CN111884258A - 考虑负荷重要等级的多微网被动并离网平滑切换方法 - Google Patents

考虑负荷重要等级的多微网被动并离网平滑切换方法 Download PDF

Info

Publication number
CN111884258A
CN111884258A CN202010762835.6A CN202010762835A CN111884258A CN 111884258 A CN111884258 A CN 111884258A CN 202010762835 A CN202010762835 A CN 202010762835A CN 111884258 A CN111884258 A CN 111884258A
Authority
CN
China
Prior art keywords
load
grid
microgrid
importance
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010762835.6A
Other languages
English (en)
Other versions
CN111884258B (zh
Inventor
王灿
张高瑞
应宇辰
梅世颐
杨楠
刘颂凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN202010762835.6A priority Critical patent/CN111884258B/zh
Publication of CN111884258A publication Critical patent/CN111884258A/zh
Application granted granted Critical
Publication of CN111884258B publication Critical patent/CN111884258B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/248UPS systems or standby or emergency generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

考虑负荷重要等级的多微网被动并离网平滑切换方法,多微网被动并离网时自动调节;建立多微网被动并离网时紧急控制模型;基于层次分析法,计算每一个负荷的协调减载因子;基于负荷的协调减载因子,确定减载地点。本发明一种考虑负荷重要等级的多微网被动并离网平滑切换方法,该方法利用微电网电源层面和系统层面两个阶段的控制,并对负荷进行重要程度评估。该方法能够保证多微网被动并离网期间对敏感负荷的不间断供电,从而实现多微网并网模式和孤岛模式之间的无缝切换。

Description

考虑负荷重要等级的多微网被动并离网平滑切换方法
技术领域
本发明属于微电网控制技术领域,具体涉及一种考虑负荷重要等级的多微网被动并离网平滑切换方法。
背景技术
可再生能源的广泛使用有助于减少碳排放量,缓解环境污染问题。微电网作为一种整合式分布式发电的新型供电技术,能有效促进分布式可再生能源的就地消纳,减小大规模接入可再生能源对大电网的冲击。随着微电网大量增多,一定区域内多个临近微电网因互相关联形成多微网系统。当配电网发生故障导致多微网非计划性并离网切换发生时,多微网内部可能出现功率缺额的情况。如何解决多微网被动并离网时联络线功率缺额问题,以实现多微网并离网无缝切换时对敏感负荷的不间断供电,是多微网被动并离网平滑切换需要解决的关键问题。
现有技术文献中:
Distributedhierarchical control of ac microgrid operating in grid-connected,islandedand their transition modes(X.Hou,Y.Sun,J.Lu,X.Zhang,L.H.Koh,and M.Su.Distributedhierarchical control of ac microgrid operating ingrid-connected,islandedand their transition modes[J].IEEE Access.vol.6,pp.77388-77401,Nov.2018.)提出了一种适用于交流微电网的分布式分级控制方法,结合了初级下垂控制、二级分散控制和三级模式监控的优点,可实现多种运行模式下的无缝切换。
Control of transient powerduring unintentional islanding ofmicrogrids(W.R.Issa,M.A.Abusara,and S.M.Sharkh.Control of transientpowerduring unintentional islanding of microgrids[J].IEEETrans.PowerElectron,vol.30,no.8,pp.4573–4584,Aug.2015.)提出一种改进控制器用于抑制非计划性孤岛发生时并联逆变器的暂态循环功率扰动,实现两种模式的平滑切换。
Survivability of synchronous generator-based distributedenergyresources for transient overload conditions in a microgrid(J.Choi,A.Khalsa,D.A.Klapp,M.S.Illindala,and K.Subramaniam.Survivability ofsynchronous generator-based distributed energyresources for transientoverload conditions in a microgrid[J].IEEE Trans.Ind.Appl,vol.54,no.6,pp.5717–5726,Nov/Dec.2018.)对微电网并离网切换期间分布式电源在暂态过载紧急情况下的耐受性(生存能力)进行分析,设计了一种微电网减载方案,该方案能够提高微电网生存能力。
但以上文献研究,均未考虑在多微网并离网切换过程中对负荷的重要等级进行分类问题,在紧急情况下,如重大功率缺额无法保证重要用户的不间断供电需要。
发明内容
针对上述技术中的不足,本发明提供一种考虑负荷重要等级的多微网被动并离网平滑切换方法,该方法利用微电网电源层面和系统层面两个阶段的控制,并对负荷进行重要程度评估。该方法能够保证多微网被动并离网期间对敏感负荷的不间断供电,从而实现多微网并网模式和孤岛模式之间的无缝切换。
本发明采取的技术方案为:
考虑负荷重要等级的多微网被动并离网平滑切换方法,包括以下步骤:
步骤一、多微网被动并离网时自动调节;
步骤二、建立多微网被动并离网时紧急控制模型;
步骤三、基于层次分析法,计算每一个负荷的协调减载因子;
步骤四、基于负荷的协调减载因子,确定减载地点。
本发明一种考虑负荷重要等级的多微网被动并离网平滑切换方法,针对多微网非计划并离网切换过程中出现功率缺额问题,提出一种基于协调减载因子的负荷重要性评估模型,该模型在多微网发生非计划并离网出现功率缺额的情况时,可以对负荷重要程度进行评估,从而确定各负荷的减载优先级。
本发明提出的方法在多微网发生被动并离网时能够使系统的功率供求关系瞬间恢复平衡,并保证重要负荷的供电可靠性,从而实现多微网的平滑切换。
附图说明
图1是多微网发生被动并离网切换时的控制策略框图。
图2是基于层次分析法的减载优先级评估模型。
图3是多微网被动并离网切换期间频率变化曲线图。
具体实施方式
考虑负荷重要等级的多微网被动并离网平滑切换方法,包括以下步骤:
步骤一、多微网被动并离网时自动调节;
当配电网突发故障时,多微网与配电网之间的公共端口处静态转换开关发生非计划性断开,多微网中心控制器进行孤岛检测后,多微网被动地进入孤岛运行模式,多微网中心控制器向各个子微网中主储能控制器发出控制模式的切换信号,主储能迅速完成从PQ控制到V/f控制的平滑切换,此时多微网内的主电源将调整出力,以快速弥补联络线功率缺额。步骤二、建立多微网被动并离网时紧急控制模型;
紧急控制模型目标函数为:
Figure BDA0002613556230000031
其中:D为多微网中分布式电源个数;L为多微网中负荷个数;pm为第m个分布式电源输出的有功功率;dn为第n个负荷所需要的功率。
目标函数的约束条件如下:
Figure BDA0002613556230000032
Figure BDA0002613556230000033
Figure BDA0002613556230000034
Figure BDA0002613556230000035
fmin≤f≤fmax
Figure BDA0002613556230000036
其中,pi为第i个分布式电源输出的有功功率;qi为第i个分布式电源的无功功率;
Figure BDA0002613556230000037
为第i个负荷所需有功功率;
Figure BDA0002613556230000038
为第i个负荷所需无功功率;Gij、Bij分别为i,j两节点间的电导和电纳;δij为i,j两节点间的相角;
Figure BDA0002613556230000039
分别为第n个分布式电源有功功率的最小值和最大值;
Figure BDA00026135562300000310
分别为第n个负荷所需功率的最小值和最大值;Vi为节点i的电压;Vj为节点j的电压;Vi min、Vi max分别节点i的电压下限值和上限值;f为多微网的频率;fmin、fmax为多微网频率的下限值和上限值;Iij为i,j两节点间电流值;
Figure BDA00026135562300000311
分为i,j两节点间电流最大值。
步骤三、基于层次分析法,计算每一个负荷的协调减载因子,包括以下步骤:
步骤3.1、建立多微网的递阶层次结构模型:
以减载优先级作为目标层,以负荷等级、单位电能停电损失、负荷点的负载率和负荷点的三相不平衡度这四个因素作为准则层,设置参与减载的所有负荷点为对应的方案层;
步骤3.2、构造各层次判断矩阵:
判断矩阵表示本层所有因素针对上层某一个因素的相对重要性比较,确定步骤3.1中四个因素在目标中所占的比重,每个因素要包括自身在内的所有因素,两两比较四次,形成4×4的判断矩阵H=(hxy)4×4,x,y=1,2,3,4;
其中:hxy为xy两因素相比较根据两者重要性给出1-9数值,式中需要满足hxy>0,hxy=1/hyx(x≠y)。
步骤3.3、层次单排序及一致性检验:
求解判断矩阵H的最大特征值及特征向量,采用一致性指标ZI和平均一致性指标RI检验判断矩阵的一致性。
其中,
Figure BDA0002613556230000041
λ为判断矩阵的最大特征值,ZI1,ZI2,…,ZI500为随机构造的500个成对比较矩阵。λ1,λ2,…,λ500分别为500个成对比较矩阵的最大特征值。若(ZI/RI)≤0.1时,则认为判断矩阵是可以接受被接受的。反之则需要重新构造成对比较矩阵,直至满足(ZI/RI)≤0.1。
步骤3.4、层次总排序及一致性检验:
利用步骤3.3中所有因素的层次单排序结果,依次沿递阶层次结构由下而上逐层计算出方案层相对于目标层的综合重要性,有如下公式:
Figure BDA0002613556230000048
式中:
Figure BDA0002613556230000042
表示第x方案对目标层的重要性,
Figure BDA0002613556230000043
表示准则层第y个准则对目标层的重要性,
Figure BDA0002613556230000044
表示第x个方案相对于第y个准则的方案重要性。
步骤3.5、计算协调减载因子:
利用方案层对目标层的综合重要性,可以计算出对应方案的协调减载因子:
Figure BDA0002613556230000045
式中:
Figure BDA0002613556230000046
为第x个负荷点的协调因子,
Figure BDA0002613556230000047
表示第x方案对目标层的重要性。减载因子较大的负荷具有较高的减载优先级。
步骤四、基于负荷的协调减载因子,确定减载地点。
当多微网被动并离网切换过程中出现功率缺额时,需要基于减载优先级对非重要负荷进行切除。该负荷切除问题可以等效为一个0-1背包问题:负荷作为确定的实物,符合单个物体不可分割的要求,视为离散变量;负荷的功率容量和减载因子两个指标可分别对应于背包模型中物体和物品价值,该优化模型如下所示:
Figure BDA0002613556230000051
约束条件:
Figure BDA0002613556230000052
其中,Yn为第n个负荷点的协调减载因子;Xn为负荷编号;dn为第n个负荷所需功率;p为多微网被动并离网后分布式电源提供的最大功率。在对负荷点的进行一对一编号后,通过计算可得出一个只含有0和1变量的n维向量,负荷点编号为1的代表该点进行减载操作。
图1为多微网发生被动并离网时策略控制框图。无缝切换策略具体实现步骤如下:(1)当配电网突发故障时,多微网与配电网之间的公共端口处静态转换开关发生非计划性断开。多微网中心控制器进行孤岛检测后多微网被动地进入孤岛运行模式。(2)多微网中心控制器向各个子微网中主储能控制器发出控制模式的切换信号,中心控制器将被动切换发生前的配电网的电压值和频率作为V/f控制的参考值,同时保存切换前配电网电压的相位作为切换V/f控制的参考值,从而迅速完成从PQ控制到V/f控制的平滑切换。(3)由于多微网内功率缺额不能完全由分布式电源提供,此时通过引入协调减载因子评估负荷的重要性程度,并基于0-1背包模型优化减载地点。经过上述两阶段控制后,将系统的功率供需关系在短时间内恢复到接近平衡的状态,实现无缝切换。
图2是基于层次分析法的减载优先级评估模型。该减载模型一共分为三层,分别为目标层、准则层和方案层。以负荷减载优先级作为减载优先级评估模型目标层,以负荷等级、停电损失、负载率、三相不平衡度作为减载优先级评估模型的准则层,Wy表示准则层第y个准则对目标层的重要性。以多微网内部参与减载的所有负荷点作为减载优先级评估模型的方案层。Wxy表示第x个方案相对于第y个准则的方案重要性。
图3是多微网被动并离网切换期间频率变化曲线图。从图3中可以看出,在t=1s之前,多微网系统与配电网相连,多微网系统频率稳定维持在50HZ。t=1s时,配电网发生故障,多微网被动并离网切换开始。多微网与配电网断开连接,由于多微网内分布式电源功率不能满足负荷的需求,导致多微网内部存在功率缺额,多微网系统频率迅速下降。基于隐枚举法的切换方法在多微网并离网切换期间没有考虑负荷的重要性,切除了大功率负荷从而导致频率和电压产生较大的波动。相比于隐枚举法,本发明所提方法考虑到负荷的等级分类问题,其频率曲线波动较小,恢复时间较快。

Claims (6)

1.考虑负荷重要等级的多微网被动并离网平滑切换方法,其特征在于包括以下步骤:
步骤一、多微网被动并离网时自动调节;
步骤二、建立多微网被动并离网时紧急控制模型;
步骤三、基于层次分析法,计算每一个负荷的协调减载因子;
步骤四、基于负荷的协调减载因子,确定减载地点。
2.根据权利要求1所述考虑负荷重要等级的多微网被动并离网平滑切换方法,其特征在于:所述步骤一包括:
当配电网突发故障时,多微网与配电网之间的公共端口处静态转换开关发生非计划性断开,多微网中心控制器进行孤岛检测后,多微网被动地进入孤岛运行模式,多微网中心控制器向各个子微网中主储能控制器发出控制模式的切换信号,主储能迅速完成从PQ控制到V/f控制的平滑切换,此时多微网内的主电源将调整出力,以快速弥补联络线功率缺额。
3.根据权利要求1所述考虑负荷重要等级的多微网被动并离网平滑切换方法,其特征在于:所述步骤二中,
紧急控制模型目标函数为:
Figure FDA0002613556220000011
其中:D为多微网中分布式电源个数;L为多微网中负荷个数;pm为第m个分布式电源输出的有功功率;dn为第n个负荷所需要的功率;
目标函数的约束条件如下:
Figure FDA0002613556220000012
Figure FDA0002613556220000013
Figure FDA0002613556220000014
Figure FDA0002613556220000015
fmin≤f≤fmax
Figure FDA0002613556220000021
其中,pi为第i个分布式电源输出的有功功率;qi为第i个分布式电源的无功功率;
Figure FDA0002613556220000022
为第i个负荷所需有功功率;
Figure FDA0002613556220000023
为第i个负荷所需无功功率;Gij、Bij分别为i,j两节点间的电导和电纳;δij为i,j两节点间的相角;
Figure FDA0002613556220000024
分别为第n个分布式电源有功功率的最小值和最大值;
Figure FDA0002613556220000025
分别为第n个负荷所需功率的最小值和最大值;Vi为节点i的电压;Vj为节点j的电压;Vi min、Vi max分别节点i的电压下限值和上限值;f为多微网的频率;fmin、fmax为多微网频率的下限值和上限值;Iij为i,j两节点间电流值;
Figure FDA0002613556220000026
分为i,j两节点间电流最大值。
4.根据权利要求1所述考虑负荷重要等级的多微网被动并离网平滑切换方法,其特征在于:所述步骤三包括以下步骤:
步骤3.1、建立多微网的递阶层次结构模型:
以减载优先级作为目标层,以负荷等级、单位电能停电损失、负荷点的负载率和负荷点的三相不平衡度这四个因素作为准则层,设置参与减载的所有负荷点为对应的方案层;
步骤3.2、构造各层次判断矩阵:
判断矩阵表示本层所有因素针对上层某一个因素的相对重要性比较,确定步骤3.1中四个因素在目标中所占的比重,每个因素要包括自身在内的所有因素,两两比较四次,形成4×4的判断矩阵H=(hxy)4×4,x,y=1,2,3,4;
其中:hxy为xy两因素相比较根据两者重要性给出1-9数值,式中需要满足hxy>0,hxy=1/hyx(x≠y);
步骤3.3、层次单排序及一致性检验:
求解判断矩阵H的最大特征值及特征向量,采用一致性指标ZI和平均一致性指标RI检验判断矩阵的一致性;
其中,
Figure FDA0002613556220000027
λ为判断矩阵的最大特征值,ZI1,ZI2,…,ZI500为随机构造的500个成对比较矩阵;λ1,λ2,…,λ500分别为500个成对比较矩阵的最大特征值;若(ZI/RI)≤0.1时,则认为判断矩阵是可以接受被接受的;反之则需要重新构造成对比较矩阵,直至满足(ZI/RI)≤0.1;
步骤3.4、层次总排序及一致性检验:
利用步骤3.3中所有因素的层次单排序结果,依次沿递阶层次结构由下而上逐层计算出方案层相对于目标层的综合重要性,有如下公式:
Figure FDA0002613556220000031
式中:
Figure FDA0002613556220000032
表示第x方案对目标层的重要性,
Figure FDA0002613556220000033
表示准则层第y个准则对目标层的重要性,
Figure FDA0002613556220000034
表示第x个方案相对于第y个准则的方案重要性;
步骤3.5、计算协调减载因子:
利用方案层对目标层的综合重要性,可以计算出对应方案的协调减载因子:
Figure FDA0002613556220000035
式中:Y=[Y1,…Yx,…,Yn],
Figure FDA0002613556220000036
为第x个负荷点的协调因子,
Figure FDA0002613556220000037
表示第x方案对目标层的重要性;减载因子较大的负荷具有较高的减载优先级。
5.根据权利要求1所述考虑负荷重要等级的多微网被动并离网平滑切换方法,其特征在于:所述步骤四包括:
当多微网被动并离网切换过程中出现功率缺额时,需要基于减载优先级对非重要负荷进行切除;该负荷切除问题可以等效为一个0-1背包问题:负荷作为确定的实物,符合单个物体不可分割的要求,视为离散变量;负荷的功率容量和减载因子两个指标可分别对应于背包模型中物体和物品价值,该优化模型如下所示:
Figure FDA0002613556220000038
约束条件:
Figure FDA0002613556220000039
Xn∈{0,1}
其中,Yn为第n个负荷点的协调减载因子;Xn为负荷编号;dn为第n个负荷所需功率;p为多微网被动并离网后分布式电源提供的最大功率;在对负荷点的进行一对一编号后,通过计算可得出一个只含有0和1变量的n维向量,负荷点编号为1的代表该点进行减载操作。
6.基于层次分析法的减载优先级评估模型,其特征在于:该模型一共分为三层,分别为目标层、准则层和方案层,以负荷减载优先级作为减载优先级评估模型目标层,以负荷等级、停电损失、负载率、三相不平衡度作为减载优先级评估模型的准则层,Wy表示准则层第y个准则对目标层的重要性,以多微网内部参与减载的所有负荷点作为减载优先级评估模型的方案层,Wxy表示第x个方案相对于第y个准则的方案重要性。
CN202010762835.6A 2020-07-31 2020-07-31 考虑负荷重要等级的多微网被动并离网平滑切换方法 Active CN111884258B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010762835.6A CN111884258B (zh) 2020-07-31 2020-07-31 考虑负荷重要等级的多微网被动并离网平滑切换方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010762835.6A CN111884258B (zh) 2020-07-31 2020-07-31 考虑负荷重要等级的多微网被动并离网平滑切换方法

Publications (2)

Publication Number Publication Date
CN111884258A true CN111884258A (zh) 2020-11-03
CN111884258B CN111884258B (zh) 2023-08-01

Family

ID=73204464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010762835.6A Active CN111884258B (zh) 2020-07-31 2020-07-31 考虑负荷重要等级的多微网被动并离网平滑切换方法

Country Status (1)

Country Link
CN (1) CN111884258B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113890048A (zh) * 2021-10-22 2022-01-04 三峡大学 基于竞争深度q学习的微电网紧急减载方法
CN113991684A (zh) * 2021-10-26 2022-01-28 广东电网有限责任公司 一种多微网负荷恢复方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140252855A1 (en) * 2011-06-17 2014-09-11 Hitachi, Ltd. Microgrid control system
CN108155663A (zh) * 2016-12-06 2018-06-12 Abb股份公司 控制配电微电网的方法
CN109449947A (zh) * 2018-11-02 2019-03-08 华南理工大学 孤岛微电网无功电压控制能力评估方法及其优化方法
CN109494746A (zh) * 2018-11-08 2019-03-19 国网甘肃省电力公司电力科学研究院 基于改进自适应下垂控制的孤岛交直流混联微电网潮流计算方法
CN111047461A (zh) * 2019-11-18 2020-04-21 中国能源建设集团广东省电力设计研究院有限公司 一种直流多微网的黑启动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140252855A1 (en) * 2011-06-17 2014-09-11 Hitachi, Ltd. Microgrid control system
CN108155663A (zh) * 2016-12-06 2018-06-12 Abb股份公司 控制配电微电网的方法
CN109449947A (zh) * 2018-11-02 2019-03-08 华南理工大学 孤岛微电网无功电压控制能力评估方法及其优化方法
CN109494746A (zh) * 2018-11-08 2019-03-19 国网甘肃省电力公司电力科学研究院 基于改进自适应下垂控制的孤岛交直流混联微电网潮流计算方法
CN111047461A (zh) * 2019-11-18 2020-04-21 中国能源建设集团广东省电力设计研究院有限公司 一种直流多微网的黑启动方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
和敬涵;柏丹丹;王小君;叶豪东;: "低频减载综合代价最优化算法", 电网技术, no. 12, pages 3461 - 3466 *
杨苹;许志荣;郑群儒;李鹏;郭晓斌;雷金勇;: "微电网平滑切换中变流器的控制策略仿真研究", 可再生能源, no. 11, pages 1625 - 1631 *
王旭东;林济铿;: "基于分支定界的含分布式发电配网孤岛划分", 中国电机工程学报, no. 07, pages 16 - 20 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113890048A (zh) * 2021-10-22 2022-01-04 三峡大学 基于竞争深度q学习的微电网紧急减载方法
CN113890048B (zh) * 2021-10-22 2023-08-04 三峡大学 基于竞争深度q学习的微电网紧急减载方法
CN113991684A (zh) * 2021-10-26 2022-01-28 广东电网有限责任公司 一种多微网负荷恢复方法及装置

Also Published As

Publication number Publication date
CN111884258B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
Xu et al. Cooperative control of distributed energy storage systems in a microgrid
CN107862405B (zh) 计及微网作为黑启动电源的电力系统网架重构优化方法
Liu et al. Decentralized multi-agent system-based cooperative frequency control for autonomous microgrids with communication constraints
Shi et al. Distributed optimal control of energy storages in a DC microgrid with communication delay
Li et al. Networked and distributed control method with optimal power dispatch for islanded microgrids
Zhang et al. Islanding and scheduling of power distribution systems with distributed generation
Xia et al. Distributed control method for economic dispatch in islanded microgrids with renewable energy sources
Dou et al. Transient control for micro-grid with multiple distributed generations based on hybrid system theory
Zhao et al. Distributed cooperative secondary control for islanded microgrid with Markov time-varying delays
CN104779607B (zh) 直流微网中的一种分布式协调控制方法及系统
Wang et al. Underfrequency load shedding scheme for islanded microgrids considering objective and subjective weight of loads
CN111884258A (zh) 考虑负荷重要等级的多微网被动并离网平滑切换方法
Dou et al. Hierarchical management and control based on MAS for distribution grid via intelligent mode switching
CN106655253A (zh) 单三相多微网区域动态划分方法
Xie et al. Adaptive master-slave control strategy for medium voltage DC distribution systems based on a novel nonlinear droop controller
Batool et al. Multi-level supervisory emergency control for operation of remote area microgrid clusters
CN113541197A (zh) 低压台区柔直互联无储能系统的能量控制方法及系统
Kuo Application of the artificial bee colony algorithm to scheduling strategies for energy-storage systems of a microgrid with self-healing functions
Amir ANN based approach for the estimation and enhancement of power transfer capability
Padhi et al. Dc microgrids: architecture and challenges
Mosayebi et al. Stabilization of DC nanogrids based on non-integer general type-II fuzzy system
CN110909980A (zh) 一种基于ahp-topsis的直流配电网故障恢复方案的评价方法
Liu et al. Optimization of decentralized control strategies of distributed resources under cyber failures in flexible distribution network
CN110137974B (zh) 一种分布式光伏集群电压控制方法及系统
Keivanimehr et al. Load shedding frequency management of microgrids using hierarchical fuzzy control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant