀过程中加热空气。该热量管理方式提供了更高的能量转换效率。也可以通过其他能量过程来回收废热,并在CWCAS空气膨胀过程中使用该热量加热空气,以避免涡轮机冻结并增加能量输出。通过热管理,CWCAS系统10的能量转换效率达70%左右。
在一个实施例中,从HP涡轮机18a排出的空气可具有0.302kg/s的流量,0.005m3/s的体积流率,15MPa的压力和100°的温度。C。在这种情况下,如果供应给所述燃烧室18c以重新加热涡轮机18a和涡轮机18b中的空气的燃料流量为0.03kg/s,并且如果所述热能管理系统15同时提供热量,则所述空气膨胀机18可生产高达7MWh的电能。因此,如果空气膨胀机18中所有所需的热量都来自压缩机14的热量,则系统10完全是绝热的,且图4所示的绝热系统中空气膨胀机18的能量转换效率约为70%;该效率是空气膨胀机18产生的能量与存储在储存容器16中的能量(例如10MWh)之比。
如果绝热系统的能量转换效率约为70%,则下表展示了在不同增压情况下图4中所示的绝热系统的示例性参数:
Figure BDA0002692965780000101
由膨胀机18产生的总能量可以基于膨胀机18或涡轮的类型以及空气经过每个涡轮之后的压降而发生变化。在一些实施例中,如果绝热系统包括一个由4个储存容器16组成的阵列,则该系统可存储能够产生高达28MWh(7MWh×4)能量的压缩空气。
井的排气时间还取决于在CWCAS系统10中使用了多少个空气膨胀机18,以及所使用的空气膨胀机设备的规格。在一些实施例中,系统10可以包括一个以上的空气膨胀机18以增加生产电能的能力。在一些实施例中,压缩机14和空气膨胀机18可为一整体单元。
因此,CWCAS系统10极大地改善了可再生能源的质量,将可再生能源从不规则变化且间歇性的能源改变为平稳的、频率可调且可靠的能源。
如上所述,系统10的储存容器16的生命周期为20-30年,这比大约为7年的等效的电池能量存储的生命周期更长。
同时,相比于等效的电池储能系统,CWCAS系统10对环境的影响明显更低。电池的生产使用大量且种类繁多的原材料,包括金属和非金属(锂,铅,镍,汞,镉,铬等),这对公共健康和环境构成了风险。电池行业在其生命周期中会产生大量环境污染物,包括采矿,生产,使用,运输,储存,处理,清理和回收等不同过程中的有害废物和温室气体排放。当前电池生产的能耗月为350-650MJ/kW h。研究表明,当前电池生产过程的温室气体排放量约在120-250kg CO2-eq/kW h之间。大规模使用的电池或电网(>50MW)将对环境产生重大影响。令人合理担忧的是,大型电池储能系统不环保且不可持续。
相比之下,CWCAS系统10提供了一种先进的压缩空气储能解决方案:系统10为大宗能源管理提供了可选的储能方案,并且其全过程对环境影响均很小;系统10可以增加电能生产系统中的可再生能源供应。系统10与地热,风能和太阳能能量生产兼容,并与电网系统,离网系统和微电网应用兼容。
CWCAS系统10以方便地应用于满足某一地理区域和/或一应用的能源需求。当社区需要自我调节。系统10可以很容易地定制和灵活地扩大规模,使当地社区能够根据其需要自行调节其能源。系统10的设置基于当地需求。根据能源12的容量和面积/应用的需要,可以选择适合的空压机14和空气膨胀机18系统的类型和尺寸。存储容器16设置包括井的深度和套管的直径166,二者可以被选择以便提供被储存的压缩空气体积、质量、温度和压力,使其各个参数与空气压缩机14和空气膨胀机18兼容。如上文所述,可以在地下设立额外的储存容器16,以扩大储存压缩空气的能力,例如,钻设和栓接额外的储存容器。
同时,CWCAS系统10的设置地点不受限,且可以设置于任意环境中的几乎任何位置。例如,系统10可以部署在边远社区中或用于工业应用中。另一方面,必须使用盐穴,水囊等的其他压缩空气存储系统仅限于设置在有盐穴或水囊的位置。系统10可以以适当的规模安装,且可以根据未来不断增长的需求,通过钻设额外的储存容器16来轻松地扩建,以增加能量储存能力。例如,系统10可以灵活地就近设置并组合入现有/旧式电力传输基础设施中,以服务更大的市场;同时减少了构建新的电力传输系统的需求/成本。
系统10可以用于各种应用场景中,包括工业,油田和公用事业。例如,系统10可以通过采用油田的现有井作为储存容器来将油田井转换成能量储存容器16,该过程需要进行适当的改造以密封上述井。油田作为储存容器,并进行了适当的修改以密封此类油井。火炬气(例如,来自石油开采活动)可用作驱动压缩机14的能量源12,或用于加热膨胀机18的涡轮中的空气的能量源。同时,在能源供应的峰值管理中,系统10允许将多余的能量存储在储存容器16中,以备将来有益地使用;例如通过发电,并在用电高峰时段出售电能提供向电力供应商套利的机会。
所述各实施例可进行一些调整和修改。因此,以上阐述的实施例应被认为是举例说明而非限制性的。

Claims (27)

1.一种用于存储压缩气体的储存容器,其包括:
一设置在地下的钻井孔;
一设置于钻井孔内的套管且该套管被水泥固定至周围的岩层上,被套管覆盖的钻井孔限定了用于存储压缩气体的空间;和
至少一个气体流量调节器,其被密封在套管的顶端,用于选择性地将压缩气体注入所述空间或从所述空间排出压缩气体,其中,所述压缩气体由可再生能源产生,所述可再生能源包括风能、太阳能、潮汐能和地热能。
2.根据权利要求1所述的储存容器,其特征在于,井的有效容积为1-8m 3/(100m井长)。
3.根据权利要求2所述的储存容器,其特征在于,井的总体积为50-100m 3
4.根据权利要求1所述的储存容器,其特征在于,所述钻井孔在地下垂直,倾斜或水平设置。
5.根据权利要求1所述的储存容器,其特征在于,所储存的压缩气体具有5MPa-100MPa的压力和50℃-250℃的温度。
6.根据权利要求1所述的储存容器,其特征在于,每个套管和其水泥层都是耐腐蚀的,并且可以承受5MPa-100MPa的压力和50℃-250℃的温度。
7.根据权利要求1所述的储存容器,其特征在于,还包括基塞或底部密封件以便密封套管的底端,防止压缩气体泄漏。
8.根据权利要求1所述的储存容器,其特征在于,所述套管包括多个部分,所述多个部分包括随着钻井孔长度的延长而直径逐渐减小的套管。
9.根据权利要求1所述的储存容器,还包括:顶部密封件,其设置在所述套管的顶部;以及至少一个供应管,其穿设所述顶部密封件且与至少一个阀连接,以允许将所述压缩气体注入所述储存容器中的容积空间或从所述储存容器中的容积空间被排出。
10.根据权利要求1所述的储存容器,其特征在于,至少一个气体流量调节器是允许注入和产生所述压缩气体的井口的阀。
11.根据权利要求1所述的储存容器,其特征在于,所述压缩气体为被压缩的空气。
12.根据权利要求1所述的储存容器,其特征在于,所述压缩气体的压力为50MPa。
13.根据权利要求1所述的储存容器,其特征在于,被套管覆盖的钻井孔的容积为7m3/(100m长度),深度为1000米,总体积为70m 3
14.一种用于以压缩气体形式存储能量的系统,其包括:
一个或多个用于存储压缩气体的能量储存容器,每个能量储存容器均包括:
一设置在地下的钻井孔;
一设置于钻井孔内的套管且其被水泥固定至周围的岩层上,该套管限定了用于存储压缩气体的空间;和
至少一个气体流量调节器,其密封在被套管覆盖的钻井孔的顶端,用于选择性地将压缩气体注入该空间或从该空间排出压缩气体;
至少一台地面气体压缩机,其与一个或多个储能容器密封且以流体连通的方式连接,以便压缩气体并向储存容器中注入压缩气体;以及
至少一个地面气体膨胀机,其与一个或多个能量储存容器密封且通过流体连通的方式连接,以便利用从一个或多个储能容器中排出的压缩气体生产电能。
15.根据权利要求14所述的系统,其特征在于,所述套管和水泥层适于承受高达100MPa的循环压力和高达250摄氏度的温度,并且所述套管和水泥层是耐腐蚀的。
16.根据权利要求14所述的系统,其特征在于,所述一个或多个能量储存容器包括多个能量储存容器,并且任意相邻的能量储存容器相互以流体连通的方式连接。
17.根据权利要求14所述的系统,其特征在于,所述压缩气体是空气。
18.根据权利要求14所述的系统,其特征在于,所述储存容器的有效容积为1-8m3/(100米被套管覆盖的钻井孔长度)。
19.根据权利要求18所述的储存容器,其特征在于,所述井的总体积为50-100m 3
20.根据权利要求15所述的系统,其特征在于,所述系统被设置为向一个或多个储能容器中的每个储能容器提供约100MPa的最大压力。
21.根据权利要求16所述的系统,其特征在于,所述多个能量储存容器形成一以流体连通方式连接的阵列,以共同提供用于能量存储的累积存储容量。
22.根据权利要求16所述的系统,其特征在于,任意数量的能量储存容器相互以流体连通的方式连接。
23.根据权利要求14所述的系统,还包括热回收系统,该热回收系统被设置为去除在气体压缩过程中产生的多余热量,并在气体膨胀过程中向压缩气体提供并恢复至少部分被去除的热量。
24.根据权利要求23所述的系统,其特征在于,所述热回收系统包括一散热器。
25.一种储能的方法,其包括:
通过将套管用水泥固定在位于地下的钻井孔中,形成至少一个储存容器,
压缩地面的气体;和
将压缩气体注入至少一个储存容器中。
26.根据权利要求25所述的方法,还包括:
从至少一个储存容器中排放压缩气体;在膨胀机系统中使压缩气体膨胀以生产电能。
27.如权利要求25所述的方法,其特征在于,还包括通过在地下中钻设额外的钻井孔且在所述额外的钻井孔中用水泥固定额外的套管来形成额外的储存容器。
CN201980020929.1A 2018-03-19 2019-03-19 一种用于储存压缩空气能量的系统和方法 Pending CN111886191A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862644696P 2018-03-19 2018-03-19
US62/644,696 2018-03-19
PCT/CA2019/050331 WO2019178679A1 (en) 2018-03-19 2019-03-19 System and method for compressed air energy storage

Publications (1)

Publication Number Publication Date
CN111886191A true CN111886191A (zh) 2020-11-03

Family

ID=67988245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980020929.1A Pending CN111886191A (zh) 2018-03-19 2019-03-19 一种用于储存压缩空气能量的系统和方法

Country Status (9)

Country Link
US (1) US11414273B2 (zh)
EP (1) EP3768615A4 (zh)
KR (1) KR20200133771A (zh)
CN (1) CN111886191A (zh)
AU (1) AU2019239787A1 (zh)
CA (1) CA3094408A1 (zh)
PH (1) PH12020551506A1 (zh)
SG (1) SG11202009142WA (zh)
WO (1) WO2019178679A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112832865A (zh) * 2021-01-06 2021-05-25 东南大学 一种基于地下洞穴的恒压压缩空气储放系统
CN114562676A (zh) * 2022-04-27 2022-05-31 浙江浙能航天氢能技术有限公司 一种加氢站热能收集利用系统
CN115110927A (zh) * 2021-03-23 2022-09-27 中国石油天然气股份有限公司 适用于注气开发方式的井筒集群式地下储气方法、装置及装置的使用方法
CN115434752A (zh) * 2022-09-16 2022-12-06 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种利用废弃矿井巷道的压缩空气储能系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11680684B2 (en) 2021-04-16 2023-06-20 Bedrock Gas Solutions, LLC Small molecule gas storage adapter
CA3214390A1 (en) * 2021-04-19 2022-10-27 Roman A. Bilak Compressed hydrogen and air power system
CN114458380A (zh) * 2022-02-17 2022-05-10 北京中海能大储能技术有限公司 利用地下废弃空间进行压缩空气储能的方法
CN116025418B (zh) * 2022-10-12 2023-06-16 中国矿业大学 一种低压式废弃矿井压缩空气储能方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207530A (en) * 1992-07-29 1993-05-04 Halliburton Company Underground compressed natural gas storage and service system
US20020007953A1 (en) * 2000-07-18 2002-01-24 Liknes Alvin C. Method and apparatus for removing water from well-bore of gas wells to permit efficient production of gas
US6840709B2 (en) * 2003-01-13 2005-01-11 David Fred Dahlem Distributed natural gas storage system(s) using oil & gas & other well(s)
CN106499612A (zh) * 2016-12-01 2017-03-15 西安交通大学 无外加热源的压缩空气双储能系统
CN106567748A (zh) * 2016-11-02 2017-04-19 西安交通大学 非绝热气体膨胀的压缩空气储能系统
CN107461603A (zh) * 2017-09-21 2017-12-12 西安交通大学 储气储热一体的干热岩再热压缩空气储能系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333465A (en) * 1992-04-30 1994-08-02 Mcbride Terry R Underground storage system for natural gas
AT404247B (de) 1996-03-18 1998-09-25 Oemv Ag Druckbehälter für zu speichernde gase
PT1611385E (pt) * 2003-03-18 2008-03-10 Heliswirl Technologies Ltd Tubagem e canalização para fluxo multifásico
US20110100010A1 (en) * 2009-10-30 2011-05-05 Freund Sebastian W Adiabatic compressed air energy storage system with liquid thermal energy storage
GB2493726A (en) * 2011-08-16 2013-02-20 Alstom Technology Ltd Adiabatic compressed air energy storage system
US20130336721A1 (en) * 2012-06-13 2013-12-19 Troy O. McBride Fluid storage in compressed-gas energy storage and recovery systems
CA3033413C (en) * 2013-12-13 2020-10-06 Pluto Ground Technologies Holding Inc. Cement compositions and methods for controlling wellsite fluid and gas flow
US9896269B2 (en) 2015-05-01 2018-02-20 Halliburton Energy Services, Inc. Method of forming a subterranean gas storage vessel
FR3054028B1 (fr) * 2016-07-15 2018-07-27 IFP Energies Nouvelles Conteneur d'un systeme de stockage et de restitution de la chaleur comportant une double paroi en beton

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207530A (en) * 1992-07-29 1993-05-04 Halliburton Company Underground compressed natural gas storage and service system
US20020007953A1 (en) * 2000-07-18 2002-01-24 Liknes Alvin C. Method and apparatus for removing water from well-bore of gas wells to permit efficient production of gas
US6840709B2 (en) * 2003-01-13 2005-01-11 David Fred Dahlem Distributed natural gas storage system(s) using oil & gas & other well(s)
CN106567748A (zh) * 2016-11-02 2017-04-19 西安交通大学 非绝热气体膨胀的压缩空气储能系统
CN106499612A (zh) * 2016-12-01 2017-03-15 西安交通大学 无外加热源的压缩空气双储能系统
CN107461603A (zh) * 2017-09-21 2017-12-12 西安交通大学 储气储热一体的干热岩再热压缩空气储能系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112832865A (zh) * 2021-01-06 2021-05-25 东南大学 一种基于地下洞穴的恒压压缩空气储放系统
CN115110927A (zh) * 2021-03-23 2022-09-27 中国石油天然气股份有限公司 适用于注气开发方式的井筒集群式地下储气方法、装置及装置的使用方法
CN115110927B (zh) * 2021-03-23 2024-03-26 中国石油天然气股份有限公司 适用于注气开发方式的井筒集群式地下储气方法、装置及装置的使用方法
CN114562676A (zh) * 2022-04-27 2022-05-31 浙江浙能航天氢能技术有限公司 一种加氢站热能收集利用系统
CN115434752A (zh) * 2022-09-16 2022-12-06 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种利用废弃矿井巷道的压缩空气储能系统

Also Published As

Publication number Publication date
US11414273B2 (en) 2022-08-16
WO2019178679A1 (en) 2019-09-26
EP3768615A1 (en) 2021-01-27
CA3094408A1 (en) 2019-09-26
KR20200133771A (ko) 2020-11-30
AU2019239787A1 (en) 2020-10-15
SG11202009142WA (en) 2020-10-29
PH12020551506A1 (en) 2021-09-06
EP3768615A4 (en) 2021-12-22
US20210024290A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
CN111886191A (zh) 一种用于储存压缩空气能量的系统和方法
King et al. Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK
Succar et al. Compressed air energy storage: theory, resources, and applications for wind power
Fan et al. Thermodynamic and applicability analysis of a hybrid CAES system using abandoned coal mine in China
US5685362A (en) Storage capacity in hot dry rock reservoirs
US9482109B2 (en) Compressed gas energy storage and release system
Kushnir et al. Thermodynamic and hydrodynamic response of compressed air energy storage reservoirs: a review
US20100272515A1 (en) Method of developing and producing deep geothermal reservoirs
Lutyński An overview of potential benefits and limitations of Compressed Air Energy Storage in abandoned coal mines
US10995972B2 (en) Multi-fluid renewable geo-energy systems and methods
Bartela et al. Evaluation of the energy potential of an adiabatic compressed air energy storage system based on a novel thermal energy storage system in a post mining shaft
Jiang et al. Underground hydro-pumped energy storage using coal mine goafs: system performance analysis and a case study for China
AU2020424425B2 (en) Method for on demand power production utilizing geologic thermal recovery
Kim et al. Compressed air energy storage (CAES): current status, geomechanical aspects and future opportunities
Sørensen Underground hydrogen storage in geological formations, and comparison with other storage solutions
Forsberg Gigawatt-year geothermal energy storage coupled to nuclear reactors and large concentrated solar thermal systems
KR20130064517A (ko) 신재생에너지를 이용한 압축공기 저장 발전 장치
US20240060602A1 (en) Systems and methods for heat management for cased wellbore compressed air storage
CN102913403A (zh) 一种深部地热资源利用及能量转化的新工艺
KR101494940B1 (ko) 이지에스 지열발전소와 간헐성 재생에너지를 결합한 전력공급시스템 및 방법
US20230227983A1 (en) Process for Storing Energy as Compressed Gases in Subterranean Water Reservoirs Using High-Pressure Electrolysis
Menéndez et al. Integration of renewable energies in the electricity grid from energy storage plants in disused mining structures
Crotogino Compressed air energy storage caverns to integrate fluctuating wind energy within transmission grids in Germany
US20200039749A1 (en) Compressed gas energy storage
Evans The Geology, Historical Background, and Developments in CAES

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201103