CN111882595A - Human body semantic feature extraction method and system - Google Patents

Human body semantic feature extraction method and system Download PDF

Info

Publication number
CN111882595A
CN111882595A CN202010736075.1A CN202010736075A CN111882595A CN 111882595 A CN111882595 A CN 111882595A CN 202010736075 A CN202010736075 A CN 202010736075A CN 111882595 A CN111882595 A CN 111882595A
Authority
CN
China
Prior art keywords
human body
model
database
semantic feature
human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010736075.1A
Other languages
Chinese (zh)
Other versions
CN111882595B (en
Inventor
童晶
李灵杰
陈正鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN202010736075.1A priority Critical patent/CN111882595B/en
Publication of CN111882595A publication Critical patent/CN111882595A/en
Application granted granted Critical
Publication of CN111882595B publication Critical patent/CN111882595B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • G06T7/344Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/02Affine transformations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • G06V10/267Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • G06V10/751Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • G06V20/653Three-dimensional objects by matching three-dimensional models, e.g. conformal mapping of Riemann surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Processing Or Creating Images (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了人体测量技术领域的一种人体语义特征提取方法及系统,能准确获取人体语义特征,匹配精度高。包括:采集三维人体特征数据,获取三维人体模型;对三维人体模型进行预处理,调整三维人体模型的朝向、中心坐标并让三维人体模型处于世界坐标系的坐标原点;对三维人体模型进行形状分割并抽取三维人体模型的骨骼特征,基于骨骼相似性的模板选择算法,依据三维人体模型的骨骼特征从构建的三维人体语义特征数据库中选取模板模型与三维人体模型进行配准,获取参数化的人体模型;使用NURBS曲线拟合参数化的人体模型上的特征采样点,计算拟合后的特征曲线长度,得到三维人体模型的人体语义特征。

Figure 202010736075

The invention discloses a human body semantic feature extraction method and system in the technical field of human body measurement, which can accurately obtain human body semantic features and has high matching accuracy. Including: collecting 3D human body feature data to obtain a 3D human body model; preprocessing the 3D human body model, adjusting the orientation and center coordinates of the 3D human body model and placing the 3D human body model at the coordinate origin of the world coordinate system; performing shape segmentation on the 3D human body model And extract the skeleton features of the 3D human body model, based on the skeleton similarity template selection algorithm, select the template model and the 3D human body model from the constructed 3D human body semantic feature database according to the skeleton features of the 3D human body model for registration, and obtain the parameterized human body model. Model; use the NURBS curve to fit the feature sampling points on the parameterized human body model, calculate the length of the fitted feature curve, and obtain the human body semantic features of the three-dimensional human body model.

Figure 202010736075

Description

一种人体语义特征提取方法及系统A method and system for extracting human semantic features

技术领域technical field

本发明属于人体测量技术领域,具体涉及一种人体语义特征提取方法及系统。The invention belongs to the technical field of human body measurement, and in particular relates to a method and system for extracting human semantic features.

背景技术Background technique

随着社会经济不断发展、人民生活水平不断提高,越来越多的人追求个性化的生活方式,对定制产品的需求越来越多。线上购物、虚拟试穿、服装定制、健身行业、人体工学设计等行业也希望能够提升产品科技含量、提升服务附加值。其中极为重要的一个提升方向是量化人体尺寸和体型。例如,在线虚拟试穿需产生一个与真人体型一模一样的三维模型,服装定制需要获取顾客多个维度的体型数据。With the continuous development of the social economy and the continuous improvement of people's living standards, more and more people are pursuing a personalized lifestyle, and there is an increasing demand for customized products. Online shopping, virtual try-on, clothing customization, fitness industry, ergonomic design and other industries also hope to improve the technological content of products and increase the added value of services. One of the most important directions for improvement is to quantify human size and body shape. For example, online virtual try-on needs to generate a three-dimensional model that is exactly the same as the real body, and clothing customization needs to obtain the body shape data of customers in multiple dimensions.

现有的获取人体语义特征的方法可分为接触式方法和非接触式方法,传统手工测量方法为最常见的接触式方法。随着三维扫描技术的发展,非接触式方法将成为未来主流的寓意特征提取方法,但现有技术中对人体语义特征的提取匹配度较差,匹配效果不理想。The existing methods for obtaining human semantic features can be divided into contact methods and non-contact methods, and the traditional manual measurement method is the most common contact method. With the development of 3D scanning technology, the non-contact method will become the mainstream semantic feature extraction method in the future, but the extraction matching degree of human semantic features in the existing technology is poor, and the matching effect is not ideal.

发明内容SUMMARY OF THE INVENTION

为解决现有技术中的不足,本发明提供一种人体语义特征提取方法及系统,能准确获取人体语义特征,匹配精度高。In order to solve the deficiencies in the prior art, the present invention provides a method and system for extracting human body semantic features, which can accurately obtain human body semantic features and have high matching accuracy.

为达到上述目的,本发明所采用的技术方案是:一种人体语义特征提取方法,包括:采集三维人体特征数据,获取三维人体模型;对三维人体模型进行预处理,调整三维人体模型的朝向、中心坐标并让三维人体模型处于世界坐标系的坐标原点;对三维人体模型进行形状分割并抽取三维人体模型的骨骼特征,基于骨骼相似性的模板选择算法,依据三维人体模型的骨骼特征从构建的三维人体语义特征数据库中选取模板模型与三维人体模型进行配准,获取参数化的人体模型;使用NURBS曲线拟合参数化的人体模型上的特征采样点,计算拟合后的特征曲线长度,得到三维人体模型的人体语义特征。In order to achieve the above purpose, the technical scheme adopted in the present invention is: a method for extracting human body semantic features, comprising: collecting three-dimensional human body feature data to obtain a three-dimensional human body model; preprocessing the three-dimensional human body model, adjusting the orientation of the three-dimensional human body model, The center coordinate and let the 3D human model be at the coordinate origin of the world coordinate system; the shape segmentation of the 3D human model is performed and the skeleton features of the 3D human model are extracted. The template model is selected from the 3D human body semantic feature database for registration with the 3D human body model to obtain a parameterized human body model; the NURBS curve is used to fit the feature sampling points on the parameterized human body model, and the length of the fitted characteristic curve is calculated to obtain Human Semantic Features of 3D Human Models.

进一步地,所述配准包括刚体配准和非刚体配准;Further, the registration includes rigid body registration and non-rigid body registration;

所述刚体配准包括:The rigid body registration includes:

构建三维人体模型D的有向包围盒DB和模板模型

Figure BDA0002605104320000021
的有向包围盒
Figure BDA0002605104320000022
计算从三维人体模型D的有向包围盒DB到模板模型
Figure BDA0002605104320000023
的有向包围盒
Figure BDA0002605104320000024
的仿射变换T;对三维人体模型D施加仿射变换T得到第一中间模型D′:Construct the directed bounding box D B of the 3D human body model D and the template model
Figure BDA0002605104320000021
directed bounding box of
Figure BDA0002605104320000022
Compute the directed bounding box D B from the 3D human model D to the template model
Figure BDA0002605104320000023
directed bounding box of
Figure BDA0002605104320000024
The affine transformation T of ; apply the affine transformation T to the three-dimensional human body model D to obtain the first intermediate model D′:

Figure BDA0002605104320000025
Figure BDA0002605104320000025

D′=TD (13)D′=TD (13)

采用迭代最近点算法计算出第一中间模型D′到模板模型T的最优刚体变换参数R、t,进而获取第二中间模型D″:The iterative closest point algorithm is used to calculate the optimal rigid body transformation parameters R and t from the first intermediate model D′ to the template model T, and then obtain the second intermediate model D″:

D″=RD′+t (14)D″=RD′+t (14)

其中,R为线性变换参数,t为平移变换参数;Among them, R is the linear transformation parameter, and t is the translation transformation parameter;

所述非刚体配准包括:The non-rigid body registration includes:

采用Laplacian网格变形算法将模板模型

Figure BDA0002605104320000026
向第二中间模型
Figure BDA0002605104320000027
变形,得到初步配准模型
Figure BDA0002605104320000028
Using the Laplacian mesh deformation algorithm to transform the template model
Figure BDA0002605104320000026
to the second intermediate model
Figure BDA0002605104320000027
Deformed to get a preliminary registration model
Figure BDA0002605104320000028

在初步配准模型

Figure BDA0002605104320000029
和第二中间模型D″上建立数据误差函数Ed和光滑度误差函数Es,并最小化其误差之和,获得参数化的人体模型
Figure BDA00026051043200000210
in the preliminary registration model
Figure BDA0002605104320000029
Establish data error function Ed and smoothness error function Es on the second intermediate model D ″, and minimize the sum of their errors to obtain a parameterized human body model
Figure BDA00026051043200000210

进一步地,所述数据误差函数Ed和光滑度误差函数Es通过以下公式获得:Further, the data error function Ed and smoothness error function Es are obtained by the following formulas:

Figure BDA00026051043200000211
Figure BDA00026051043200000211

Figure BDA0002605104320000031
Figure BDA0002605104320000031

其中,n表示初步配准模型

Figure BDA0002605104320000034
的顶点个数,v′i为第i个顶点的坐标,距离函数dist2()为变形后网格与目标网格中最近相容点的距离,Ti为第i个顶点对应的3×3变换矩阵;将法相量角度小于90°,欧式距离小于10cm的两个点,定义为相容点,其中距离最近的一个称为最近相容点,Tj为第j个顶点对应的3×3变换矩阵,
Figure BDA00026051043200000314
为模型
Figure BDA0002605104320000035
上的边,|| ||F表示弗罗贝尼乌斯范数。where n represents the preliminary registration model
Figure BDA0002605104320000034
The number of vertices of , v′ i is the coordinate of the ith vertex, the distance function dist 2 () is the distance between the deformed mesh and the nearest compatible point in the target mesh, T i is the 3× corresponding to the ith vertex 3 Transformation matrix; two points whose normal phasor angle is less than 90° and whose Euclidean distance is less than 10cm are defined as compatible points, and the one with the closest distance is called the closest compatible point, and T j is the 3× 3 transformation matrices,
Figure BDA00026051043200000314
for the model
Figure BDA0002605104320000035
On the edge, || || F denotes the Frobenius norm.

进一步地,所述骨骼相似性的模板选择算法,具体为:Further, the template selection algorithm of the skeleton similarity is specifically:

Figure BDA0002605104320000032
Figure BDA0002605104320000032

其中,SE为骨骼相似性参数,

Figure BDA0002605104320000036
为三维人体模型D上的p骨节点的坐标,
Figure BDA0002605104320000037
为三维人体模型D上的q骨节点的坐标,
Figure BDA0002605104320000039
为模板模型
Figure BDA00026051043200000312
上的p骨节点的坐标,
Figure BDA0002605104320000038
为模板模型
Figure BDA00026051043200000313
上的q骨节点的坐标,
Figure BDA00026051043200000310
为向量夹角符号,
Figure BDA00026051043200000311
为权重因素,m=1,2,3,4,L1、L2、L3、L4为四个权重级别,人体主干中的骨节点权重级别为L1,上臂、大腿、头部的权重级别为L2,下臂、小腿的权重级别为L3,手部、脚部的权重级别为L4,且
Figure BDA0002605104320000033
Among them, SE is the bone similarity parameter,
Figure BDA0002605104320000036
is the coordinate of the p-bone node on the three-dimensional human model D,
Figure BDA0002605104320000037
is the coordinate of the q-bone node on the three-dimensional human model D,
Figure BDA0002605104320000039
template model
Figure BDA00026051043200000312
The coordinates of the p-bones node on,
Figure BDA0002605104320000038
template model
Figure BDA00026051043200000313
the coordinates of the q-bone node on,
Figure BDA00026051043200000310
is the vector angle symbol,
Figure BDA00026051043200000311
is the weight factor, m=1, 2, 3, 4, L 1 , L 2 , L 3 , and L 4 are four weight levels, the bone node weight level in the main body of the human body is L 1 , the upper arm, thigh, head The weight level is L 2 , the weight level of the lower arm and the calf is L 3 , the weight level of the hands and feet is L 4 , and
Figure BDA0002605104320000033

进一步地,所述三维人体语义特征数据库的构建方法为:选取开源三维人体数据库中的人体姿态模型,并进行表面细分,设定人体姿态模型的面片数量和顶点数量,获得初始三维人体数据库;对初始三维人体数据库中的人体姿态模型进行分割,形成三维人体分割数据库;从三维人体分割数据库中的分割模型中抽取三维人体骨骼形成三维人体骨骼数据库;对三维人体骨骼数据库中的人体骨骼进行半自动化标注语义特征采样点,形成三维人体语义特征数据库。Further, the construction method of the three-dimensional human body semantic feature database is: selecting the human body posture model in the open source three-dimensional human body database, and performing surface subdivision, setting the number of faces and vertices of the human body posture model, and obtaining the initial three-dimensional human body database. ; segment the human body pose model in the initial 3D human body database to form a 3D human body segmentation database; extract 3D human bones from the segmentation model in the 3D human body segmentation database to form a 3D human skeleton database; analyze the human bones in the 3D human skeleton database Semi-automatic labeling of semantic feature sampling points to form a 3D human body semantic feature database.

进一步地,所述三维人体语义特征数据库将所述人体语义特征提取过程中产生的三维人体模型的形状分割结果纳入三维人体分割数据库,三维人体模型的骨骼特征纳入三维人体骨骼数据库,包含人体语义特征的三维人体模型纳入三维人体语义特征数据库。Further, the 3D human body semantic feature database incorporates the shape segmentation result of the 3D human body model generated in the process of extracting the human body semantic feature into the 3D human body segmentation database, and the skeleton features of the 3D human body model are included in the 3D human skeleton database, including the human body semantic features. The 3D human body model is incorporated into the 3D human body semantic feature database.

进一步地,所述对初始三维人体数据库中的人体姿态模型进行分割,具体为:Further, the segmentation of the human body posture model in the initial three-dimensional human body database is specifically:

对顶点数据进行超体素聚类,结果为对顶点数据的过分割,包括:Perform supervoxel clustering on vertex data, and the result is an over-segmentation of vertex data, including:

1)对模型空间进行栅格划分,点云数据形成点团,称为体素,对体素建立空间索引,并采用八叉树算法组织这些体素;1) The model space is divided into grids, and the point cloud data forms point clusters, which are called voxels. A spatial index is established for the voxels, and the octree algorithm is used to organize these voxels;

2)选择多个体素作为种子体素;2) Select multiple voxels as seed voxels;

3)计算体素间的相似性,种子体素递归融合邻接体素,形成超体素;3) Calculate the similarity between voxels, and recursively fuse adjacent voxels with seed voxels to form supervoxels;

根据预设判断准则判断相邻超体素之间的凹凸性关系;Judging the concave-convex relationship between adjacent supervoxels according to the preset judgment criteria;

采用随机采样一致算法在凹边上拟合切割平面,将人体姿态模型分割。The random sampling consensus algorithm is used to fit the cutting plane on the concave edge, and the human body pose model is segmented.

进一步地,计算体素间的相似性,具体为:Further, the similarity between voxels is calculated, specifically:

Figure BDA0002605104320000041
Figure BDA0002605104320000041

其中,ωc为颜色差异的权重因子,ωs为距离差异的权重因子,ωn为法线差异的权重因子,Dc(i,j)为CIELab颜色差异,Ds(i,j)为坐标距离差异,Dn(i,j)为法线差异,

Figure BDA0002605104320000042
为体素直径。Among them, ω c is the weight factor of color difference, ω s is the weight factor of distance difference, ω n is the weight factor of normal difference, D c (i, j) is the CIELab color difference, D s (i, j) is Coordinate distance difference, D n (i, j) is the normal difference,
Figure BDA0002605104320000042
is the voxel diameter.

进一步地,所述判断准则由相邻超体素质心的连线与质心上的法线方向及相邻超体素的共同邻接超体素确定。Further, the judgment criterion is determined by a line connecting the centroids of adjacent supervoxels and the normal direction on the centroids and the common adjacent supervoxels of the adjacent supervoxels.

一种人体语义特征提取系统,包括处理器和存储设备,所述存储设备中存储有多条指令,用于所述处理器加载并执行前述方法的步骤。A human body semantic feature extraction system includes a processor and a storage device, wherein a plurality of instructions are stored in the storage device for the processor to load and execute the steps of the foregoing method.

与现有技术相比,本发明所达到的有益效果:本发明通过对三维人体模型进行形状分割并抽取骨骼特征,从构建的三维人体语义特征数据库中选取模板模型进行配准,获取参数化的人体模型,并使用NURBS曲线拟合参数化的人体模型上的特征采样点,得到三维人体模型的人体语义特征,人体语义特征的提取方法遵循人体解剖学的基本知识,能准确获取人体语义特征,匹配效果好;同时,构建的三维人体语义特征数据库能把输入的三维人体模型纳入数据库,拓宽了三维人体语义特征数据库的拓扑结构。Compared with the prior art, the beneficial effects achieved by the present invention are as follows: the present invention performs shape segmentation on the three-dimensional human body model and extracts bone features, selects a template model from the constructed three-dimensional human body semantic feature database for registration, and obtains a parameterized human body model. Human body model, and use the NURBS curve to fit the feature sampling points on the parameterized human body model to obtain the human body semantic features of the three-dimensional human body model. The extraction method of human body semantic features follows the basic knowledge of human anatomy and can accurately obtain human body semantic features. The matching effect is good; at the same time, the constructed 3D human body semantic feature database can incorporate the input 3D human body model into the database, thus broadening the topology structure of the 3D human body semantic feature database.

附图说明Description of drawings

图1是本发明实施例提供的一种人体语义特征提取方法中构建三维人体语义特征数据库的流程示意图;1 is a schematic flowchart of constructing a three-dimensional human body semantic feature database in a method for extracting human body semantic features provided by an embodiment of the present invention;

图2是本发明实施例提供的一种人体语义特征提取方法的流程示意图;2 is a schematic flowchart of a method for extracting human semantic features according to an embodiment of the present invention;

图3是本发明实施例提供的一种人体语义特征提取系统的拓扑结构示意图。FIG. 3 is a schematic diagram of a topology structure of a human body semantic feature extraction system provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings. The following examples are only used to illustrate the technical solutions of the present invention more clearly, and cannot be used to limit the protection scope of the present invention.

实施例一:Example 1:

如图1所示,一种构建三维人体语义特征数据库的方法,包括:选取开源三维人体数据库中的人体姿态模型,并进行表面细分,设定人体姿态模型的面片数量和顶点数量,获得初始三维人体数据库;对初始三维人体数据库中的人体姿态模型进行分割,形成三维人体分割数据库;从三维人体分割数据库中的分割模型中抽取三维人体骨骼形成三维人体骨骼数据库;对三维人体骨骼数据库中的人体骨骼进行半自动化标注语义特征采样点,形成三维人体语义特征数据库。As shown in Figure 1, a method for constructing a three-dimensional human body semantic feature database includes: selecting a human body pose model in an open source three-dimensional human body database, and performing surface subdivision, setting the number of faces and vertices of the human body pose model, and obtaining Initial 3D human body database; segment the human body pose model in the initial 3D human body database to form a 3D human body segmentation database; extract 3D human skeletons from the segmentation models in the 3D human body segmentation database to form a 3D human skeleton database; The human skeleton is semi-automatically annotated with semantic feature sampling points to form a 3D human semantic feature database.

采用含有多个人体姿态的三维人体数据库作为基础数据库,本方法以MPI数据库为例,剔除MPI数据库中姿态过于复杂的模型,并进行表面细分,细分为面片数量为51576,顶点数量为25790的模型,获得初始三维人体数据库。The three-dimensional human body database containing multiple human body poses is used as the basic database. This method takes the MPI database as an example, removes the models with too complex poses in the MPI database, and performs surface subdivision. 25790 model to obtain the initial 3D human body database.

基于超体素聚类和相邻体素超体素凹凸性的三维人体形状分割算法,对初始三维人体数据库中的模型进行形状分割,将模型分割为头部、上臂、下臂、手部、胸部、腰部、臀部、大腿、小腿、脚部,按照以下步骤进行:A 3D human body shape segmentation algorithm based on supervoxel clustering and the concavity and convexity of adjacent voxels, performs shape segmentation on the model in the initial 3D human body database, and divides the model into head, upper arm, lower arm, hand, For chest, waist, buttocks, thighs, calves, feet, follow these steps:

(a)对顶点数据进行超体素聚类,结果为对顶点数据的过分割,其具体步骤为:(a) Perform super-voxel clustering on vertex data, and the result is over-segmentation of vertex data. The specific steps are:

1)对模型空间进行栅格划分,点云数据形成点团,称为体素,对体素建立空间索引,并采用八叉树算法组织这些点团;1) The model space is divided into grids, and the point cloud data forms point clusters, which are called voxels. A spatial index is established for the voxels, and the octree algorithm is used to organize these point clusters;

2)在诸多体素中选择多个体素为种子体素;2) Select multiple voxels as seed voxels among many voxels;

3)计算体素间的相似性,种子体素递归融合邻接体素,形成超体素,体素相似性的计算公式为:3) Calculate the similarity between voxels. The seed voxels are recursively fused with adjacent voxels to form supervoxels. The calculation formula of voxel similarity is:

Figure BDA0002605104320000061
Figure BDA0002605104320000061

其中,ωc为颜色差异的权重因子,ωs为距离差异的权重因子,ωn为法线差异的权重因子,颜色差异ωc、距离差异ωs和法线差异ωn,用来控制顶点间的颜色差异、空间距离和凹凸性在相似性计算中的影响;

Figure BDA0002605104320000062
为体素直径;Dc(i,j)为CIELab颜色差异,Ds(i,j)为坐标距离差异,Dn(i,j)为法线差异,其计算公式分别为:Among them, ω c is the weight factor of color difference, ω s is the weight factor of distance difference, ω n is the weight factor of normal difference, color difference ω c , distance difference ω s and normal difference ω n are used to control the vertex The influence of color difference, spatial distance and concave-convexity in similarity calculation;
Figure BDA0002605104320000062
is the voxel diameter; D c (i, j) is the CIELab color difference, D s (i, j) is the coordinate distance difference, and D n (i, j) is the normal difference. The calculation formulas are:

Dc(i,j)=ΔA=||V(i)-V(j)||CIELab (2)D c (i, j)=ΔA=||V(i)-V(j)|| CIELab (2)

其中,V(i)为第i个体素的CIELab颜色,V(j)为第j个体素的CIELab颜色;where V(i) is the CIELab color of the ith voxel, and V(j) is the CIELab color of the jth voxel;

Figure BDA0002605104320000063
Figure BDA0002605104320000063

其中,di为第i个体素的坐标,di=[xi,yi,zi],xi为第i个体素的x坐标,yi为第i个体素的y坐标,zi为第i个体素的z坐标,dj为第j个体素的坐标,dj=[xj,yj,zj],xj为第j个体素的x坐标,yj为第j个体素的y坐标,zj为第j个体素的z坐标;Among them, d i is the coordinate of the ith voxel, d i =[x i , y i , z i ], xi is the x coordinate of the ith voxel, y i is the y coordinate of the ith voxel, z i is the z coordinate of the ith voxel, d j is the coordinate of the j th voxel, d j =[x j , y j , z j ], x j is the x coordinate of the j th voxel, and y j is the j th individual The y coordinate of the voxel, z j is the z coordinate of the jth voxel;

Figure BDA0002605104320000071
Figure BDA0002605104320000071

其中,ni为第i个体素质心法向,

Figure BDA0002605104320000072
Figure BDA0002605104320000073
为第i个体素法向的x坐标,
Figure BDA0002605104320000074
为第i个体素法向的y坐标,
Figure BDA0002605104320000075
为第i个体素法向的z坐标,nj为第j个体素的质心法向,
Figure BDA0002605104320000076
Figure BDA0002605104320000077
为第j个体素法向的x坐标,
Figure BDA0002605104320000078
为第j个体素法向的y坐标,
Figure BDA0002605104320000079
为第j个体素法向的z坐标;Among them, n i is the normal direction of the i-th individual quality heart,
Figure BDA0002605104320000072
Figure BDA0002605104320000073
is the x coordinate of the i-th voxel normal,
Figure BDA0002605104320000074
is the y coordinate of the i-th voxel normal,
Figure BDA0002605104320000075
is the z coordinate of the normal direction of the i-th voxel, n j is the centroid normal direction of the j-th voxel,
Figure BDA0002605104320000076
Figure BDA0002605104320000077
is the normal x coordinate of the jth voxel,
Figure BDA0002605104320000078
is the y coordinate of the jth voxel normal,
Figure BDA0002605104320000079
is the z coordinate of the jth voxel normal;

(b)判断相邻超体素之间的凹凸性关系,凹体素内的边称为凹边,若相邻超体素间越“凹”,则应该被切开,判断凹凸性关系的准则有两个,准则一是根据相邻超体素质心的连线与质心上的法向关系,准则二在准则一的基础上考虑其共同邻接超体素,判断准则一可用公式(5)表达:(b) Judging the concave-convex relationship between adjacent supervoxels. The edge within a concave voxel is called a concave edge. If the adjacent supervoxels are more "concave", they should be cut to determine the concave-convex relationship. There are two criteria. Criterion 1 is based on the normal relationship between the line connecting the centroids of adjacent supervoxes and the centroid. Criterion 2 considers the common adjacent supervoxels on the basis of criterion 1. For criterion 1, formula (5) can be used. Express:

CC(svi,svj)=CCb(svi,svj)∧CCb(svi,svc)∧CCb(svj,svc) (5)CC(sv i , sv j )=CC b (sv i , sv j )∧CC b (sv i ,sv c )∧CC b (sv j ,sv c ) (5)

其中,CC(svi,svj)为凹凸性判断准则一,CCb(svi,svj)为超体素svi和超体素svj之间的凹凸关系,CCb(svi,svc)为超体素svi和超体素svc之间的凹凸关系,CCb(svj,svc)为超体素svj和超体素svc之间的基本凹凸关系;Among them, CC(sv i , sv j ) is the first criterion of concavity and convexity, CC b (sv i , sv j ) is the concavo-convex relationship between the supervoxel sv i and the supervoxel sv j , CC b (sv i , sv j ) sv c ) is the concave-convex relationship between the supervoxel sv i and the super-voxel sv c , CC b (sv j , sv c ) is the basic concave-convex relationship between the super-voxel sv j and the super-voxel svc ;

CCb(svi,svj)的计算如公式(6)所示:The calculation of CC b (sv i , sv j ) is shown in formula (6):

Figure BDA00026051043200000710
Figure BDA00026051043200000710

其中,Ni为第i个超体素的质心法向,Nj为第j个超体素的质心法向,βT为偏移量,β(Ni,Nj)为第i个超体素和第j个超体素质心法向之间的夹角,

Figure BDA00026051043200000711
为向量夹角符号,计算公式为:Among them, Ni is the centroid normal of the ith supervoxel, Nj is the centroid normal of the jth supervoxel, β T is the offset, and β(N i , N j ) is the ith supervoxel The angle between the voxel and the j-th supervoxel centroid normal,
Figure BDA00026051043200000711
is the symbol of the included angle of the vector, and the calculation formula is:

Figure BDA0002605104320000081
Figure BDA0002605104320000081

Figure BDA0002605104320000082
的计算公式为:
Figure BDA0002605104320000082
The calculation formula is:

Figure BDA0002605104320000083
Figure BDA0002605104320000083

其中,Xi为超体素svi的质心坐标,Xj为超体素svj的质心坐标,判断准则二可定义为公式(7):Among them, X i is the centroid coordinate of the supervoxel sv i , X j is the centroid coordinate of the supervoxel sv j , and the second criterion can be defined as formula (7):

Figure BDA0002605104320000084
Figure BDA0002605104320000084

其中,SC(svi,svj)为凹凸性判断准则二,θ(svi,svj)的计算方法:Among them, SC(sv i , sv j ) is the second criterion of concavity and convexity, and the calculation method of θ(sv i , sv j ):

Figure BDA0002605104320000085
Figure BDA0002605104320000085

θT(β(Ni,Nj))的计算方法:Calculation method of θ T (β(N i , N j )):

Figure BDA0002605104320000086
Figure BDA0002605104320000086

其中,

Figure BDA0002605104320000087
α=0.25,βoff=25°;in,
Figure BDA0002605104320000087
α = 0.25, β off = 25°;

综上所述,凹凸性判断方法如公式(10)所示:To sum up, the concave-convexity judgment method is shown in formula (10):

conv(svi,svj)=CC(svi,svj)∧SC(svi,svj) (10)conv(sv i , sv j )=CC(sv i , sv j )∧SC(sv i , sv j ) (10)

其中,conv(svi,svj)为第i个超体素和第j个超体素之间凹凸性;Among them, conv(sv i , sv j ) is the concave-convexity between the ith supervoxel and the jth supervoxel;

(c)根据(b)步骤判断的凹凸性关系,采用随机采样一致算法在凹边上拟合分割平面,将人体姿态模型分割,形成三维人体分割数据库,数据库中的人体模型被分割为16个有意义的部件;(c) According to the concave-convex relationship judged in step (b), a random sampling consensus algorithm is used to fit the segmentation plane on the concave edge, and the human body pose model is segmented to form a three-dimensional human body segmentation database. The human body models in the database are divided into 16 meaningful parts;

人体关节位于刚体部分的连接部位,将两个分割子区域的边界中心作为骨骼节点,按照关节的解剖学关系连接骨骼节点,形成人体骨骼;对人体分割数据库中的所有模型采取此操作,得到三维人体骨骼数据库。The human body joints are located at the connection part of the rigid body part, and the boundary center of the two sub-regions is used as the skeleton node, and the skeleton nodes are connected according to the anatomical relationship of the joints to form the human skeleton; this operation is performed on all the models in the human body segmentation database to obtain a three-dimensional Human Skeleton Database.

语义特征扩展是一种半自动化操作,手动标记一个模型的特征采样点,所有模型即可使用同一份采样点;对每个模型的特征采样点分别拟合出特征曲线,得到三维人体语义特征数据库。Semantic feature expansion is a semi-automatic operation. Manually mark the feature sampling points of a model, and all models can use the same sampling point; the feature curves are fitted to the feature sampling points of each model, and the 3D human body semantic feature database is obtained. .

本实施例中,构建的三维人体语义特征数据库中的数据来源有两个,一个是根据前述方法对开源三维人体数据库进行扩展;另一个是在进行人体语义特征提取时对输入的三维人体模型的吸收。本实施例中,三维人体语义特征数据库中的模板模型上标注了用来拟合语义特征曲线的语义特征采样点,模板模型上标注的语义特征采样点位于语义特征实际位置附近,且语义特征曲线为定位语义特征的三次曲线。In this embodiment, there are two data sources in the constructed 3D human body semantic feature database. One is to expand the open source 3D human body database according to the aforementioned method; absorb. In this embodiment, the template model in the 3D human semantic feature database is marked with semantic feature sampling points for fitting the semantic feature curve, the semantic feature sampling points marked on the template model are located near the actual position of the semantic feature, and the semantic feature curve is a cubic curve for locating semantic features.

实施例二:Embodiment 2:

基于实施例一构建的三维人体语义特征数据库,本实施例提供一种人体语义特征提取方法,如图2、图3所示,包括:采集三维人体特征数据,获取三维人体模型;对三维人体模型进行预处理,调整三维人体模型的朝向、中心坐标并让三维人体模型处于世界坐标系的坐标原点;对三维人体模型进行形状分割并抽取三维人体模型的骨骼特征,基于骨骼相似性的模板选择算法,依据三维人体模型的骨骼特征从构建的三维人体语义特征数据库中选取模板模型与三维人体模型进行配准,获取参数化的人体模型;使用NURBS曲线拟合参数化的人体模型上的特征采样点,计算拟合后的特征曲线长度,得到三维人体模型的人体语义特征。Based on the three-dimensional human body semantic feature database constructed in the first embodiment, this embodiment provides a human body semantic feature extraction method, as shown in FIG. 2 and FIG. 3 , including: collecting three-dimensional human body feature data to obtain a three-dimensional human body model; Perform preprocessing, adjust the orientation and center coordinates of the 3D human model and make the 3D human model at the coordinate origin of the world coordinate system; perform shape segmentation on the 3D human model and extract the skeleton features of the 3D human model, and a template selection algorithm based on skeletal similarity , according to the skeletal features of the 3D human body model, select the template model from the constructed 3D human body semantic feature database for registration with the 3D human body model, and obtain the parameterized human body model; use the NURBS curve to fit the feature sampling points on the parameterized human body model , calculate the length of the characteristic curve after fitting, and obtain the human body semantic features of the three-dimensional human body model.

基于骨骼相似性的模板选择算法,计算三维人体模型与三维人体语义特征数据库中的模板模型的姿态相似性,选取姿态相似程度最高的模型作为模板模型;具体为:The template selection algorithm based on skeleton similarity calculates the pose similarity between the 3D human body model and the template model in the 3D human body semantic feature database, and selects the model with the highest degree of pose similarity as the template model; the details are as follows:

Figure BDA0002605104320000091
Figure BDA0002605104320000091

其中,SE为骨骼相似性参数,

Figure BDA0002605104320000102
为三维人体模型D上的p骨节点的坐标,
Figure BDA0002605104320000103
为三维人体模型D上的q骨节点的坐标,
Figure BDA0002605104320000105
为模板模型
Figure BDA00026051043200001011
上的p骨节点的坐标,
Figure BDA0002605104320000104
为模板模型
Figure BDA00026051043200001012
上的q骨节点的坐标,
Figure BDA0002605104320000106
为向量夹角符号,
Figure BDA0002605104320000107
为权重因素,m=1,2,3,4,L1、L2、L3、L4为四个权重级别,人体主干中的骨节点权重级别为L1,上臂、大腿、头部的权重级别为L2,下臂、小腿的权重级别为L3,手部、脚部的权重级别为L4,且
Figure BDA0002605104320000101
Among them, SE is the bone similarity parameter,
Figure BDA0002605104320000102
is the coordinate of the p-bone node on the three-dimensional human model D,
Figure BDA0002605104320000103
is the coordinate of the q-bone node on the three-dimensional human model D,
Figure BDA0002605104320000105
template model
Figure BDA00026051043200001011
The coordinates of the p-bones node on,
Figure BDA0002605104320000104
template model
Figure BDA00026051043200001012
the coordinates of the q-bone node on,
Figure BDA0002605104320000106
is the vector angle symbol,
Figure BDA0002605104320000107
is the weight factor, m=1, 2, 3, 4, L 1 , L 2 , L 3 , and L 4 are four weight levels, the bone node weight level in the main body of the human body is L 1 , the upper arm, thigh, head The weight level is L 2 , the weight level of the lower arm and the calf is L 3 , the weight level of the hands and feet is L 4 , and
Figure BDA0002605104320000101

基于骨骼相似性的模板选择算法,依据三维人体模型的骨骼特征从构建的三维人体语义特征数据库中选取模板模型与三维人体模型进行配准,获取参数化的人体模型,配准采用刚体配准和非刚体配准算法;The template selection algorithm based on skeletal similarity selects the template model and the 3D human body model from the constructed 3D human body semantic feature database according to the skeleton features of the 3D human body model for registration, and obtains a parameterized human body model. The registration adopts rigid body registration and Non-rigid registration algorithm;

刚体配准包括:Rigid body registration includes:

基于有向包围盒的初步对齐,让两个模型在全局坐标系内尽量重叠:构建三维人体模型D的有向包围盒DB和模板模型

Figure BDA00026051043200001015
的有向包围盒
Figure BDA00026051043200001010
计算从三维人体模型D的有向包围盒DB到模板模型
Figure BDA0002605104320000108
的有向包围盒
Figure BDA0002605104320000109
的放射变换T;对三维人体模型D施加放射变换得到第一中间模型D′;Based on the initial alignment of the directed bounding box, let the two models overlap as much as possible in the global coordinate system: construct the directed bounding box D B of the 3D human model D and the template model
Figure BDA00026051043200001015
directed bounding box of
Figure BDA00026051043200001010
Compute the directed bounding box D B from the 3D human model D to the template model
Figure BDA0002605104320000108
directed bounding box of
Figure BDA0002605104320000109
The radiation transformation T is applied to the three-dimensional human body model D to obtain the first intermediate model D′;

Figure BDA00026051043200001014
Figure BDA00026051043200001014

D′=TD (13)D′=TD (13)

基于迭代最近点的最终对齐,计算两个模型间的旋转矩阵和平移矩阵,根据旋转矩阵和平移矩阵调整模板模型的空间坐标:采用迭代最近点算法计算出第一中间模型D′到模板模型

Figure BDA00026051043200001013
的最优刚体变换参数,进而获取第二中间模型D″:Based on the final alignment of the iterative closest point, the rotation matrix and translation matrix between the two models are calculated, and the spatial coordinates of the template model are adjusted according to the rotation matrix and the translation matrix: the iterative closest point algorithm is used to calculate the first intermediate model D' to the template model
Figure BDA00026051043200001013
The optimal rigid body transformation parameters of , and then obtain the second intermediate model D":

D″=RD′+t (14)D″=RD′+t (14)

其中,R为线性变换参数,t为平移变换参数;Among them, R is the linear transformation parameter, and t is the translation transformation parameter;

非刚体配准包括:Non-rigid registration includes:

基于Laplacian网格变形算法的粗配准:采用Laplacian网格变形算法将模板模型

Figure BDA0002605104320000113
向第二中间模型
Figure BDA00026051043200001110
变形,得到初步配准模型
Figure BDA0002605104320000114
Coarse Registration Based on Laplacian Mesh Deformation Algorithm: Using Laplacian Mesh Deformation Algorithm to
Figure BDA0002605104320000113
to the second intermediate model
Figure BDA00026051043200001110
Deformed to get a preliminary registration model
Figure BDA0002605104320000114

基于数据误差和光滑度误差的精配准:在初步配准模型

Figure BDA0002605104320000115
和第二中间模型D″上建立数据误差函数Ed和光滑度误差函数Es,并最小化其误差之和,获得参数化的人体模型
Figure BDA0002605104320000118
数据误差函数Ed和光滑度误差函数Es通过以下公式获得:Fine registration based on data error and smoothness error: in a preliminary registration model
Figure BDA0002605104320000115
Establish data error function Ed and smoothness error function Es on the second intermediate model D ″, and minimize the sum of their errors to obtain a parameterized human body model
Figure BDA0002605104320000118
The data error function Ed and smoothness error function Es are obtained by the following formulas:

Figure BDA0002605104320000111
Figure BDA0002605104320000111

Figure BDA0002605104320000112
Figure BDA0002605104320000112

其中,n表示初步配准模型

Figure BDA0002605104320000116
的顶点个数,v′i为第i个顶点的坐标,距离函数dist2()为变形后网格与目标网格中最近相容点的距离,Ti为第i个顶点对应的3×3的变换矩阵;将法相量角度小于90°,欧式距离小于10cm的两个点,定义为相容点,其中距离最近的一个称为最近相容点;Tj为第j个顶点对应的3×3变换矩阵,
Figure BDA0002605104320000117
为模型
Figure BDA0002605104320000119
上的边,|| ||F表示弗罗贝尼乌斯范数。where n represents the preliminary registration model
Figure BDA0002605104320000116
The number of vertices of , v′ i is the coordinate of the ith vertex, the distance function dist 2 () is the distance between the deformed mesh and the nearest compatible point in the target mesh, T i is the 3× corresponding to the ith vertex The transformation matrix of 3; the two points whose normal phasor angle is less than 90° and whose Euclidean distance is less than 10cm are defined as compatible points, and the one with the closest distance is called the closest compatible point; T j is the 3 corresponding to the jth vertex ×3 transformation matrix,
Figure BDA0002605104320000117
for the model
Figure BDA0002605104320000119
On the edge, || || F denotes the Frobenius norm.

配准的结果为参数化的人体模型;参数化人体模型上标注了特征采样点,使用NURBS曲线拟合这些特征采样点,计算拟合后的特征曲线长度,得到三维人体模型的人体语义特征。在进行人体语义特征提取的过程中,三维人体语义特征数据库将人体语义特征提取过程中产生的三维人体模型的形状分割结果纳入三维人体分割数据库,三维人体模型的骨骼特征纳入三维人体骨骼数据库,包含人体语义特征的三维人体模型纳入三维人体语义特征数据库。The result of the registration is a parameterized human body model; the parameterized human body model is marked with characteristic sampling points, and the NURBS curve is used to fit these characteristic sampling points, and the length of the fitted characteristic curve is calculated to obtain the human body semantic features of the three-dimensional human body model. In the process of human body semantic feature extraction, the 3D human body semantic feature database incorporates the shape segmentation results of the 3D human body model generated in the process of human semantic feature extraction into the 3D human body segmentation database, and the skeleton features of the 3D human body model into the 3D human skeleton database, including The 3D human body model of human semantic features is incorporated into the 3D human semantic feature database.

实施例三:Embodiment three:

基于实施例二提供的人体语义特征提取方法,本实施例提供一种人体语义特征提取系统,包括处理器和存储设备,存储设备中存储有多条指令,用于处理器加载并执行实施例二所述方法的步骤。Based on the human body semantic feature extraction method provided in the second embodiment, this embodiment provides a human body semantic feature extraction system, including a processor and a storage device. The storage device stores multiple instructions for the processor to load and execute the second embodiment. the steps of the method.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the technical principles of the present invention, several improvements and modifications can be made. These improvements and modifications It should also be regarded as the protection scope of the present invention.

Claims (10)

1.一种人体语义特征提取方法,其特征是,包括:1. a human body semantic feature extraction method, is characterized in that, comprises: 采集三维人体特征数据,获取三维人体模型;Collect 3D human body feature data to obtain 3D human body model; 对三维人体模型进行预处理,调整三维人体模型的朝向、中心坐标并让三维人体模型处于世界坐标系的坐标原点;Preprocess the 3D human body model, adjust the orientation and center coordinates of the 3D human body model, and place the 3D human body model at the coordinate origin of the world coordinate system; 对三维人体模型进行形状分割并抽取三维人体模型的骨骼特征,基于骨骼相似性的模板选择算法,依据三维人体模型的骨骼特征从构建的三维人体语义特征数据库中选取模板模型与三维人体模型进行配准,获取参数化的人体模型;Perform shape segmentation on the 3D human body model and extract the skeleton features of the 3D human body model. The template selection algorithm based on the skeleton similarity selects the template model from the constructed 3D human body semantic feature database according to the skeleton features of the 3D human body model and matches the 3D human body model. Accurate to obtain a parameterized human body model; 使用NURBS曲线拟合参数化的人体模型上的特征采样点,计算拟合后的特征曲线长度,得到三维人体模型的人体语义特征。Use the NURBS curve to fit the feature sampling points on the parameterized human body model, calculate the length of the fitted feature curve, and obtain the human body semantic features of the 3D human body model. 2.根据权利要求1所述的人体语义特征提取方法,其特征是,所述配准包括刚体配准和非刚体配准;2. The human body semantic feature extraction method according to claim 1, wherein the registration comprises rigid body registration and non-rigid body registration; 所述刚体配准包括:The rigid body registration includes: 构建三维人体模型D的有向包围盒DB和模板模型
Figure FDA0002605104310000011
的有向包围盒
Figure FDA0002605104310000012
计算从三维人体模型D的有向包围盒DB到模板模型
Figure FDA0002605104310000013
的有向包围盒
Figure FDA0002605104310000014
的仿射变换T;对三维人体模型D施加仿射变换T得到第一中间模型D′:
Construct the directed bounding box D B of the 3D human body model D and the template model
Figure FDA0002605104310000011
directed bounding box of
Figure FDA0002605104310000012
Compute the directed bounding box D B from the 3D human model D to the template model
Figure FDA0002605104310000013
directed bounding box of
Figure FDA0002605104310000014
The affine transformation T of ; apply the affine transformation T to the three-dimensional human body model D to obtain the first intermediate model D′:
Figure FDA0002605104310000015
Figure FDA0002605104310000015
D′=TD (13)D′=TD (13) 采用迭代最近点算法计算出第一中间模型D′到模板模型
Figure FDA0002605104310000016
的最优刚体变换参数R、t,进而获取第二中间模型D″:
Using the iterative closest point algorithm to calculate the first intermediate model D' to the template model
Figure FDA0002605104310000016
The optimal rigid body transformation parameters R and t are obtained, and then the second intermediate model D″ is obtained:
D″=RD′+t (14)D″=RD′+t (14) 其中,R为线性变换参数,t为平移变换参数;Among them, R is the linear transformation parameter, and t is the translation transformation parameter; 所述非刚体配准包括:The non-rigid body registration includes: 采用Laplacian网格变形算法将模板模型
Figure FDA0002605104310000021
向第二中间模型
Figure FDA0002605104310000022
变形,得到初步配准模型
Figure FDA0002605104310000023
Using the Laplacian mesh deformation algorithm to transform the template model
Figure FDA0002605104310000021
to the second intermediate model
Figure FDA0002605104310000022
Deformed to get a preliminary registration model
Figure FDA0002605104310000023
在初步配准模型
Figure FDA0002605104310000024
和第二中间模型D″上建立数据误差函数Ed和光滑度误差函数Es,并最小化其误差之和,获得参数化的人体模型
Figure FDA0002605104310000025
in the preliminary registration model
Figure FDA0002605104310000024
Establish data error function Ed and smoothness error function Es on the second intermediate model D ″, and minimize the sum of their errors to obtain a parameterized human body model
Figure FDA0002605104310000025
3.根据权利要求2所述的人体语义特征提取方法,其特征是,所述数据误差函数Ed和光滑度误差函数Es通过以下公式获得:3. The human body semantic feature extraction method according to claim 2, wherein the data error function E d and the smoothness error function E s are obtained by the following formula:
Figure FDA0002605104310000026
Figure FDA0002605104310000026
Figure FDA0002605104310000027
Figure FDA0002605104310000027
其中,n表示初步配准模型
Figure FDA0002605104310000028
的顶点个数,vi′为第i个顶点的坐标,距离函数dist2()为变形后网格与目标网格中最近相容点的距离,Ti为第i个顶点对应的3×3变换矩阵;将法相量角度小于90°,欧式距离小于10cm的两个点,定义为相容点,其中距离最近的一个称为最近相容点;Tj为第j个顶点对应的3×3变换矩阵,
Figure FDA0002605104310000029
为模型
Figure FDA00026051043100000210
上的边,||||F表示弗罗贝尼乌斯范数。
where n represents the preliminary registration model
Figure FDA0002605104310000028
The number of vertices of , v i ′ is the coordinate of the ith vertex, the distance function dist 2 () is the distance between the deformed mesh and the nearest compatible point in the target mesh, and T i is the 3× corresponding to the ith vertex 3 Transformation matrix; two points whose normal phasor angle is less than 90° and Euclidean distance less than 10cm are defined as compatible points, and the one with the closest distance is called the closest compatible point; T j is the 3× corresponding to the jth vertex 3 transformation matrices,
Figure FDA0002605104310000029
for the model
Figure FDA00026051043100000210
On the edge, |||| F denotes the Frobenius norm.
4.根据权利要求1所述的人体语义特征提取方法,其特征是,所述骨骼相似性的模板选择算法,具体为:4. human body semantic feature extraction method according to claim 1, is characterized in that, the template selection algorithm of described skeleton similarity, is specially:
Figure FDA00026051043100000211
Figure FDA00026051043100000211
其中,SE为骨骼相似性参数,
Figure FDA00026051043100000212
为三维人体模型D上的p骨节点的坐标,
Figure FDA00026051043100000213
为三维人体模型D上的q骨节点的坐标,
Figure FDA00026051043100000214
为模板模型
Figure FDA00026051043100000215
上的p骨节点的坐标,
Figure FDA00026051043100000216
为模板模型
Figure FDA00026051043100000217
上的q骨节点的坐标,
Figure FDA00026051043100000218
为向量夹角符号,
Figure FDA00026051043100000219
为权重因素,m=1,2,3,4,L1、L2、L3、L4为四个权重级别,人体主干中的骨节点权重级别为L1,上臂、大腿、头部的权重级别为L2,下臂、小腿的权重级别为L3,手部、脚部的权重级别为L4,且
Figure FDA0002605104310000031
Among them, SE is the bone similarity parameter,
Figure FDA00026051043100000212
is the coordinate of the p-bone node on the three-dimensional human model D,
Figure FDA00026051043100000213
is the coordinate of the q-bone node on the three-dimensional human model D,
Figure FDA00026051043100000214
template model
Figure FDA00026051043100000215
The coordinates of the p-bones node on,
Figure FDA00026051043100000216
template model
Figure FDA00026051043100000217
the coordinates of the q-bone node on,
Figure FDA00026051043100000218
is the vector angle symbol,
Figure FDA00026051043100000219
is the weight factor, m=1, 2, 3, 4, L 1 , L 2 , L 3 , and L 4 are four weight levels, the bone node weight level in the main body of the human body is L 1 , the upper arm, thigh, head The weight level is L 2 , the weight level of the lower arm and the calf is L 3 , the weight level of the hands and feet is L 4 , and
Figure FDA0002605104310000031
5.根据权利要求1所述的人体语义特征提取方法,其特征是,所述三维人体语义特征数据库的构建方法为:5. human body semantic feature extraction method according to claim 1, is characterized in that, the construction method of described three-dimensional human body semantic feature database is: 选取开源三维人体数据库中的人体姿态模型,并进行表面细分,设定人体姿态模型的面片数量和顶点数量,获得初始三维人体数据库;Select the human body pose model in the open source 3D human body database, perform surface subdivision, set the number of facets and vertices of the human body pose model, and obtain the initial 3D human body database; 对初始三维人体数据库中的人体姿态模型进行分割,形成三维人体分割数据库;Segment the human body pose model in the initial 3D human body database to form a 3D human body segmentation database; 从三维人体分割数据库中的分割模型中抽取三维人体骨骼形成三维人体骨骼数据库;Extracting 3D human bones from the segmentation model in the 3D human body segmentation database to form a 3D human skeleton database; 对三维人体骨骼数据库中的人体骨骼进行半自动化标注语义特征采样点,形成三维人体语义特征数据库。The human skeleton in the 3D human skeleton database is semi-automatically marked with semantic feature sampling points to form a 3D human body semantic feature database. 6.根据权利要求5所述的人体语义特征提取方法,其特征是,所述三维人体语义特征数据库将所述人体语义特征提取过程中产生的三维人体模型的形状分割结果纳入三维人体分割数据库,三维人体模型的骨骼特征纳入三维人体骨骼数据库,包含人体语义特征的三维人体模型纳入三维人体语义特征数据库。6. The human body semantic feature extraction method according to claim 5, wherein the three-dimensional human body semantic feature database incorporates the shape segmentation result of the three-dimensional human body model generated in the human body semantic feature extraction process into the three-dimensional human body segmentation database, The skeleton features of the 3D human body model are included in the 3D human skeleton database, and the 3D human body model containing the human body semantic features is included in the 3D human body semantic feature database. 7.根据权利要求5所述的人体语义特征提取方法,其特征是,所述对初始三维人体数据库中的人体姿态模型进行分割,具体为:7. human body semantic feature extraction method according to claim 5, is characterized in that, the described human body posture model in the initial three-dimensional human body database is segmented, specifically: 对顶点数据进行超体素聚类,结果为对顶点数据的过分割,包括:Perform supervoxel clustering on vertex data, and the result is an over-segmentation of vertex data, including: 1)对模型空间进行栅格划分,点云数据形成点团,称为体素,对体素建立空间索引,并采用八叉树算法组织这些体素;1) The model space is divided into grids, and the point cloud data forms point clusters, which are called voxels. A spatial index is established for the voxels, and the octree algorithm is used to organize these voxels; 2)选择多个体素作为种子体素;2) Select multiple voxels as seed voxels; 3)计算体素间的相似性,种子体素递归融合邻接体素,形成超体素;3) Calculate the similarity between voxels, and recursively fuse adjacent voxels with seed voxels to form supervoxels; 根据预设判断准则判断相邻超体素之间的凹凸性关系;Judging the concave-convex relationship between adjacent supervoxels according to the preset judgment criteria; 采用随机采样一致算法在凹边上拟合切割平面,将人体姿态模型分割。The random sampling consensus algorithm is used to fit the cutting plane on the concave edge, and the human body pose model is segmented. 8.根据权利要求7所述的人体语义特征提取方法,其特征是,计算体素间的相似性,具体为:8. human body semantic feature extraction method according to claim 7, is characterized in that, calculates the similarity between voxels, is specifically:
Figure FDA0002605104310000041
Figure FDA0002605104310000041
其中,ωc为颜色差异的权重因子,ωs为距离差异的权重因子,ωn为法线差异的权重因子,Dc(i,j)为CIELab颜色差异,Ds(i,j)为坐标距离差异,Dn(i,j)为法线差异,
Figure FDA0002605104310000042
为体素直径。
Among them, ω c is the weight factor of color difference, ω s is the weight factor of distance difference, ω n is the weight factor of normal difference, D c (i, j) is the CIELab color difference, D s (i, j) is Coordinate distance difference, D n (i, j) is the normal difference,
Figure FDA0002605104310000042
is the voxel diameter.
9.根据权利要求7所述的人体语义特征提取方法,其特征是,所述判断准则由相邻超体素质心的连线与质心上的法线方向及相邻超体素的共同邻接超体素确定。9. The human body semantic feature extraction method according to claim 7, wherein the judgment criterion consists of the connecting line of adjacent super-voxels and the normal direction on the centroid and the common adjacent super-voxels of adjacent super-voxels. Voxels are determined. 10.一种人体语义特征提取系统,其特征是,包括处理器和存储设备,所述存储设备中存储有多条指令,用于所述处理器加载并执行权利要求1~9任一项所述方法的步骤。10. A human body semantic feature extraction system, characterized by comprising a processor and a storage device, wherein the storage device stores a plurality of instructions for the processor to load and execute any one of claims 1-9. steps of the method described.
CN202010736075.1A 2020-07-28 2020-07-28 Human body semantic feature extraction method and system Active CN111882595B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010736075.1A CN111882595B (en) 2020-07-28 2020-07-28 Human body semantic feature extraction method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010736075.1A CN111882595B (en) 2020-07-28 2020-07-28 Human body semantic feature extraction method and system

Publications (2)

Publication Number Publication Date
CN111882595A true CN111882595A (en) 2020-11-03
CN111882595B CN111882595B (en) 2024-01-26

Family

ID=73202067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010736075.1A Active CN111882595B (en) 2020-07-28 2020-07-28 Human body semantic feature extraction method and system

Country Status (1)

Country Link
CN (1) CN111882595B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114067146A (en) * 2021-09-24 2022-02-18 北京字节跳动网络技术有限公司 Evaluation method, evaluation device, electronic device and computer-readable storage medium
CN116523973A (en) * 2023-01-10 2023-08-01 北京长木谷医疗科技股份有限公司 Bone registration method and device
CN118334293A (en) * 2024-04-26 2024-07-12 魔珐(上海)信息科技有限公司 Three-dimensional clothing model binding method, device, electronic device and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107038750A (en) * 2016-02-03 2017-08-11 上海源胜文化传播有限公司 A kind of three-dimensional (3 D) manikin generates system and method
US20180253909A1 (en) * 2017-03-06 2018-09-06 Sony Corporation Information processing apparatus, information processing method and user equipment
CN108876881A (en) * 2018-06-04 2018-11-23 浙江大学 Figure self-adaptation three-dimensional virtual human model construction method and animation system based on Kinect
CN111080776A (en) * 2019-12-19 2020-04-28 中德人工智能研究院有限公司 Processing method and system for human body action three-dimensional data acquisition and reproduction
US20200226827A1 (en) * 2019-01-10 2020-07-16 Electronics And Telecommunications Research Institute Apparatus and method for generating 3-dimensional full body skeleton model using deep learning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107038750A (en) * 2016-02-03 2017-08-11 上海源胜文化传播有限公司 A kind of three-dimensional (3 D) manikin generates system and method
US20180253909A1 (en) * 2017-03-06 2018-09-06 Sony Corporation Information processing apparatus, information processing method and user equipment
CN108876881A (en) * 2018-06-04 2018-11-23 浙江大学 Figure self-adaptation three-dimensional virtual human model construction method and animation system based on Kinect
US20200226827A1 (en) * 2019-01-10 2020-07-16 Electronics And Telecommunications Research Institute Apparatus and method for generating 3-dimensional full body skeleton model using deep learning
CN111080776A (en) * 2019-12-19 2020-04-28 中德人工智能研究院有限公司 Processing method and system for human body action three-dimensional data acquisition and reproduction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李灵杰;童晶;步文瑜;孙海舟;陈正鸣;: "基于模板匹配的三维人体语义特征提取算法", 计算机与现代化, no. 04 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114067146A (en) * 2021-09-24 2022-02-18 北京字节跳动网络技术有限公司 Evaluation method, evaluation device, electronic device and computer-readable storage medium
CN116523973A (en) * 2023-01-10 2023-08-01 北京长木谷医疗科技股份有限公司 Bone registration method and device
CN118334293A (en) * 2024-04-26 2024-07-12 魔珐(上海)信息科技有限公司 Three-dimensional clothing model binding method, device, electronic device and storage medium
CN118334293B (en) * 2024-04-26 2025-03-25 魔珐(上海)信息科技有限公司 Three-dimensional clothing model binding method, device, electronic device and storage medium

Also Published As

Publication number Publication date
CN111882595B (en) 2024-01-26

Similar Documents

Publication Publication Date Title
CN110163728B (en) Personalized clothing customization plate making method
CN112418030B (en) A head and face shape classification method based on three-dimensional point cloud coordinates
Yang et al. Physics-inspired garment recovery from a single-view image
CN109408653B (en) Human body hairstyle generation method based on multi-feature retrieval and deformation
CN110264310B (en) Clothing pattern making method based on human body big data
CN104091162B (en) The three-dimensional face identification method of distinguished point based
CN106780619B (en) Human body size measuring method based on Kinect depth camera
Lee et al. Intelligent mesh scissoring using 3d snakes
CN101958007B (en) Three-dimensional animation posture modeling method by adopting sketch
CN101777116B (en) Method for analyzing facial expressions on basis of motion tracking
CN107330903B (en) Skeleton extraction method of human point cloud model
CN110443885A (en) Three-dimensional number of people face model reconstruction method based on random facial image
CN101017575B (en) Method for automatically forming 3D virtual human body based on human component template and body profile
CN111882595A (en) Human body semantic feature extraction method and system
CN106485695A (en) Medical image Graph Cut dividing method based on statistical shape model
CN112037200A (en) A method for automatic recognition and model reconstruction of anatomical features in medical images
CN105389569A (en) Human body posture estimation method
CN109118455B (en) Ancient human skull craniofacial interactive restoration method based on modern soft tissue distribution
Kaashki et al. Deep learning-based automated extraction of anthropometric measurements from a single 3-D scan
CN106611416A (en) Method and apparatus for lung segmentation in medical image
CN110544310A (en) A feature analysis method of 3D point cloud under hyperbolic conformal mapping
CN110648394A (en) Three-dimensional human body modeling method based on OpenGL and deep learning
Wang et al. Automatic recognition and 3D modeling of the neck-shoulder human shape based on 2D images
WO2022222091A1 (en) Method for generating character bas-relief model on basis of single photo
CN118888083A (en) Acupoint massage design method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant