CN111880012A - Method for detecting broadband continuous dielectric characteristic parameters of microwave dielectric substrate - Google Patents
Method for detecting broadband continuous dielectric characteristic parameters of microwave dielectric substrate Download PDFInfo
- Publication number
- CN111880012A CN111880012A CN202010667847.0A CN202010667847A CN111880012A CN 111880012 A CN111880012 A CN 111880012A CN 202010667847 A CN202010667847 A CN 202010667847A CN 111880012 A CN111880012 A CN 111880012A
- Authority
- CN
- China
- Prior art keywords
- dielectric
- linear
- loss
- guided wave
- dielectric substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title claims abstract description 48
- 239000011159 matrix material Substances 0.000 claims abstract description 101
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 claims abstract description 86
- 239000004020 conductor Substances 0.000 claims abstract description 48
- 238000012360 testing method Methods 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 31
- 230000005855 radiation Effects 0.000 claims abstract description 26
- 238000004364 calculation method Methods 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 238000003466 welding Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 7
- 230000000295 complement effect Effects 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 7
- 230000002500 effect on skin Effects 0.000 claims description 4
- 230000035699 permeability Effects 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims 2
- 238000005457 optimization Methods 0.000 abstract description 23
- 238000000605 extraction Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 239000003989 dielectric material Substances 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003012 network analysis Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000000109 continuous material Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
- G01R27/2617—Measuring dielectric properties, e.g. constants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
- G01R27/2617—Measuring dielectric properties, e.g. constants
- G01R27/2635—Sample holders, electrodes or excitation arrangements, e.g. sensors or measuring cells
- G01R27/2658—Cavities, resonators, free space arrangements, reflexion or interference arrangements
- G01R27/2664—Transmission line, wave guide (closed or open-ended) or strip - or microstrip line arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
- G01R27/2688—Measuring quality factor or dielectric loss, e.g. loss angle, or power factor
- G01R27/2694—Measuring dielectric loss, e.g. loss angle, loss factor or power factor
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
本发明公开了一种微波介质基板宽带连续介电特性参数的检测方法,可以基于两个直线导波结构组建测试装置,在测试装置上固定待测材料的两端,得到两个直线导波结构的散射参数,将散射参数转换成对应的ABCD矩阵,以得到第一直线导波结构对应的第一ABCD矩阵和第二直线导波结构对应的第二ABCD矩阵,基于双线优化的ABCD矩阵,推算出优化后的复传播常数表达式,从而获取直线导波结构的导体损耗和辐射损耗,计算介质损耗,确定介质基板介质损耗正切,以对综合相数、直线损耗、有效介电常数、介质基板介电常数、介质损耗和介质基板介质损耗正切等介电特性参数进行准确检测,使检测得到的介电特性参数具有较高的精度。
The invention discloses a method for detecting broadband continuous dielectric characteristic parameters of a microwave dielectric substrate. A test device can be set up based on two linear waveguide structures, and two ends of a material to be tested are fixed on the test device to obtain two linear waveguide structures. The scattering parameters are converted into corresponding ABCD matrices to obtain the first ABCD matrix corresponding to the first linear guided wave structure and the second ABCD matrix corresponding to the second linear guided wave structure. The ABCD matrix based on the double-line optimization , calculate the optimized complex propagation constant expression, thus obtain the conductor loss and radiation loss of the linear guided wave structure, calculate the dielectric loss, and determine the dielectric loss tangent of the dielectric substrate to determine the comprehensive phase number, linear loss, effective dielectric constant, Dielectric characteristic parameters such as dielectric constant of dielectric substrate, dielectric loss and dielectric loss tangent of dielectric substrate are accurately detected, so that the detected dielectric characteristic parameters have high precision.
Description
技术领域technical field
本发明涉及介质基板介电特性参数提取测试技术领域,尤其涉及一种微波介质基板宽带连续介电特性参数的检测方法。The invention relates to the technical field of extraction and testing of dielectric characteristic parameters of a dielectric substrate, in particular to a method for detecting broadband continuous dielectric characteristic parameters of a microwave dielectric substrate.
背景技术Background technique
在设计微波(MW)/毫米波(MMW)/太赫兹(THz)器件和电路时,了解所用介质基板衬底的介电特性(介电常数和介电损耗角正切)是非常重要的。而真正的情况是,介质基板制造商通常只在一个单一的频率下提供介电信息,如1GHz或10GHz。一般情况下,介电性能在很小的频率范围内不会发生显著变化,但还是会导致器件的频率偏移和性能发生一定偏差。此外,来自不同制造商和不同批次的基板材料也可能具有不同的介电性能。同时,随着材料技术的发展,越来越多的新材料被开发出来应用于电磁场领域。因此,微波波段介电特性的提取一直是非常重要和有意义的,特别是对于新开发的材料。When designing microwave (MW)/millimeter wave (MMW)/terahertz (THz) devices and circuits, it is important to know the dielectric properties (dielectric constant and dielectric loss tangent) of the dielectric substrate substrate used. What's true is that dielectric substrate manufacturers usually only provide dielectric information at a single frequency, such as 1GHz or 10GHz. In general, the dielectric properties do not change significantly over a small frequency range, but can still cause some deviation in the frequency offset and performance of the device. In addition, substrate materials from different manufacturers and different batches may also have different dielectric properties. At the same time, with the development of material technology, more and more new materials have been developed and applied in the field of electromagnetic fields. Therefore, the extraction of dielectric properties in microwave band has always been very important and meaningful, especially for newly developed materials.
相关文献中提出了许多提取介电性能的方法和技术,可分为两大类。一种是窄带测量技术,另一种是宽带测量技术。窄带测量技术主要是基于谐振腔的,它可以提供更精确的测量结果,但只适用于离散谐振点。宽带测量技术通常依赖于电磁波的传输或反射,而不是使用谐振腔,因此该技术可以提供宽带和连续的材料特性。Many methods and techniques for extracting dielectric properties have been proposed in the related literature, which can be divided into two categories. One is a narrowband measurement technique and the other is a broadband measurement technique. Narrowband measurement techniques are mainly resonator-based, which can provide more accurate measurements, but only work at discrete resonance points. Broadband measurement techniques typically rely on the transmission or reflection of electromagnetic waves rather than using resonant cavities, so the technique can provide broadband and continuous material properties.
目前有一些利用多线来提取微波介质基板材料参数的。然而,采用这些方法检测得到的微波介质基板材料参数往往存在精度低或者准确性低的问题。At present, there are some methods that use multi-line to extract the material parameters of microwave dielectric substrates. However, the material parameters of microwave dielectric substrates detected by these methods often have problems of low precision or low accuracy.
发明内容SUMMARY OF THE INVENTION
针对以上问题,本发明提出一种微波介质基板宽带连续介电特性参数的检测方法。In view of the above problems, the present invention proposes a method for detecting broadband continuous dielectric characteristic parameters of a microwave dielectric substrate.
为实现本发明的目的,提供一种微波介质基板宽带连续介电特性参数的检测方法,包括如下步骤:In order to achieve the purpose of the present invention, a method for detecting broadband continuous dielectric characteristic parameters of a microwave dielectric substrate is provided, comprising the following steps:
S10,基于两个直线导波结构组建测试装置,通过一组高频微波连接器在测试装置上固定待测材料的两端;所述直线导波结构的两端设有高频微波连接器,以使测试装置连接直线导波结构;所述两个直线导波结构包括第一直线导波结构和第二直线导波结构,第一直线导波结构的长度大于第二直线导波结构的长度;S10, a test device is constructed based on two linear waveguide structures, and two ends of the material to be tested are fixed on the test device through a set of high-frequency microwave connectors; the two ends of the linear waveguide structure are provided with high-frequency microwave connectors, In order to connect the test device with the straight wave guided structure; the two straight wave guided structures include a first straight wave guided structure and a second straight wave guided structure, and the length of the first straight wave guided structure is greater than that of the second straight wave guided structure length;
S20,利用矢量网络分析仪对两个直线导波结构分别进行测试,得到两个直线导波结构的散射参数;S20, using a vector network analyzer to test the two straight-line guided wave structures respectively, to obtain scattering parameters of the two straight-line guided wave structures;
S30,将所述两个直线导波结构的散射参数转换成对应的ABCD矩阵,得到第一直线导波结构对应的第一ABCD矩阵和第二直线导波结构的第二ABCD矩阵;S30, converting the scattering parameters of the two linear waveguide structures into corresponding ABCD matrices, to obtain a first ABCD matrix corresponding to the first linear waveguide structure and a second ABCD matrix of the second linear waveguide structure;
S40,根据所述第一ABCD矩阵和第二ABCD矩阵计算得到优化后的综合相数和直线损耗,根据综合相数-有效介电常数等式确定有效介电常数;所述相数-有效介电常数等式记录综合相数和有效介电常数之间的关系;S40, calculate and obtain the optimized comprehensive phase number and linear loss according to the first ABCD matrix and the second ABCD matrix, and determine the effective dielectric constant according to the comprehensive phase number-effective dielectric constant equation; the phase number-effective dielectric constant The electric constant equation records the relationship between the number of integrated phases and the effective dielectric constant;
S50,根据有效介电常数确定待测材料的介质基板介电常数;S50, determining the dielectric constant of the dielectric substrate of the material to be tested according to the effective dielectric constant;
S60,获取直线导波结构的导体损耗和辐射损耗,根据直线损耗、导体损耗和辐射损耗计算介质损耗,根据介质损耗、有效介电常数及介质基板介电常数确定介质基板介质损耗正切。S60: Obtain conductor loss and radiation loss of the linear waveguide structure, calculate dielectric loss according to the linear loss, conductor loss and radiation loss, and determine the dielectric loss tangent of the dielectric substrate according to the dielectric loss, effective dielectric constant and dielectric constant of the dielectric substrate.
在一个实施例中,所述ABCD矩阵包括:In one embodiment, the ABCD matrix includes:
式中,A表示ABCD矩阵的第一参量,B表示ABCD矩阵的第二参量,C表示ABCD矩阵的第三参量,D表示ABCD矩阵的第四参量,S11表示输入反射系数,S12表示反向传输系数,S21表示正向传输系数,S22表示输出反射系数,Zc表示直线导波结构的直线特征阻抗。In the formula, A represents the first parameter of the ABCD matrix, B represents the second parameter of the ABCD matrix, C represents the third parameter of the ABCD matrix, D represents the fourth parameter of the ABCD matrix, S11 represents the input reflection coefficient, S12 represents the inverse The forward transmission coefficient, S 21 represents the forward transmission coefficient, S 22 represents the output reflection coefficient, and Z c represents the linear characteristic impedance of the linear waveguide structure.
在一个实施例中,所述综合相数计算公式包括:In one embodiment, the comprehensive phase number calculation formula includes:
所述直线损耗的计算公式包括:The calculation formula of the linear loss includes:
式中,β表示综合相数,α表示直线损耗,AL1表示第一ABCD矩阵的第一矩阵参数,DL1表示第一ABCD矩阵的第四矩阵参数,AS1表示第二ABCD矩阵的第一矩阵参数,DS1表示第二ABCD矩阵的第四矩阵参数,Re表示求实部,Im表示求虚部,L1表示第一直线长波导结构的直线长度,S1表示第二直线短波导结构的直线长度。In the formula, β represents the number of integrated phases, α represents the linear loss, A L1 represents the first matrix parameter of the first ABCD matrix, D L1 represents the fourth matrix parameter of the first ABCD matrix, and A S1 represents the first matrix parameter of the second ABCD matrix. Matrix parameters, D S1 represents the fourth matrix parameter of the second ABCD matrix, Re represents the real part, Im represents the imaginary part, L 1 represents the straight length of the first straight long waveguide structure, S 1 represents the second straight short waveguide structure straight line length.
具体地,所述相数-有效介电常数等式包括:Specifically, the phase number-effective dielectric constant equation includes:
式中,εeff表示有效介电常数等式,f表示工作频率,c表示光速。In the formula, ε eff represents the effective dielectric constant equation, f represents the operating frequency, and c represents the speed of light.
具体地,所述介质基板介电常数的计算公式包括:Specifically, the formula for calculating the dielectric constant of the dielectric substrate includes:
式中,εr表示介质基板介电常数,q表示直线导波结构的填充因子。In the formula, ε r represents the dielectric constant of the dielectric substrate, and q represents the filling factor of the linear waveguide structure.
在一个实施例中,所述介质损耗的计算公式包括:In one embodiment, the calculation formula of the dielectric loss includes:
αd=α-αc-αr,α d =α-α c -α r ,
所述介质基板介质损耗正切的计算公式包括:The formula for calculating the dielectric loss tangent of the dielectric substrate includes:
式中,αd表示介质损耗,αc表示导体损耗,αr表示辐射损耗,tanδ表示介质基板介质损耗正切,εeff表示有效介电常数等式,f表示工作频率,c表示光速,εr表示介质基板介电常数,q表示直线导波结构的填充因子。In the formula, α d represents the dielectric loss, α c represents the conductor loss, α r represents the radiation loss, tanδ represents the dielectric loss tangent of the dielectric substrate, ε eff represents the effective dielectric constant equation, f represents the operating frequency, c represents the speed of light, ε r represents the dielectric constant of the dielectric substrate, and q represents the fill factor of the linear waveguide structure.
具体地,所述导体损耗的计算公式包括:Specifically, the calculation formula of the conductor loss includes:
式中,Rc表示中心信号导体的分布串联电阻,Rg表示地平面的分布串联电阻,Zc表示波导结构的特征阻抗,其计算公式为: 其中T是金属导体的厚度,集肤效应电阻δ、σ、μ分别是集肤深度、金属导体电导率、自由空间的磁导率,且k0表示模其中,S表示中心信号导体的线宽,W表示中心信号导体与地平面的间距,k0′表示与模k0相关联的互补模,K表示表示第一类完全椭圆积分。In the formula, R c represents the distributed series resistance of the central signal conductor, R g represents the distributed series resistance of the ground plane, and Z c represents the characteristic impedance of the waveguide structure. The calculation formula is: where T is the thickness of the metal conductor and the skin effect resistance δ, σ, and μ are the skin depth, the conductivity of metal conductors, and the permeability of free space, respectively, and k 0 means modulo Among them, S represents the line width of the center signal conductor, W represents the distance between the center signal conductor and the ground plane, k 0 ′ represents the complementary mode associated with the modulo k 0 , and K represents the complete elliptic integral of the first kind.
具体地,所述辐射损耗的计算公式包括:Specifically, the calculation formula of the radiation loss includes:
其中,S表示中心信号导体的线宽,W表示中心信号导体与地平面的间距,K(k0)表示第一类完全椭圆积分,上标'表示互补模。Among them, S represents the line width of the central signal conductor, W represents the distance between the central signal conductor and the ground plane, K(k 0 ) represents the first-type complete elliptic integral, and the superscript ' represents the complementary mode.
在一个实施例中,所述第一直线导波结构的长度是第二直线导波结构的长度的2倍或者2倍以上。In one embodiment, the length of the first linear waveguide structure is twice or more than the length of the second linear waveguide structure.
在一个实施例中,所述测试装置中对于待测材料的固定安装包括焊接或直接夹紧的固定方式。In one embodiment, the fixed installation of the material to be tested in the testing device includes a fixed manner of welding or direct clamping.
上述微波介质基板宽带连续介电特性参数的检测方法,可以基于两个直线导波结构组建测试装置,通过一组高频微波连接器在测试装置上固定待测材料的两端,利用矢量网络分析仪对两个直线导波结构分别进行测试,得到两个直线导波结构的散射参数,将散射参数转换成对应的ABCD矩阵,以得到第一直线导波结构对应的第一ABCD矩阵和第二直线导波结构对应的第二ABCD矩阵,根据第一ABCD矩阵和第二ABCD矩阵分别确定综合相数和直线损耗,根据相数和相数-有效介电常数等式确定有效介电常数,根据有效介电常数确定待测材料的介质基板介电常数,获取直线导波结构的导体损耗和辐射损耗,根据直线损耗、导体损耗和辐射损耗计算介质损耗,根据介质损耗和有效介电常数确定介质基板介质损耗正切,以对综合相数、直线损耗、有效介电常数、介质基板介电常数、介质损耗和介质基板介质损耗正切等介电特性参数进行准确检测,其中建立提取介质基板介电常数εr和介质损耗正切tanδ的理想模型,用以缓解微波连接器在固定安装过程中造成的误差影响,使检测得到的介电特性参数具有较高的精度。The above-mentioned detection method for broadband continuous dielectric characteristic parameters of microwave dielectric substrates can be based on two linear guided wave structures to build a test device, fix both ends of the material to be tested on the test device through a set of high-frequency microwave connectors, and use vector network analysis. The instrument tests the two linear guided wave structures respectively, obtains the scattering parameters of the two linear guided wave structures, and converts the scattering parameters into corresponding ABCD matrices to obtain the first ABCD matrix and the first ABCD matrix corresponding to the first linear guided wave structure. For the second ABCD matrix corresponding to the two straight-line guided wave structures, the comprehensive phase number and the linear loss are respectively determined according to the first ABCD matrix and the second ABCD matrix, and the effective dielectric constant is determined according to the phase number and the phase number-effective dielectric constant equation, Determine the dielectric constant of the dielectric substrate of the material to be tested according to the effective dielectric constant, obtain the conductor loss and radiation loss of the linear waveguide structure, calculate the dielectric loss according to the linear loss, conductor loss and radiation loss, and determine according to the dielectric loss and effective dielectric constant The dielectric loss tangent of the dielectric substrate is used to accurately detect the dielectric characteristic parameters such as the comprehensive phase number, linear loss, effective dielectric constant, dielectric constant of the dielectric substrate, dielectric loss and dielectric loss tangent of the dielectric substrate. The ideal model of constant ε r and dielectric loss tangent tanδ is used to alleviate the influence of errors caused by the fixed installation of microwave connectors, so that the detected dielectric parameters have high accuracy.
附图说明Description of drawings
图1是一个实施例的微波介质基板宽带连续介电特性参数的检测方法流程图;1 is a flowchart of a method for detecting broadband continuous dielectric characteristic parameters of a microwave dielectric substrate according to an embodiment;
图2是一个实施例的基于ABCD矩阵的双线双端口导波结构的测试夹具示意图;2 is a schematic diagram of a test fixture of a two-wire two-port guided wave structure based on an ABCD matrix according to an embodiment;
图3是一个实施例中现介质基板介电参数的提取三维模型示意图;3 is a schematic diagram of a three-dimensional model for extracting dielectric parameters of an existing dielectric substrate in one embodiment;
图4是一个实施例中基于不接地共面波导的短线结构的俯视图;4 is a top view of a stub structure based on an ungrounded coplanar waveguide in one embodiment;
图5为一个实施例中基于双线优化、长直线、短直线推导得到的相数β结果示意图;5 is a schematic diagram of the phase number β result derived based on two-line optimization, long straight lines, and short straight lines in one embodiment;
图6是一个实施例中基于双线优化、长直线、短直线推导得到的有效介电常数εeff结果示意图;6 is a schematic diagram of the result of the effective dielectric constant ε eff derived based on double-line optimization, long straight lines, and short straight lines in one embodiment;
图7是一个实施例中基于双线优化、长直线、短直线推导得到介质基板介电常数εr结果示意图;FIG. 7 is a schematic diagram of the result of obtaining the dielectric constant ε r of the dielectric substrate based on the double-line optimization, the long straight line and the short straight line in an embodiment;
图8是一个实施例中基于双线优化推导得到介质基板介电常数εr的放大结果示意图;FIG. 8 is a schematic diagram of an enlarged result of the dielectric constant ε r of the dielectric substrate obtained based on the double-line optimization in one embodiment;
图9为一个实施例中基于双线优化方法得到的总的直线损耗α,导体损耗αc,辐射损耗αr,介质损耗αd结果示意图;FIG. 9 is a schematic diagram of the results of total linear loss α, conductor loss α c , radiation loss α r , and dielectric loss α d obtained based on the two-line optimization method in one embodiment;
图10为一个实施例中基于双线优化推导得到的介质基板介质损耗正切值tanδ结果示意图。FIG. 10 is a schematic diagram of the result of the dielectric loss tangent tanδ of the dielectric substrate derived based on the two-line optimization in one embodiment.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clearly understood, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。Reference herein to an "embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application. The appearances of the phrase in various places in the specification are not necessarily all referring to the same embodiment, nor a separate or alternative embodiment that is mutually exclusive of other embodiments. It is explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
参考图1所示,图1为一个实施例的微波介质基板宽带连续介电特性参数的检测方法流程图,包括如下步骤:Referring to FIG. 1, FIG. 1 is a flowchart of a method for detecting broadband continuous dielectric characteristic parameters of a microwave dielectric substrate according to an embodiment, including the following steps:
S10,基于两个直线导波结构组建测试装置,通过一组高频微波连接器在测试装置上固定待测材料的两端;所述直线导波结构的两端设有高频微波连接器,以使测试装置连接直线导波结构;所述两个直线导波结构包括第一直线导波结构和第二直线导波结构,第一直线导波结构的长度大于第二直线导波结构的长度;S10, a test device is constructed based on two linear waveguide structures, and two ends of the material to be tested are fixed on the test device through a set of high-frequency microwave connectors; the two ends of the linear waveguide structure are provided with high-frequency microwave connectors, In order to connect the test device with the straight wave guided structure; the two straight wave guided structures include a first straight wave guided structure and a second straight wave guided structure, and the length of the first straight wave guided structure is greater than that of the second straight wave guided structure length;
S20,利用矢量网络分析仪对两个直线导波结构分别进行测试,得到两个直线导波结构的散射参数;S20, using a vector network analyzer to test the two straight-line guided wave structures respectively, to obtain scattering parameters of the two straight-line guided wave structures;
S30,将所述两个直线导波结构的散射参数转换成对应的ABCD矩阵,得到第一直线导波结构对应的第一ABCD矩阵和第二直线导波结构的第二ABCD矩阵;S30, converting the scattering parameters of the two linear waveguide structures into corresponding ABCD matrices, to obtain a first ABCD matrix corresponding to the first linear waveguide structure and a second ABCD matrix of the second linear waveguide structure;
S40,根据所述第一ABCD矩阵和第二ABCD矩阵计算得到优化后的综合相数和直线损耗(如综合直线损耗),根据综合相数-有效介电常数等式确定有效介电常数;所述相数-有效介电常数等式记录综合相数和有效介电常数之间的关系;具体地,该步骤可以基于第一ABCD矩阵和第二ABCD矩阵得到优化后复传播常数表达式,即基于双线优化提取出直线结构的总衰减和相数;S40, calculate and obtain the optimized integrated phase number and linear loss (such as integrated linear loss) according to the first ABCD matrix and the second ABCD matrix, and determine the effective dielectric constant according to the integrated phase number-effective dielectric constant equation; The phase number-effective dielectric constant equation records the relationship between the integrated phase number and the effective dielectric constant; specifically, in this step, the optimized complex propagation constant expression can be obtained based on the first ABCD matrix and the second ABCD matrix, namely, Extract the total attenuation and phase number of the linear structure based on the two-line optimization;
S50,根据有效介电常数确定待测材料的介质基板介电常数;S50, determining the dielectric constant of the dielectric substrate of the material to be tested according to the effective dielectric constant;
S60,获取直线导波结构的导体损耗和辐射损耗,根据直线损耗、导体损耗和辐射损耗计算介质损耗,根据介质损耗、有效介电常数及介质基板介电常数确定介质基板介质损耗正切。S60: Obtain conductor loss and radiation loss of the linear waveguide structure, calculate dielectric loss according to the linear loss, conductor loss and radiation loss, and determine the dielectric loss tangent of the dielectric substrate according to the dielectric loss, effective dielectric constant and dielectric constant of the dielectric substrate.
上述待测材料为待测的电介质材料,如待测的直线导波结构等。两个直线导波结构可以包括适用于不接地共面波导结构、微带线、带状线、或者基片集成波导等等。The above-mentioned material to be tested is a dielectric material to be tested, such as a linear waveguide structure to be tested. The two rectilinear waveguide structures may include coplanar waveguide structures suitable for ungrounded, microstrip, stripline, or substrate-integrated waveguides, among others.
本实施例基于两条不同长度的直线微波导波结构(直线导波结构)组成测试装置,分别由各自所得的散射参数(S参数)结果,转换成对应的ABCD矩阵,并将ABCD矩阵与复传播常数相联系,通过基于双线优化的ABCD矩阵,推算出优化后的复传播常数表达式,进而可以直接提取出直线导波结构的总衰减α、相数β、特性阻抗Zc、介质基板的介电常数εr和介质损耗正切值tanδ。该双线优化方法,相对于单线方法,可以缓解微波连接器在固定安装过程中造成的误差影响,获得更加准确且连续的宽频带介质基板介电参数。所述方法可以适用于不接地共面波导结构、微带线、带状线、基片集成波导等导波结构。特别地,该方法非常适用于不接地共面波导结构,因为该结构非常适合于电镀某些新开发的电介质材料(仅需一次电镀,但诸如微带线等结构则需要多次电镀),避免了制造成本高、难度大,以及多个电镀工艺可能导致的导体厚度和粗糙度的一致性误差。This embodiment is based on two straight-line microwave guided wave structures (linear guided wave structures) with different lengths to form a test device. The scattering parameter (S-parameter) results obtained respectively are converted into corresponding ABCD matrices, and the ABCD matrix and the complex are converted into corresponding ABCD matrices. The propagation constants are related to each other. Through the ABCD matrix based on the two-line optimization, the optimized complex propagation constant expression is calculated, and then the total attenuation α, phase number β, characteristic impedance Z c , and dielectric substrate of the linear guided wave structure can be directly extracted. The dielectric constant ε r and the dielectric loss tangent tanδ. Compared with the single-line method, the double-line optimization method can alleviate the influence of errors caused by the fixed installation of the microwave connector, and obtain more accurate and continuous dielectric parameters of the broadband dielectric substrate. The method can be applied to waveguide structures such as ungrounded coplanar waveguide structures, microstrip lines, strip lines, and substrate-integrated waveguides. In particular, the method is well suited for ungrounded coplanar waveguide structures, which are well suited for plating some newly developed dielectric materials (only one plating is required, but structures such as microstrip lines require multiple platings), avoiding Therefore, the manufacturing cost is high, the difficulty is high, and the consistency error of conductor thickness and roughness may be caused by multiple electroplating processes.
上述微波介质基板宽带连续介电特性参数的检测方法,可以基于两个直线导波结构组建测试装置,通过一组高频微波连接器在测试装置上固定待测材料的两端,利用矢量网络分析仪对两个直线导波结构分别进行测试,得到两个直线导波结构的散射参数,将散射参数转换成对应的ABCD矩阵,以得到第一直线导波结构对应的第一ABCD矩阵和第二直线导波结构对应的第二ABCD矩阵,根据第一ABCD矩阵和第二ABCD矩阵分别确定综合相数和直线损耗,根据相数和相数-有效介电常数等式确定有效介电常数,根据有效介电常数确定待测材料的介质基板介电常数,获取直线导波结构的导体损耗和辐射损耗,根据直线损耗、导体损耗和辐射损耗计算介质损耗,根据介质损耗和有效介电常数确定介质基板介质损耗正切,以对综合相数、直线损耗、有效介电常数、介质基板介电常数、介质损耗和介质基板介质损耗正切等介电特性参数进行准确检测,其中建立提取介质基板介电常数εr和介质损耗正切tanδ的理想模型,用以缓解微波连接器在固定安装过程中造成的误差影响,使检测得到的介电特性参数具有较高的精度。The above-mentioned detection method for broadband continuous dielectric characteristic parameters of microwave dielectric substrates can be based on two linear guided wave structures to build a test device, fix both ends of the material to be tested on the test device through a set of high-frequency microwave connectors, and use vector network analysis. The instrument tests the two linear guided wave structures respectively, obtains the scattering parameters of the two linear guided wave structures, and converts the scattering parameters into corresponding ABCD matrices to obtain the first ABCD matrix and the first ABCD matrix corresponding to the first linear guided wave structure. For the second ABCD matrix corresponding to the two straight-line guided wave structures, the comprehensive phase number and the linear loss are respectively determined according to the first ABCD matrix and the second ABCD matrix, and the effective dielectric constant is determined according to the phase number and the phase number-effective dielectric constant equation, Determine the dielectric constant of the dielectric substrate of the material to be tested according to the effective dielectric constant, obtain the conductor loss and radiation loss of the linear waveguide structure, calculate the dielectric loss according to the linear loss, conductor loss and radiation loss, and determine according to the dielectric loss and effective dielectric constant The dielectric loss tangent of the dielectric substrate is used to accurately detect the dielectric characteristic parameters such as the comprehensive phase number, linear loss, effective dielectric constant, dielectric constant of the dielectric substrate, dielectric loss and dielectric loss tangent of the dielectric substrate. The ideal model of constant ε r and dielectric loss tangent tanδ is used to alleviate the influence of errors caused by the fixed installation of microwave connectors, so that the detected dielectric parameters have high accuracy.
在一个实施例中,所述ABCD矩阵包括:In one embodiment, the ABCD matrix includes:
式中,A表示ABCD矩阵的第一参量,B表示ABCD矩阵的第二参量,C表示ABCD矩阵的第三参量,D表示ABCD矩阵的第四参量,S11表示输入反射系数,S12表示反向传输系数,S21表示正向传输系数,S22表示输出反射系数,Zc表示直线导波结构(如第一直线导波结构和第二直线导波结构)的直线特征阻抗。In the formula, A represents the first parameter of the ABCD matrix, B represents the second parameter of the ABCD matrix, C represents the third parameter of the ABCD matrix, D represents the fourth parameter of the ABCD matrix, S11 represents the input reflection coefficient, S12 represents the inverse The forward transmission coefficient, S 21 is the forward transmission coefficient, S 22 is the output reflection coefficient, and Z c is the linear characteristic impedance of the linear waveguide structure (such as the first linear waveguide structure and the second linear waveguide structure).
具体地,第一直线导波结构对应的第一ABCD矩阵为:其中,AL1表示第一ABCD矩阵的第一矩阵参数,BL1表示第一ABCD矩阵的第二矩阵参数,CL1表示第一ABCD矩阵的第三矩阵参数,DL1表示第一ABCD矩阵的第四矩阵参数。第二直线导波结构对应的第二ABCD矩阵为:其中,AS1表示第二ABCD矩阵的第一矩阵参数,BS1表示第二ABCD矩阵的第二矩阵参数,CS1表示第二ABCD矩阵的第三矩阵参数,DS1表示第二ABCD矩阵的第四矩阵参数。两端口直线导波结构与ABCD矩阵示意图如图2所示。Specifically, the first ABCD matrix corresponding to the first linear waveguide structure is: Among them, A L1 represents the first matrix parameter of the first ABCD matrix, B L1 represents the second matrix parameter of the first ABCD matrix, C L1 represents the third matrix parameter of the first ABCD matrix, and D L1 represents the first ABCD matrix. Four matrix parameters. The second ABCD matrix corresponding to the second linear guided wave structure is: Among them, A S1 represents the first matrix parameter of the second ABCD matrix, B S1 represents the second matrix parameter of the second ABCD matrix, C S1 represents the third matrix parameter of the second ABCD matrix, and D S1 represents the second ABCD matrix. Four matrix parameters. The schematic diagram of the two-port linear guided wave structure and the ABCD matrix is shown in Figure 2.
在一个实施例中,所述综合相数计算公式包括:In one embodiment, the comprehensive phase number calculation formula includes:
所述直线损耗的计算公式包括:The calculation formula of the linear loss includes:
式中,β表示综合相数,α表示直线损耗,AL1表示第一ABCD矩阵的第一矩阵参数,DL1表示第一ABCD矩阵的第四矩阵参数,AS1表示第二ABCD矩阵的第一矩阵参数,DS1表示第二ABCD矩阵的第四矩阵参数,Re表示求实部,Im表示求虚部,L1表示第一直线长波导结构的直线长度,S1表示第二直线短波导结构的直线长度。In the formula, β represents the number of integrated phases, α represents the linear loss, A L1 represents the first matrix parameter of the first ABCD matrix, D L1 represents the fourth matrix parameter of the first ABCD matrix, and A S1 represents the first matrix parameter of the second ABCD matrix. Matrix parameters, D S1 represents the fourth matrix parameter of the second ABCD matrix, Re represents the real part, Im represents the imaginary part, L 1 represents the straight length of the first straight long waveguide structure, S 1 represents the second straight short waveguide structure straight line length.
上述基于双线优化的相数β,其与长直线(第一直线导波结构)和短直线(第二直线导波结构)的ABCD矩阵(如第一ABCD矩阵和第二ABCD矩阵)有关。The above-mentioned phase number β based on two-line optimization is related to the ABCD matrix (such as the first ABCD matrix and the second ABCD matrix) of the long straight line (the first straight-line guided wave structure) and the short straight line (the second straight-line guided wave structure). .
具体地,所述相数-有效介电常数等式包括:Specifically, the phase number-effective dielectric constant equation includes:
式中,εeff表示有效介电常数等式,f表示工作频率,c表示光速。In the formula, ε eff represents the effective dielectric constant equation, f represents the operating frequency, and c represents the speed of light.
具体地,所述介质基板介电常数的计算公式包括:Specifically, the formula for calculating the dielectric constant of the dielectric substrate includes:
式中,εr表示介质基板介电常数,q表示直线导波结构的填充因子。In the formula, ε r represents the dielectric constant of the dielectric substrate, and q represents the filling factor of the linear waveguide structure.
此时,有:At this point, there are:
具体地,所述介质损耗的计算公式包括:Specifically, the calculation formula of the dielectric loss includes:
αd=α-αc-αr,α d =α-α c -α r ,
所述介质基板介质损耗正切的计算公式包括:The formula for calculating the dielectric loss tangent of the dielectric substrate includes:
式中,αd表示介质损耗,αc表示导体损耗,αr表示辐射损耗,tanδ表示介质基板介质损耗正切,εeff表示有效介电常数等式,f表示工作频率,c表示光速,εr表示介质基板介电常数,q表示直线导波结构的填充因子。其中填充因子q、导体损耗αc、辐射损耗αr的取值与所选结构(如第一直线导波结构和第二直线导波结构)相关。In the formula, α d represents the dielectric loss, α c represents the conductor loss, α r represents the radiation loss, tanδ represents the dielectric loss tangent of the dielectric substrate, ε eff represents the effective dielectric constant equation, f represents the operating frequency, c represents the speed of light, ε r represents the dielectric constant of the dielectric substrate, and q represents the fill factor of the linear waveguide structure. The values of the filling factor q, the conductor loss α c , and the radiation loss α r are related to the selected structures (eg, the first linear waveguide structure and the second linear waveguide structure).
在一个示例中,在针对不接地共面波导结构时,所述导体损耗的计算公式包括:In one example, for an ungrounded coplanar waveguide structure, the calculation formula of the conductor loss includes:
式中,Rc表示直线导波结构的特征阻抗,Rg表示直线导波结构的分布串联电阻,Zc表示波导结构的特征阻抗。In the formula, R c represents the characteristic impedance of the linear waveguide structure, R g represents the distributed series resistance of the linear waveguide structure, and Z c represents the characteristic impedance of the waveguide structure.
具体地,特征阻抗中心信号导体的分布串联电阻 地平面的分布串联电阻T是金属导体的厚度,集肤效应电阻δ、σ、μ分别是集肤深度、金属导体电导率、自由空间的磁导率,且k0表示模其中,S表示中心信号导体的线宽,W表示中心信号导体与地平面的间距,k0′表示与模k0相关联的互补模,K表示表示第一类完全椭圆积分。Specifically, the characteristic impedance Distributed series resistance of the center signal conductor Distributed series resistance of the ground plane T is the thickness of the metal conductor, the skin effect resistance δ, σ, and μ are the skin depth, the conductivity of metal conductors, and the permeability of free space, respectively, and k 0 means modulo Among them, S represents the line width of the center signal conductor, W represents the distance between the center signal conductor and the ground plane, k 0 ′ represents the complementary mode associated with the modulo k 0 , and K represents the complete elliptic integral of the first kind.
在一个示例中,所述辐射损耗的计算公式包括:In one example, the calculation formula of the radiation loss includes:
其中,S表示中心信号导体的线宽,W表示中心信号导体与地平面的间距,K(k0)表示第一类完全椭圆积分,上标'表示互补模。Among them, S represents the line width of the central signal conductor, W represents the distance between the central signal conductor and the ground plane, K(k 0 ) represents the first-type complete elliptic integral, and the superscript ' represents the complementary mode.
本示例中,辐射因子介质波长 In this example, the radiation factor Medium wavelength
在一个实施例中,,所述第一直线导波结构的长度是第二直线导波结构的长度的2倍或者2倍以上。In one embodiment, the length of the first linear waveguide structure is twice or more than the length of the second linear waveguide structure.
本实施例组建的测试装置由两条不同长度直线微波导波结构构成,长直线导波结构(第一直线导波结构)长度是短直线导波结构(第二直线导波结构)长度的2倍或以上为佳,通过高频微波连接器测试其散射参数。The test device constructed in this embodiment is composed of two linear microwave waveguide structures of different lengths. The length of the long linear waveguide structure (the first linear waveguide structure) is equal to the length of the short linear waveguide structure (the second linear waveguide structure). 2 times or more is better, and its scattering parameters are tested by high-frequency microwave connectors.
在一个实施例中,所述测试装置中对于待测材料的固定安装包括焊接或直接夹紧的固定方式。In one embodiment, the fixed installation of the material to be tested in the testing device includes a fixed manner of welding or direct clamping.
本实施例中,待测材料表面附有金属铜;测试装置中对于待测材料的固定安装包括焊接或直接夹紧的固定方式。In this embodiment, metal copper is attached to the surface of the material to be tested; the fixed installation of the material to be tested in the testing device includes welding or direct clamping.
与现有技术相比,上述微波介质基板宽带连续介电特性参数的检测方法的技术效果如下:Compared with the prior art, the technical effects of the method for detecting broadband continuous dielectric characteristic parameters of microwave dielectric substrates are as follows:
1)该方法相比其他方法,如波级联矩阵算法,更为简单且测试操作方便,参数提取精度高,仅由两条不同长度直线构成的简单微波导波结构组成,可直接提取出线路总衰减、相数、特性阻抗、基片介电常数和介质损耗正切等;1) Compared with other methods, such as the wave cascade matrix algorithm, this method is simpler and more convenient to test and operate, and the parameter extraction accuracy is high. It is only composed of a simple microwave guided wave structure composed of two straight lines of different lengths, and the circuit can be directly extracted. Total attenuation, number of phases, characteristic impedance, substrate dielectric constant and dielectric loss tangent, etc.;
2)由于该方法是基于双线优化的ABCD矩阵进行参数提取,因此该方法可以在一定程度上缓解由于连接器焊接和器件制造引起的推导误差,且同时考虑结构的导体损耗和辐射损耗,得到准确且连续的宽频带介电特性;2) Since the method is based on the two-line optimized ABCD matrix for parameter extraction, the method can alleviate the derivation error caused by connector welding and device manufacturing to a certain extent, and consider the conductor loss and radiation loss of the structure at the same time. Accurate and continuous broadband dielectric properties;
3)该方法首次基于不接地共面波导实现介质基板介电参数的提取,非常适合于电镀某些新开发的电介质材料(仅需一次电镀,但诸如微带线等结构则需要多次电镀),避免了制造成本高、难度大,以及多个电镀工艺可能导致的导体厚度和粗糙度的一致性误差;3) This method is the first to realize the extraction of the dielectric parameters of the dielectric substrate based on the ungrounded coplanar waveguide, which is very suitable for the electroplating of some newly developed dielectric materials (only one electroplating is required, but structures such as microstrip lines require multiple electroplating) , avoiding the high cost and difficulty of manufacturing, and the consistency error of conductor thickness and roughness that may be caused by multiple electroplating processes;
4)该双线优化提取方法不仅适用于不接地共面波导结构,对于微带线、带状线、基片集成波导等结构也同样适用。4) The two-line optimization extraction method is not only applicable to ungrounded coplanar waveguide structures, but also to structures such as microstrip lines, striplines, and substrate-integrated waveguides.
在一个实施例中,以基于不接地共面波导实现介质基板介电参数的提取为例,图3所示结构为其三维模型示意图,由两条不同长度直线(直线导波结构)构成,图4为本发明实施例中基于不接地共面波导的短线结构的俯视图。In one embodiment, taking the extraction of dielectric parameters of a dielectric substrate based on an ungrounded coplanar waveguide as an example, the structure shown in FIG. 3 is a schematic diagram of a three-dimensional model, which is composed of two straight lines of different lengths (linear guided wave structures). 4 is a top view of a stub structure based on an ungrounded coplanar waveguide in an embodiment of the present invention.
如图3和图4所示,本实施例所展示的一组不同长度的直线波导结构下的测试装置,该装置在待测材料2两端通过高频微波连接器1来固定,待测材料2与高频微波连接器1之间可以为焊接固定或者直接夹紧的方式进行固定,待测材料2的上表面为金属铜面3。在所述的测试装置测试下,待测材料2的两端与高频微波连接器1的接头处会形成一个误差框4。As shown in FIG. 3 and FIG. 4 , a test device under a set of linear waveguide structures with different lengths shown in this embodiment is fixed by high-
以广泛应用的微波介质材料FR4为测试材料,对该方法进行了实验验证。该实施例通过制作的两条长度分别为50毫米和100毫米的不接地共面波导直线样品为测试对象。FR4材料厚度为0.5毫米,其一侧刻蚀18微米厚的铜金属,信号线宽度S和间隙W分别为1.3毫米和0.16毫米,两个SMA同轴连接器仔细地焊接在这两条直线结构上,以使它们具有几乎相同的焊接效果,从而确保它们的机械和电气性能是接近的。The method is experimentally verified with the widely used microwave dielectric material FR4 as the test material. In this embodiment, two straight samples of ungrounded coplanar waveguides with lengths of 50 mm and 100 mm, respectively, are used as test objects. The thickness of the FR4 material is 0.5mm, and one side is etched with 18μm thick copper metal, the signal line width S and the gap W are 1.3mm and 0.16mm, respectively, and two SMA coaxial connectors are carefully welded in these two straight lines. , so that they have almost the same welding effect, thus ensuring that their mechanical and electrical properties are close.
进一步地,用矢量网络分析仪(VNA)N5247A测量所制作的的两条直线,得到两条直线的散射参数结果,再由等式Further, the two straight lines produced are measured with a vector network analyzer (VNA) N5247A, and the scattering parameter results of the two straight lines are obtained, and then the equation
转换成ABCD矩阵,长直线和短直线的ABCD矩阵分别表示为和 Converted to ABCD matrix, the ABCD matrix of long straight line and short straight line are respectively expressed as and
进一步地,利用长直线和短直线的ABCD矩阵推导出基于双线优化的相数β,从而进一步推导出结构有效介电常数εeff,其等式为:Further, using the ABCD matrix of the long straight line and the short straight line to deduce the phase number β based on the two-line optimization, thereby further deriving the effective dielectric constant ε eff of the structure, its equation is:
为了说明该双线优化方法的优越性,这里也给出利用单线计算的结果。根据长直线和短直线的ABCD矩阵,分别计算各自的相数β,从而进一步推导出各自结构有效介电常数εeff,所用等式为:In order to illustrate the superiority of the two-line optimization method, the results using the single-line calculation are also presented here. According to the ABCD matrix of the long straight line and the short straight line, the respective phase numbers β are calculated respectively, so as to further deduce the effective dielectric constant ε eff of the respective structures. The equation used is:
基于双线优化、长直线、短直线得到的相数β和有效介电常数εeff结果如图5和6所示。The results of phase number β and effective dielectric constant ε eff obtained based on two-line optimization, long straight line, and short straight line are shown in Figures 5 and 6.
进一步地,利用介质基板介电常数εr与所得有效介电常数εeff的下列关系式,计算出介质基板介电常数εr:Further, using the following relationship between the dielectric constant ε r of the dielectric substrate and the obtained effective dielectric constant ε eff , the dielectric constant ε r of the dielectric substrate is calculated:
其中q是所选结构的填充因子。对于图2和图3所述的不接地共面波导结构,其填充因子q可以通过如下等式进行计算:where q is the fill factor of the selected structure. For the ungrounded coplanar waveguide structures described in Figures 2 and 3, the fill factor q can be calculated by the following equation:
其中,K是第一类完全椭圆积分,k′0和k′1是与模k0和k1相关联的互补模,由以下式子给出:where K is a complete elliptic integral of the first kind, and k′ 0 and k′ 1 are the complementary moduli associated with modulo k 0 and k 1 , given by:
其中,S和W分别是不接地共面波导的信号线线宽和缝隙宽度,H是介质基板厚度。K(k)/K(k′),K(k)以及K′(k)可通过如下等式进行计算:Among them, S and W are the signal line width and slot width of the ungrounded coplanar waveguide, respectively, and H is the thickness of the dielectric substrate. K(k)/K(k'), K(k) and K'(k) can be calculated by the following equations:
最终基于双线优化、长直线、短直线推导得到介质基板介电常数εr结果如图7所示,图8是基于双线优化推导得到介质基板介电常数εr的放大图。有图可知基于双线优化、长直线、短直线所得的在10GHz时的介质基板介电常数εr值分别为17.37、9.95和4.37。由于供应商提供的材料在10ghz时的εr为4.4,因此基于优化的双线算法提取的εr显然更接近参考值,在极宽的频带(4至20GHz)中,两者的差异仅为~0.03(0.68%)至~0.07(1.59%)。Finally, the dielectric constant ε r of the dielectric substrate is obtained based on the double-line optimization, long straight line, and short straight line. The result is shown in Figure 7. Figure 8 is an enlarged view of the dielectric constant ε r of the dielectric substrate derived based on the double-line optimization. It can be seen from the figure that the dielectric constant εr values of the dielectric substrate at 10 GHz based on the double-line optimization, the long straight line and the short straight line are 17.37, 9.95 and 4.37, respectively. Since the material provided by the supplier has an ε r of 4.4 at 10 GHz, the ε r extracted based on the optimized two-line algorithm is obviously closer to the reference value, and in an extremely wide frequency band (4 to 20 GHz), the difference between the two is only -0.03 (0.68%) to -0.07 (1.59%).
进一步地,利用长直线和短直线的ABCD矩阵推导出基于双线优化的直线损耗α,其表达式为:Further, using the ABCD matrix of the long straight line and the short straight line, the straight line loss α based on the two-line optimization is deduced, and its expression is:
建立基于双线优化的直线损耗α与导体损耗αc、辐射损耗αr、介质损耗αd的关系计算出介质损耗αd,从而推导出介质基板介质损耗正切tanδ,具体如下:The relationship between the linear loss α and the conductor loss α c , the radiation loss α r , and the dielectric loss α d based on the two-line optimization is established to calculate the dielectric loss α d , thereby deriving the dielectric loss tangent tanδ of the dielectric substrate, as follows:
所述介质损耗αd的计算表达式如下:The calculation expression of the dielectric loss α d is as follows:
αd=α-αc-αr α d =α- αc - αr
所述介质基板介质损耗正切tanδ的计算表达式如下:The calculation expression of the dielectric loss tangent tanδ of the dielectric substrate is as follows:
所述导体损耗αc的计算表达式为如下:The calculation expression of the conductor loss α c is as follows:
其中,特征阻抗中心信号导体的分布串联电阻地平面的分布串联电阻 T是金属导体的厚度,集肤效应电阻δ、σ、μ分别是集肤深度、金属导体电导率、自由空间的磁导率,且 Among them, the characteristic impedance Distributed series resistance of the center signal conductor Distributed series resistance of the ground plane T is the thickness of the metal conductor, the skin effect resistance δ, σ, and μ are the skin depth, the conductivity of metal conductors, and the permeability of free space, respectively, and
所述辐射损耗αr的计算表达式如下:The calculation expression of the radiation loss α r is as follows:
其中,辐射因子介质波长 Among them, the radiation factor Medium wavelength
最终基于双线优化方法得到的总的直线损耗α,导体损耗αc,辐射损耗αr,介质损耗αd结果如图9所示,图10是基于双线优化推导得到的介质基板介质损耗正切值tanδ结果。由图8可知,辐射损耗和导体损耗只占总损耗的一小部分,损耗的主要来源是基板的介质损耗,且随着频率增大而增大。由图10可知,tanδ的值在8至20ghz之间从0.0186逐渐增加到0.0214,与供应商提供的10GHz参考值(0.02)相比,差异为0.0014(7%)。在10GHz时提取的tanδ值为0.0199,与参考值相比的差异为0.0001(0.5%)。低于8GHz的提取精度变得相对较差,这是由于在低频下,对应直线的电长度太小。该方法的材料参数提取精度比文献中的常用的其他方法要高。Finally, the total linear loss α, conductor loss α c , radiation loss α r , and dielectric loss α d obtained based on the two-line optimization method are shown in Figure 9, and Figure 10 is the dielectric loss tangent of the dielectric substrate derived based on the two-line optimization. The value of tanδ results. It can be seen from Figure 8 that the radiation loss and conductor loss only account for a small part of the total loss, and the main source of loss is the dielectric loss of the substrate, which increases with the increase of frequency. It can be seen from Figure 10 that the value of tanδ gradually increases from 0.0186 to 0.0214 between 8 and 20 GHz, which is a difference of 0.0014 (7%) compared to the 10 GHz reference value (0.02) provided by the supplier. The extracted tan delta value at 10 GHz is 0.0199, the difference from the reference value is 0.0001 (0.5%). The extraction accuracy becomes relatively poor below 8 GHz, because at low frequencies, the electrical length of the corresponding straight line is too small. The extraction accuracy of the material parameters of this method is higher than other commonly used methods in the literature.
进一步地,由于该实例使用SMA同轴连接器,因此仅在低于20GHz的频率下对介质基板材料特性得到了表征。所提出的算法基于准TEM近似,如果满足准TEM波假设以及良好的毫米波连接器(例如2.92mm连接器)焊接精度,则可以实现介质材料在更高频率下的特性提取。Further, since this example uses SMA coaxial connectors, the dielectric substrate material properties are only characterized at frequencies below 20 GHz. The proposed algorithm is based on the quasi-TEM approximation, if the quasi-TEM wave assumption and good welding accuracy of millimeter-wave connectors (such as 2.92mm connectors) are satisfied, the feature extraction of dielectric materials at higher frequencies can be achieved.
进一步地,该实例在20GHz以下的频率范围内验证了该方法的有效性,它能准确地反演出介质基板的复介电常数,介电常数和介电损耗角正切的提取误差分别为0.68%(4.37vs 4.4)和0.5%(0.0199vs 0.02),。误差来源主要是长短线的连接和焊接不完全相同所致,此外也有来自金属表面氧化和制备等误差。该方法同样适用于其它导波结构,在推导出差分相位和有效介电常数后,结合结构尺寸精确分离各种损耗,可以提取出介质基板的介电常数和介质损耗角正切值。Further, this example verifies the effectiveness of the method in the frequency range below 20 GHz, which can accurately invert the complex permittivity of the dielectric substrate, and the extraction errors of the permittivity and the dielectric loss tangent are 0.68%, respectively. (4.37vs 4.4) and 0.5% (0.0199vs 0.02),. The main source of errors is that the connection and welding of long and short lines are not exactly the same, and there are also errors from metal surface oxidation and preparation. This method is also applicable to other guided wave structures. After deriving the differential phase and effective dielectric constant, and combining with the structure size to accurately separate various losses, the dielectric constant and dielectric loss tangent of the dielectric substrate can be extracted.
上面结合基于不接地共面波导实现介质基板介电参数的提取和实验结果对本发明专利进行了示例性的描述,正如本发明说提到的,本发明的实现并部受上述示例的限制,只要采用了本发明所述方法构思和技术方案进行的各种改进,都属于本发明的保护范围内。The patent of the present invention is exemplarily described above in conjunction with the extraction of the dielectric parameters of the dielectric substrate based on the ungrounded coplanar waveguide and the experimental results. Various improvements made by adopting the method ideas and technical solutions of the present invention fall within the protection scope of the present invention.
由此可见,本实施例实现了一种基于双线优化的ABCD矩阵提取微波介质基板宽带连续介电特性的表征方法,该发明结构简单,易于实现,且准确度高,具有巨大的应用前景。It can be seen that this embodiment implements a characterization method for extracting broadband continuous dielectric properties of microwave dielectric substrates based on two-line optimization ABCD matrix.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, all It is considered to be the range described in this specification.
需要说明的是,本申请实施例所涉及的术语“第一\第二\第三”仅仅是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序。应该理解“第一\第二\第三”区分的对象在适当情况下可以互换,以使这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。It should be noted that the term "first\second\third" involved in the embodiments of the present application is only to distinguish similar objects, and does not represent a specific ordering of objects. It is understandable that "first\second\third" "Three" may be interchanged in a particular order or sequence where permitted. It should be understood that the "first\second\third" distinctions may be interchanged under appropriate circumstances to enable the embodiments of the application described herein to be practiced in sequences other than those illustrated or described herein.
本申请实施例的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或模块的过程、方法、装置、产品或设备没有限定于已列出的步骤或模块,而是可选地还包括没有列出的步骤或模块,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或模块。The terms "comprising" and "having" and any variations thereof in the embodiments of the present application are intended to cover non-exclusive inclusion. For example, a process, method, apparatus, product or device comprising a series of steps or modules is not limited to the listed steps or modules, but optionally also includes unlisted steps or modules, or optionally also includes Other steps or modules inherent to these processes, methods, products or devices.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010667847.0A CN111880012B (en) | 2020-07-13 | 2020-07-13 | Method for detecting broadband continuous dielectric characteristic parameters of microwave dielectric substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010667847.0A CN111880012B (en) | 2020-07-13 | 2020-07-13 | Method for detecting broadband continuous dielectric characteristic parameters of microwave dielectric substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111880012A true CN111880012A (en) | 2020-11-03 |
CN111880012B CN111880012B (en) | 2022-03-18 |
Family
ID=73151666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010667847.0A Active CN111880012B (en) | 2020-07-13 | 2020-07-13 | Method for detecting broadband continuous dielectric characteristic parameters of microwave dielectric substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111880012B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113609813A (en) * | 2021-10-09 | 2021-11-05 | 深圳飞骧科技股份有限公司 | Microstrip line modeling method, microstrip line modeling device and related equipment |
CN113884767A (en) * | 2021-09-28 | 2022-01-04 | 东南大学 | Two-dimensional material impedance characteristic testing method based on waveguide method |
WO2022227945A1 (en) * | 2021-04-25 | 2022-11-03 | 中兴通讯股份有限公司 | Cable parameter determination method, apparatus and system, storage medium, and electronic apparatus |
CN118191424A (en) * | 2024-01-22 | 2024-06-14 | 哈尔滨工业大学 | A non-invasive measurement method for contact impedance of electrical connector |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080191711A1 (en) * | 2007-02-12 | 2008-08-14 | Rivera David F | Device for measurement of electrical properties in materials |
CN101923129A (en) * | 2010-07-08 | 2010-12-22 | 西北工业大学 | A device and method for measuring the ferroelectricity of ferroelectric materials in the microwave frequency band |
US20170131334A1 (en) * | 2015-11-10 | 2017-05-11 | United Arab Emirates University | Dielectric constant detection method and device using anomalous phase dispersion |
CN109444174A (en) * | 2018-08-20 | 2019-03-08 | 中国石油天然气集团有限公司 | Fixture is used in a kind of high frequency dielectric constant of rock measurement method and measurement |
CN111257370A (en) * | 2020-03-05 | 2020-06-09 | 西北工业大学 | Device and method for measuring dielectric constant and metal conductivity of copper-clad plate |
CN111308221A (en) * | 2020-02-18 | 2020-06-19 | 东南大学 | A Characterization Method for Extracting Broadband Continuous Dielectric Properties of Microwave Dielectric Substrates |
-
2020
- 2020-07-13 CN CN202010667847.0A patent/CN111880012B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080191711A1 (en) * | 2007-02-12 | 2008-08-14 | Rivera David F | Device for measurement of electrical properties in materials |
CN101923129A (en) * | 2010-07-08 | 2010-12-22 | 西北工业大学 | A device and method for measuring the ferroelectricity of ferroelectric materials in the microwave frequency band |
US20170131334A1 (en) * | 2015-11-10 | 2017-05-11 | United Arab Emirates University | Dielectric constant detection method and device using anomalous phase dispersion |
CN109444174A (en) * | 2018-08-20 | 2019-03-08 | 中国石油天然气集团有限公司 | Fixture is used in a kind of high frequency dielectric constant of rock measurement method and measurement |
CN111308221A (en) * | 2020-02-18 | 2020-06-19 | 东南大学 | A Characterization Method for Extracting Broadband Continuous Dielectric Properties of Microwave Dielectric Substrates |
CN111257370A (en) * | 2020-03-05 | 2020-06-09 | 西北工业大学 | Device and method for measuring dielectric constant and metal conductivity of copper-clad plate |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022227945A1 (en) * | 2021-04-25 | 2022-11-03 | 中兴通讯股份有限公司 | Cable parameter determination method, apparatus and system, storage medium, and electronic apparatus |
CN113884767A (en) * | 2021-09-28 | 2022-01-04 | 东南大学 | Two-dimensional material impedance characteristic testing method based on waveguide method |
CN113884767B (en) * | 2021-09-28 | 2023-08-18 | 东南大学 | Waveguide method-based two-dimensional material impedance characteristic test method |
CN113609813A (en) * | 2021-10-09 | 2021-11-05 | 深圳飞骧科技股份有限公司 | Microstrip line modeling method, microstrip line modeling device and related equipment |
CN118191424A (en) * | 2024-01-22 | 2024-06-14 | 哈尔滨工业大学 | A non-invasive measurement method for contact impedance of electrical connector |
Also Published As
Publication number | Publication date |
---|---|
CN111880012B (en) | 2022-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111880012A (en) | Method for detecting broadband continuous dielectric characteristic parameters of microwave dielectric substrate | |
Pucel et al. | Losses in microstrip | |
CN111308221B (en) | A Characterization Method for Extracting Broadband Continuous Dielectric Properties of Microwave Dielectric Substrates | |
CN112505429B (en) | Complex permittivity test system and test method based on coaxial stripline resonator | |
CN110320266B (en) | A flexible microwave sensor and its preparation method and detection method | |
Baker-Jarvis et al. | Dielectric and magnetic measurements: A survey of nondestructive, quasi-nondestructive, and process-control techniques | |
CN113049883A (en) | Single fiber dielectric constant testing device based on coupling microstrip line | |
CN114778955B (en) | A millimeter wave dielectric performance test system and method based on suspended microstrip line | |
Ning et al. | Ridged substrate integrated coaxial line for wideband millimeter-wave transmission | |
Tiwari et al. | Novel microstrip-based simplified approach for fast determination of substrate permittivity | |
Liu et al. | A transmission-reflection method for complex permittivity measurement using a planar sensor | |
CN106684520B (en) | A multi-mode substrate integrated waveguide resonator for measuring the electrical characteristics of a PCB substrate and its measurement method | |
Kneppo et al. | Basic parameters of nonsymmetrical coplanar line | |
Yu et al. | A novel parallel-plate dielectric resonator method for broadband complex permittivity measurement in the millimeter-wave bands | |
Tikhov et al. | Refined characterization of E-plane waveguide to microstrip transition for millimeter-wave applications | |
JP7370060B2 (en) | Evaluation method, evaluation device, and evaluation system for dielectric materials | |
CN114325118B (en) | A solid material electromagnetic parameter sensor based on CSRR-derived structure | |
Henry et al. | Electrical characterization of LTCC coplanar lines up to 110 GHz | |
Li et al. | Dielectric loss tangent extraction using two single-ended striplines of different width | |
Lin et al. | Extraction of complex permittivity of dielectrics on package from W-band to D-band | |
KR100732935B1 (en) | Dielectric constant measuring probe and measuring device using transmission reference impulse and measuring method thereof | |
Chung et al. | A Method for Measuring Dielectric Properties of Dielectric Laminates | |
Zhuang et al. | An Application of Double-sided Parallel Strip Line Resonator in Dielectric High Frequency Test | |
Shebani et al. | Measurement of dielectric constant of some materials using planar technology | |
Hinojosa | Dielectric permittivity measuring technique of film-shaped materials at low microwave frequencies from open-end coplanar waveguide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |