CN111866922A - 相控阵天线协议测试装置及方法 - Google Patents

相控阵天线协议测试装置及方法 Download PDF

Info

Publication number
CN111866922A
CN111866922A CN201910354535.1A CN201910354535A CN111866922A CN 111866922 A CN111866922 A CN 111866922A CN 201910354535 A CN201910354535 A CN 201910354535A CN 111866922 A CN111866922 A CN 111866922A
Authority
CN
China
Prior art keywords
base station
antenna
terminal
phased array
array antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910354535.1A
Other languages
English (en)
Other versions
CN111866922B (zh
Inventor
漆一宏
于伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GENERAL TEST SYSTEMS Inc
Original Assignee
GENERAL TEST SYSTEMS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GENERAL TEST SYSTEMS Inc filed Critical GENERAL TEST SYSTEMS Inc
Priority to CN201910354535.1A priority Critical patent/CN111866922B/zh
Priority to PCT/CN2020/081374 priority patent/WO2020220877A1/zh
Publication of CN111866922A publication Critical patent/CN111866922A/zh
Application granted granted Critical
Publication of CN111866922B publication Critical patent/CN111866922B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种相控阵天线协议测试装置及方法,其中,装置包括:第一微波暗室和第二微波暗室;基站耦合天线,每个基站耦合探头一一对应于多个基站单元天线设置在预设的近场辐射距离内;终端耦合天线,每个终端耦合探头一一对应于多个终端单元天线设置在预设的近场辐射距离内;信道模拟器,根据基站单元天线的阵中方向图信息、终端单元天线的阵中方向图信息与信道模型模拟实时的相控阵天线工作状态,以得到通信协议性能和射频性能。根据本发明实施例的测试装置,可以模拟基站和终端真实工作环境和状态,从而获取测试协议的各个指标以及射频终端和基站的性能指标,有效保证测试的工作效率和准确性,简单易实现。

Description

相控阵天线协议测试装置及方法
技术领域
本发明涉及无线设备性能测试技术领域,特别涉及一种相控阵天线协议测试装置及方 法。
背景技术
目前,相控阵天线由于可以实现通过改变各个单元天线的端口馈电实现相控阵天线整 体波束的改变,使得被大量应用在5G通信、雷达通信、汽车自动驾驶等方面。其中,这种波束改变是通过电控实现,具有很低的时延和很高的实时性,因此相控阵天线在波束追踪目标和实时波束赋形方面应用很广。
然而,随着5G毫米波的发展,不仅仅是基站,在一般的移动终端上(比如手机、汽车等)也使用了相控阵天线,从而能够实现动态改变终端辐射方向图的目的,进而由于大范围的应用对射频性能、通信协议稳定性等等都提出更高的要求。因此,在设计好基站(如 5G毫米波基站)和终端之后,如何评估通信系统协议稳定性/各个模块的射频性能以及基 站实现算法如RRM(Radio Resource Management,无线资源管理)测试是各大厂家面临和 急需要解决的问题。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种相控阵天线协议测试装置,该测试装置可以模 拟基站和终端真实工作环境和状态,简单易实现。
本发明的另一个目的在于提出一种相控阵天线协议测试方法。
为达到上述目的,本发明一个实施例提出了一种相控阵天线协议测试装置,包括:第 一微波暗室和第二微波暗室,所述第一微波暗室和所述第二微波暗室的内壁上均设置有吸 波材料,其中,具有多个基站单元天线的基站相控阵天线设置于所述第一微波暗室内,具 有多个终端单元天线的终端相控阵天线设置于所述第二微波暗室内;基站耦合天线,设置 于所述第一微波暗室内的所述基站耦合天线具有多个基站耦合探头,且所述多个基站耦合 探头的每个基站耦合探头一一对应于所述多个基站单元天线设置在预设的近场辐射距离 内,同时或单独对所述基站相控阵天线进行能量耦合传输;终端耦合天线,设置于所述第 二微波暗室内的所述终端耦合天线具有多个终端耦合探头,且所述多个终端耦合探头的每 个终端耦合探头一一对应于所述多个终端单元天线设置在所述预设的近场辐射距离内,同 时或单独对所述终端相控阵天线进行能量耦合传输;信道模拟器,所述信道模拟器分别与 所述第一微波暗室和所述第二微波暗室相连,以根据所述基站单元天线的阵中方向图信息、 所述终端单元天线的阵中方向图信息与信道模型模拟实时的相控阵天线工作状态,以得到 通信协议性能和射频性能。
本发明实施例的相控阵天线协议测试装置,可以对天线采用单独近场耦合的方式,并 且可以同时或单独在近场辐射距离内对天线进行测试,不但可以模拟基站和终端真实工作 环境和状态,从而获取测试协议的各个指标以及射频终端和基站的性能指标,而且降低测 试成本,有效保证测试的工作效率和准确性,简单易实现。
另外,根据本发明上述实施例的相控阵天线协议测试装置还可以具有以下附加的技术 特征:
其中,在本发明的一个实施例中,所述每个终端耦合探头的探头顶部往馈线5厘米内 所有的横截面内金属的最大尺寸小于或等于5厘米。
进一步地,在本发明的一个实施例中,还包括:第一变频器,所述第一变频器分别与 所述第一微波暗室和所述信道模拟器相连,以将所述基站相控阵天线的射频信号的频率变 频到预设范围内;第二变频器,所述第二变频器分别与所述第二微波暗室和所述信道模拟 器相连,以将所述终端相控阵天线的射频信号的频率变频到所述预设范围内。
进一步地,在本发明的一个实施例中,还包括:控制组件,所述控制组件分别与所述 每个基站耦合探头和/或所述每个终端耦合探头相连,以根据所述基站相控阵天线和/或所述 终端相控阵天线的当前位姿信息调整所述每个基站耦合探头和/或所述每个终端耦合探头 的位置和方向。
可选地,在本发明的一个实施例中,所述预设的近场辐射距离根据以下公式得到:
0<R≤λ,或者
Figure BDA0002044975250000021
或者
Figure BDA0002044975250000022
其中,D为所述多天线无线设备的尺寸最大物理,λ表示波长,R为所述近场辐射距离。
进一步地,在本发明的一个实施例中,所述预设的近场辐射距离小于5厘米。
可选地,在本发明的一个实施例中,每个耦合探头的横截面的半径小于对应的天线的 最大物理尺寸。
进一步地,在本发明的一个实施例中,还包括:第一放置组件,用于放置所述基站耦 合天线;和/或第二放置组件,用于放置所述终端耦合天线。
进一步地,在本发明的一个实施例中,还包括:第一移动平台,所述第一移动平台的 底壁设置多个第一移动组件,以移动所述第一放置组件;和/或第二移动平台,所述第二移 动平台的底壁设置多个第二移动组件,以移动所述第二放置组件。
进一步地,在本发明的一个实施例中,还包括:第一竖直位置调整件,所述第一竖直 位置调整件分别与所述第一移动平台和所述第一放置组件相连,以调整所述第一放置组件 相对所述第一移动平台的竖直高度;和/或第二竖直位置调整件,所述第二竖直位置调整件 分别与所述第二移动平台和所述第二放置组件相连,以调整所述第二放置组件相对所述第 二移动平台的竖直高度。
另外,在本发明的一个实施例中,所述第二微波暗室可以为多个。
为达到上述目的,本发明另一个实施例提出了一种相控阵天线协议测试方法,其采用 上述的装置,其中,方法包括以下步骤:控制一一对应于所述多个基站单元天线设置在预 设的近场辐射距离内的所述每个基站耦合探头同时或单独对所述基站相控阵天线进行能量 耦合传输,并且控制一一对应于所述多个终端单元天线设置在预设的近场辐射距离内的所 述每个终端耦合探头同时或单独对所述终端相控阵天线进行能量耦合传输;获取所述基站 单元天线的阵中方向图信息和所述终端单元天线的阵中方向图信息;根据所述基站单元天 线的阵中方向图信息、所述终端单元天线的阵中方向图信息与信道模型模拟实时的相控阵 天线工作状态,以得到通信协议性能和射频性能。
本发明实施例的相控阵天线协议测试方法,可以对天线采用单独近场耦合的方式,并 且可以同时或单独在近场辐射距离内对天线进行测试,不但可以模拟基站和终端真实工作 环境和状态,从而获取测试协议的各个指标以及射频终端和基站的性能指标,而且降低测 试成本,有效保证测试的工作效率和准确性,简单易实现。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明 显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和 容易理解,其中:
图1为根据本发明实施例的相控阵天线协议测试装置的结构示意图;
图2为根据本发明一个实施例的耦合探头的结构示意图;
图3为根据本发明实施例的相控阵天线协议测试装置的处理示意图;
图4为根据本发明一个具体实施例的相控阵天线协议测试装置的结构示意图;
图5为根据本发明实施例的相控阵天线协议测试方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描 述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例提出的相控阵天线协议测试装置及方法,首先 将参照附图描述根据本发明实施例提出的相控阵天线协议测试装置。
图1为根据本发明实施例的相控阵天线协议测试装置的结构示意图。
如图1所示,该相控阵天线协议测试装置包括:第一微波暗室100、第二微波暗室200、 基站耦合天线300、终端耦合天线400和信道模拟器500。
其中,第一微波暗室100和第二微波暗室200的内壁上均设置有吸波材料,其中,具有多个基站单元天线的基站相控阵天线10(基站相控阵天线10还可以包括数字处理单元101和射频模组102)设置于第一微波暗室100内,具有多个终端单元天线的终端相控阵天线20(终端相控阵天线20还可以包括射频模组201和数字处理单元202)设置于第二微波 暗室200内。设置于第一微波暗室100内的基站耦合天线300具有多个基站耦合探头,且 多个基站耦合探头的每个基站耦合探头一一对应于多个基站单元天线设置在预设的近场辐 射距离内,同时或单独对基站相控阵天线10进行能量耦合传输。设置于第二微波暗室200 内的终端耦合天线400具有多个终端耦合探头,且多个终端耦合探头的每个终端耦合探头 一一对应于多个终端单元天线设置在预设的近场辐射距离内,同时或单独对终端相控阵天线20进行能量耦合传输。信道模拟器500分别与第一微波暗室100和第二微波暗室200相连,以根据基站单元天线的阵中方向图信息、终端单元天线的阵中方向图信息与信道模型模拟实时的相控阵天线工作状态,以得到通信协议性能和射频性能。本发明实施例的测试装置可以模拟基站和终端真实工作环境和状态,从而获取测试协议的各个指标以及射频终端和基站的性能指标,有效保证测试的工作效率和准确性,简单易实现。
具体地,本发明实施例的测试装置包含了两个微波暗室,以分别用于放置基站相控阵 天线10和终端相控阵天线20,其中基站相控阵天线10拥有N个基站单元天线,终端相控 阵天线20拥有M个终端单元天线。
在第一微波暗室100中,放置一个基站耦合天线300,其中包含了N个基站耦合探头, 该N个基站耦合探头与N个基站单元天线相对,处于近场耦合,并且在第二微波暗室200中,放置一个终端耦合天线400,其中包含了M个终端耦合探头,该M个终端耦合探头与 M个终端单元天线相对,处于近场耦合。信道模拟器500中加载了基站单元天线的阵中方 向图信息和终端单元天线的阵中方向图信息以及信道模型,从而实施实时的相控阵天线工 作状态模拟。
其中,在本发明的一个实施例中,每个终端耦合探头的探头顶部往馈线5厘米内所有 的横截面内金属的最大尺寸小于或等于5厘米
具体地,如图2所示,可以理解的是,终端耦合探头自辐射顶部往馈线方向5cm内的部分满足:所有横截面的金属最大尺寸小于等于5cm。例如,终端耦合探头由三部分组成:介质、金属和馈线,馈线用于馈入射频信号,其中,耦合探头顶部为辐射顶端,如耦合探 头顶部向馈线5cm的范围内,任意横截面都满足以下条件:顶部往馈线5厘米内所有的横 截面内金属最大尺寸小于5cm,本领域技术人员应当理解的是,对于任何探头都可以通过 类似的方式进行配置,并不仅限于这一种结构的天线设计,只要横截面内金属最大尺寸小 于5cm即可,从而同时或单独对当前探头所处位置的近场辐射距离内天线进行能量耦合传输。
进一步地,在本发明的一个实施例中,本发明实施例的测试装置还包括:第一变频器 600和第二变频器700。
其中,第一变频器600分别与第一微波暗室100和信道模拟器500相连,以将基站相控阵天线10的射频信号的频率变频到预设范围内。第二变频器700分别与第二微波暗室200和信道模拟器500相连,以将终端相控阵天线20的射频信号的频率变频到预设范围内。
可以理解的是,基站耦合天线300输出接在了暗室外部的第一变频器600,该第一变频 器600主要作用是将基站相控阵天线10输出的射频信号变频到信道模拟器500可以处理的 范围,如果基站相控阵天线10输出射频信号频率范围已经符合信道模拟器500处理要求, 则不需要第一变频器600,第一变频器600的另一端口接在信道模拟器500,信道模拟器500作用是模拟基站与终端之间的传播环境,信道模拟器500的另一端口接在第二变频器700,第二变频器700的作用于第一变频器600相似,为了将信道模拟器500的工作频率和 终端相控阵天线20的射频信号频率匹配,如果两者频率已经匹配,则不需要第二变频器 700。
举例而言,如图3所示,基站单元天线端口信号为X=(x1,x2,…,xN),终端单元天线端口信号为Y=(y1,y2,…,yM)。这里定义信号流从X流向Y为下行信号流,信号流从Y流向X为上行信号流。需要说明的是,为了更加详细的描述相控阵天线是如何在该装置下实现动态波束赋形工作模式,本发明实施例将基站相控阵天线10的数字处理单元101和基站相控阵天线10的射频模组102之间的信号传递使用上图表示,其中DX=(dx1,dx2,…,dxN)表 示基站相控阵天线10数字处理单元101端口的信号,基站相控阵天线10的射频模组102 作用之一是对经过该模块的信号加载不同的幅相变换因子,用于实现实时波束赋形。
本发明实施例将终端相控阵天线20数字处理单元201和终端相控阵天线20的射频模 组202之间的信号传递使用上图表示,其中DY=(dy1,dy2,…,dyM)表示终端相控阵天线20 的数字处理单元201端口的信号,终端相控阵天线20的射频模组202作用之一是对经过该 模块的信号加载不同的幅相变换因子,用于实现实时波束赋形。
对于下行信号流,计算公式为:信号DX=(dx1,dx2,…,dxN)从基站相控阵天线10的数字处理单元101出发,经过基站相控阵天线10的射频模组102,变成基站单元天线端口 信号X=(x1,x2,…,xN)
Figure BDA0002044975250000061
其中,In表示对第n路下行通过基站射频模组的信号被加载的幅度相位偏移, n=1,2,…,N;N表示基站相控阵天线的基站单元天线的个数。其中()T是转置。
X=(x1,x2,…,xN)从基站相控阵天线出发,通过一对一耦合进入基站耦合天线300,则 基站耦合探头端口的信号S=(s1,s2,…,sN)可以表示为
(s1,s2,…,sN)T=K1*(x1,x2,…,xN)T (2)
其中,K1是基站耦合探头和基站单元天线耦合的耦合通道增益,是一个与频率有关的 函数,对于图示N个耦合通道,可以通过对耦合通道补偿,达到相等的通道耦合增益,因 此,可以认为各通道耦合增益相等,都使用K1表示。基站耦合天线300的耦合信号传输到信道模拟器500上行端口为LS=(ls1,ls2,…,lsN),则
(ls1,ls2,…,lsN)T=K2*(s1,s2,…,sN)T (3)
其中,K2是基站耦合天线300通过传导线将信号传输到信道模拟器500上行端口时, 是一个与频率有关的函数,这段传导线增益,可以通过调整传导线等使得N个传导线增益 相等,都使用K2表示。
LS=(ls1,ls2,…,lsN)信号进入信道模拟器500之后,经过运算得到信道模拟器500下 行端口信号RS=(rs1,rs2,…,rsM),这里运算包括加载基站单元天线的阵中方向图、信道模 型、终端单元天线的阵中方向图信息。假设第n个基站单元天线的阵中方向图信息表示为
Figure BDA0002044975250000062
第m个终端单元天线的阵中方向图信息表示为
Figure BDA0002044975250000063
信道模型使用矩阵H(t)DL表示, 则可以得到
Figure BDA0002044975250000064
其中U是多径信道模型子径的个数,
Figure BDA0002044975250000065
Figure BDA0002044975250000066
是第u个子径的基站天线方向图 和终端天线方向图,H(t)DL(u)是第u个子径的信道增益。
这个公式中,
Figure BDA0002044975250000071
Figure BDA0002044975250000072
可以是实际的基站单元天线阵中方向图,也可以是预设的经验 值,信道矩阵H(t)DL表示了所有信号在传播过程中遇到的时延、多径、反射、遮掩、多普勒等等,为了仿真实际中的基站相控阵天线10以及终端相控阵天线20的工作环境。
信道模拟器500下行端口信号馈入到终端耦合探头端口得到T=(t1,t2,...,tM)
(t1,t2,...,tM)T=K3*(rs1,rs2,...,rsM)T (5)
其中,K3是信道模拟器500下行端口到终端耦合探头端口导线增益,是一个与频率有 关的函数,可以通过调整传导线等使得M个传导线增益相等,都使用K3表示。
信号T=(t1,t2,...,tM)从终端耦合探头出发,通过一对一耦合进入终端单元天线,则终 端单元天线端口的信号Y=(y1,y2,...,yM)可以表示为
(y1,y2,...,yM)T=K4*(t1,t2,...,tM)T (6)
其中,K4是终端耦合探头和终端单元天线耦合的耦合通道增益,是一个与频率有关的 函数,对于图示M个耦合通道,可以通过对耦合通道补偿,达到相等的通道耦合增益,因 此,可以认为各通道耦合增益相等,都使用K4表示。
Y=(y1,y2,...,yM)馈入终端相控阵天线20,在终端相控阵天线20中,信号 Y=(y1,y2,...,yM)经过终端相控阵天线20的射频模组201的幅相变换,然后到终端相控阵 天线20的数字处理单元202端口DY=(dy1,dy2,...,dyM)
Figure BDA0002044975250000073
其中,Qm表示对第n路下行通过基站射频模组的信号被加载的幅度相位偏移, m=1,2,...,M;M表示终端相控阵天线的终端单元天线的个数。
综合(1)~(7),可以得到:
Figure BDA0002044975250000074
这样的信号流完全模拟了基站相控阵天线10信号出发到终端相控阵天线20的真实传 输情况。进一步地,公式(8)中,
Figure BDA0002044975250000075
表示基站相控阵天线10的数字 处理单元101发出的信号经过射频模组102加载不同幅相之后,又在信道模拟器500中叠加各自的基站单元天线方向图信息,这样一来,当基站处于动态波束赋形状态时,基站相控阵天线10实时动态改变基站单元天线端口馈入的幅相信息时(即改动
Figure BDA0002044975250000081
),整个基站动态波束赋形状态完全通过
Figure BDA0002044975250000082
体现出来,因此,该流程体现了基站动态波束赋形。
同样地,当终端相控阵天线20接收到Y=(y1,y2,...,yM)之后,信号会经过射频模组201 处理成为(dy1,dy2,...,dyM),即对不同的终端单元天线端口接收到的信号加载不同幅相补 偿即
Figure BDA0002044975250000083
这个部分也表示着,终端相控阵天线20的终端单元天线馈 入的信号叠加了终端相控阵天线在波束赋形状态时,其接收的实时波束赋形方向图信息, 实现了终端相控阵天线20动态波束赋形的模拟。
对于上行信号流,计算公式为:信号DY=(dy1,dy2,...,dyM)从终端相控阵天线20的 数字处理单元202出发,经过终端相控阵天线20的射频模组201,变成终端单元天线端口信号Y=(y1,y2,...,yM),
Figure BDA0002044975250000084
其中,Pm表示对第m路上行通过射频模组201的信号被加载的幅度相位偏移, m=1,2,...,M;M表示终端相控阵天线的终端单元天线的个数。
然后信号Y=(y1,y2,...,yM)从终端相控阵天线20出发,通过一对一耦合进入终端站耦 合天线,则终端耦合探头端口的信号T=(t1,t2,...,tM)可以表示为
Figure BDA0002044975250000085
终端耦合天线400耦合信号传输到信道模拟器500下行端口为RS=(rs1,rs2,...,rsM), 则
Figure BDA0002044975250000086
RS=(rs1,rs2,...,rsM)信号进入信道模拟器500之后,经过运算得到信道模拟器500上 行端口信号LS=(ls1,ls2,...,lsN),这里运算包括加载终端单元天线的阵中方向图、信道模 型、基站单元天线的阵中方向图信息。假设第n个基站单元天线的阵中方向图信息表示为
Figure BDA0002044975250000087
第m个终端单元天线的阵中方向图信息表示为
Figure BDA0002044975250000088
信道模型使用矩阵H(t)UL表示, 则可以得到:
Figure BDA0002044975250000091
其中U是多径信道模型子径的个数,
Figure BDA0002044975250000092
Figure BDA0002044975250000093
是第u个子径的基站天线方向图 和终端天线方向图,H(t)UL(u)是第u个子径的信道增益。
信道矩阵H(t)UL表示了所有信号在传播过程中遇到的时延、多径、反射、遮掩、多普勒等等,为了仿真实际中的基站相控阵天线10以及终端相控阵天线20的工作环境,H(t)UL可以与H(t)DL相同,表示通信中,基站相控阵天线信号与终端相控阵天线信号传输上下行 传输环境相同,也可以不相同。
信道模拟器500上行端口信号馈入到基站耦合探头端口得到S=(s1,s2,...,sN)
Figure BDA0002044975250000094
信号S=(s1,s2,...,sN)从基站耦合探头出发,通过一对一耦合进入基站单元天线,则基 站单元天线端口的信号X=(x1,x2,...,xN)可以表示为
Figure BDA0002044975250000095
信号X=(x1,x2,...,xN)馈入基站相控阵天线10,在基站相控阵天线10中,信号 X=(x1,x2,...,xN)经过基站相控阵天线10的射频模组102的幅相变换,然后到基站相控阵天线10的数字处理单元101端口DX=(dx1,dx2,...,dxN)
Figure BDA0002044975250000096
其中,Rn表示对第n路上行通过射频模组102的信号被加载的幅度相位偏移, n=1,2,...,N;N表示基站相控阵天线10的基站单元天线的个数。
综合(9)~(15),可以得到
Figure BDA0002044975250000097
(dx1,dx2,...,dxN)馈入基站相控阵天线10数字处理单元10,完成了信号从终端相控阵 天线10到基站相控阵天线10的整个流程。
更加地,公式(16)中,
Figure BDA0002044975250000101
表示终端相控阵天线20的数字处理 单元202发出的信号经过射频模组201加载不同幅相之后,又在信道模拟器500中叠加各自的终端单元天线方向图信息,这样一来,当终端处于动态波束赋形状态时,终端相控阵天线20实时动态改变终端单元天线端口馈入的幅相信息时(即改动
Figure BDA0002044975250000102
),整个终端动态波束赋形状态完全通过
Figure BDA0002044975250000103
体现出来,因此,该流程体现了终端动态波束赋形。
同样地,当基站相控阵天线10接收到(x1,x2,...,xN)之后,信号会经过射频模组102处 理成为(dx1,dx2,...,dxN),即对不同的基站单元天线端口接收到的信号加载不同幅相补偿即
Figure BDA0002044975250000104
这个部分也表示着,基站相控阵天线10的终端单元天线馈入的 信号叠加了基站相控阵天线10在波束赋形状态时,其接收的实时波束赋形方向图信息,实 现了基站相控阵天线10动态波束赋形的模拟。
需要说明的是K4*K3*K2*K1是频率的函数,上下行不同频率时,公式(8)和(16) 中的K4*K3*K2*K1可以不相等,这不影响这个测试。
综上所述,所有的测试情况均满足基站相控阵天线10以及终端相控阵天线20实时动 态波束赋形的模拟,整个测试过程完全模拟基站+终端在实际过程工作情况,可以测试通信 协议性能和射频性能。
进一步地,在本发明的一个实施例中,本发明实施例的测试装置还包括:控制组件。 其中,控制组件分别与每个基站耦合探头和/或每个终端耦合探头相连,以根据基站相控阵 天线10和/或终端相控阵天线20的当前位姿信息调整每个基站耦合探头和/或每个终端耦合 探头的位置和方向。
也就是说,本发明实施例的测试装置可以通过手动调整耦合探头的位置,也可以通过 控制组件自动进行调整,提高测试装置的智能化和可操控性。
可选地,在本发明的一个实施例中,预设的近场辐射距离根据以下公式得到:
0<R≤λ,或者
Figure BDA0002044975250000105
或者
Figure BDA0002044975250000111
其中,D为多天线无线设备天线单元的尺寸最大物理,λ表示波长,R为所述近场辐射 距离。
进一步地,在本发明的一个实施例中,预设的近场辐射距离小于5厘米,从而完成被 测件的近场测试,有效保证测试需求和测试准确度。
在本发明的实施例中,本发明实施例可以实现近场辐射测试,但是与相关技术中的近 场测试具有本质区别,下面对近场辐射测试进行详细描述:
举例而言,本发明实施例的耦合探头和天线距离小于远场,处于近场耦合,具体地, 针对电小尺寸的被测天线(物理尺寸小于波长的一半),距离被测天线R所在位置的定义为:
Figure BDA0002044975250000112
属于反应近场区(reactive near field),其中,λ表示波长;
Figure BDA0002044975250000113
属于辐射近场区(radiative near-field);
λ<R≤2λ属于传输近场区(transition zone);
2λ<R属于辐射远场区。
针对这类被测件,耦合探头和天线距离小于远场条件,处于辐射近场区,反应近场区 针对电大尺寸的天线(物理尺寸大于等于波长的一半),距离天线R所在位置的定义为,
Figure BDA0002044975250000114
属于辐射近场区,其中D是天线的尺寸;
Figure BDA0002044975250000115
属于菲涅尔区;
Figure BDA0002044975250000116
属于辐射远场区
针对这类被测件,耦合探头和天线距离小于远场条件,处于辐射近场区。
综上可知,本发明实施例的测试装置不但可以每一个耦合探头对应一个天线,从而快 速得到各个天线信息,甚至同时进行测试,而且相比较与相关技术中,可以拥有更小的测 试路损,每一个天线都有一个耦合天线靠近且对应,属于近场耦合,其路损远远小于相关 技术中的所有方案中的测试系统,因此测试动态大。
可选地,在本发明的一个实施例中,每个耦合探头的横截面的半径或最大物理尺寸小 于对应的天线的最大物理尺寸。
可以理解的是,在本发明的实施例中,耦合探头尺寸(不含馈线)天线口径小于多天 线无线设备20上其对应的被测天线的最大物理尺寸。也就是说,每个耦合探头的最大物理 尺寸小于对应的天线的最大物理尺寸,从而保证测试的准确性。
进一步地,在本发明的一个实施例中,本发明实施例的测试装置还包括:第一放置组 件和/或第二放置组件。其中,第一放置组件用于放置基站耦合天线。第二放置组件用于放 置终端耦合天线。
可以理解的是,在微波暗室中可以设置放置组件如放置台,从而将耦合天线放置于放 置组件上,便于进行测试。
进一步地,在本发明的一个实施例中,本发明实施例的测试装置还包括:第一移动平 台和/或第二移动平台。
其中,第一移动平台的底壁设置多个第一移动组件如滚轮,以移动第一放置组件;第 二移动平台的底壁设置多个第二移动组件如滚轮,以移动第二放置组件。
在本发明的实施例中,可以通过移动平台对放置组件进行可活动设置,便于对耦合天 线进行水平方向或者位置调整,提高装置的灵活性和应用性。
进一步地,在本发明的一个实施例中,本发明实施例的测试装置还包括:第一竖直位 置调整件和/或第二竖直位置调整件。
其中,第一竖直位置调整件分别与第一移动平台和第一放置组件相连,以调整第一放 置组件相对第一移动平台的竖直高度。第二竖直位置调整件分别与第二移动平台和第二放 置组件相连,以调整第二放置组件相对第二移动平台的竖直高度。
进一步地,在移动平台和放置组件设置竖直位置调整件,如相对间隔设置两个支架, 每个支架可以包括铰接的两个杆体,每个杆体的下端与移动平台转动配合且上端与放置平 台移动配合,从而可通过调整放置组件相对移动平台的竖直高度,调节耦合天线的放置位 姿,以根据测试需求进行调节。
举例而言,如图1所示,基站耦合天线300放置在移动台上,可以通过调整移动台来实现调整基站耦合天线300和基站相控阵天线10的相位位置,以便于达到基站耦合探头与基站单元天线一一对应耦合的关系。终端耦合天线400放置在移动台上,可以通过调整移动台来实现调整终端耦合天线400和终端相控阵天线20的相位位置,以便于达到终端耦合探头与终端单元天线一一对应耦合的关系。
另外,在本发明的一个实施例中,第二微波暗室可以为多个。
如图4所示,可以假设总计W个终端,终端单元天线总个数为M个,推导公式和 上述一样,一个基站服务多个终端是实际的工作状态。需要说明的是,前述单个终端实 施例的解释说明也适用于多个终端实施例,此处不再赘述。
根据本发明实施例的相控阵天线协议测试装置,可以对天线采用单独近场耦合的方式, 并且可以同时或单独在近场辐射距离内对天线进行测试,不但可以模拟基站和终端真实工 作环境和状态,从而获取测试协议的各个指标以及射频终端和基站的性能指标,而且降低 测试成本,有效保证测试的工作效率和准确性,简单易实现。
其次参照附图描述根据本发明实施例提出的相控阵天线协议测试方法。
图5为根据本发明实施例的相控阵天线协议测试方法的流程图。
如图5所示,该相控阵天线协议测试方法采用上述装置,其包括:
在步骤S501中,控制一一对应于多个基站单元天线设置在预设的近场辐射距离内的每 个基站耦合探头同时或单独对基站相控阵天线进行能量耦合传输,并且控制一一对应于多 个终端单元天线设置在预设的近场辐射距离内的每个终端耦合探头同时或单独对终端相控 阵天线进行能量耦合传输。
在步骤S502中,获取基站单元天线的阵中方向图信息和终端单元天线的阵中方向图信 息。
在步骤S503中,根据基站单元天线的阵中方向图信息、终端单元天线的阵中方向图信 息与信道模型模拟实时的相控阵天线工作状态,以得到通信协议性能和射频性能。
需要说明的是,前述对相控阵天线协议测试装置实施例的解释说明也适用于该实施例 的相控阵天线协议测试方法,此处不再赘述。
根据本发明实施例的相控阵天线协议测试方法,可以对天线采用单独近场耦合的方式, 并且可以同时或单独在近场辐射距离内对天线进行测试,不但可以模拟基站和终端真实工 作环境和状态,从而获取测试协议的各个指标以及射频终端和基站的性能指标,而且降低 测试成本,有效保证测试的工作效率和准确性,简单易实现。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者 隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐 含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三 个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、 或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包 含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须 针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一 个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技 术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合 和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的, 不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例 进行变化、修改、替换和变型。

Claims (12)

1.一种相控阵天线协议测试装置,其特征在于,包括:
第一微波暗室和第二微波暗室,所述第一微波暗室和所述第二微波暗室的内壁上均设置有吸波材料,其中,具有多个基站单元天线的基站相控阵天线设置于所述第一微波暗室内,具有多个终端单元天线的终端相控阵天线设置于所述第二微波暗室内;
基站耦合天线,设置于所述第一微波暗室内的所述基站耦合天线具有多个基站耦合探头,且所述多个基站耦合探头的每个基站耦合探头一一对应于所述多个基站单元天线设置在预设的近场辐射距离内,同时或单独对所述基站相控阵天线进行能量耦合传输;
终端耦合天线,设置于所述第二微波暗室内的所述终端耦合天线具有多个终端耦合探头,且所述多个终端耦合探头的每个终端耦合探头一一对应于所述多个终端单元天线设置在所述预设的近场辐射距离内,同时或单独对所述终端相控阵天线进行能量耦合传输;以及
信道模拟器,所述信道模拟器分别与所述第一微波暗室和所述第二微波暗室相连,以根据所述基站单元天线的阵中方向图信息、所述终端单元天线的阵中方向图信息与信道模型模拟实时的相控阵天线工作状态,以得到通信协议性能和射频性能。
2.根据权利要求1所述的装置,其特征在于,其中,所述每个终端耦合探头的探头顶部往馈线5厘米内所有的横截面内金属的最大尺寸小于或等于5厘米。
3.根据权利要求1所述的装置,其特征在于,还包括:
第一变频器,所述第一变频器分别与所述第一微波暗室和所述信道模拟器相连,以将所述基站相控阵天线的射频信号的频率变频到预设范围内;
第二变频器,所述第二变频器分别与所述第二微波暗室和所述信道模拟器相连,以将所述终端相控阵天线的射频信号的频率变频到所述预设范围内。
4.根据权利要求1所述的装置,其特征在于,还包括:
控制组件,所述控制组件分别与所述每个基站耦合探头和/或所述每个终端耦合探头相连,以根据所述基站相控阵天线和/或所述终端相控阵天线的当前位姿信息调整所述每个基站耦合探头和/或所述每个终端耦合探头的位置和方向。
5.根据权利要求1所述的装置,其特征在于,所述预设的近场辐射距离根据以下公式得到:
0<R≤λ,或者
Figure FDA0002044975240000011
或者
Figure FDA0002044975240000021
其中,D为所述多天线单元单元的最大物理尺寸,λ表示波长,R为所述近场辐射距离。
6.根据权利要求1或4所述的装置,其特征在于,所述预设的近场辐射距离小于5厘米。
7.根据权利要求1所述的装置,其特征在于,每个耦合探头的横截面的半径小于对应的天线的最大物理尺寸。
8.根据权利要求1所述的装置,其特征在于,还包括:
第一放置组件,用于放置所述基站耦合天线;和/或
第二放置组件,用于放置所述终端耦合天线。
9.根据权利要求8所述的装置,其特征在于,还包括:
第一移动平台,所述第一移动平台的底壁设置多个第一移动组件,以移动所述第一放置组件;和/或
第二移动平台,所述第二移动平台的底壁设置多个第二移动组件,以移动所述第二放置组件。
10.根据权利要求9所述的装置,其特征在于,还包括:
第一竖直位置调整件,所述第一竖直位置调整件分别与所述第一移动平台和所述第一放置组件相连,以调整所述第一放置组件相对所述第一移动平台的竖直高度;和/或
第二竖直位置调整件,所述第二竖直位置调整件分别与所述第二移动平台和所述第二放置组件相连,以调整所述第二放置组件相对所述第二移动平台的竖直高度。
11.根据权利要求1-10任一项所述的装置,其特征在于,所述第二微波暗室为多个。
12.一种相控阵天线协议测试方法,其特征在于,采用根据权利要求1-11任一项所述的装置,其中,方法包括以下步骤:
控制一一对应于所述多个基站单元天线设置在预设的近场辐射距离内的所述每个基站耦合探头同时或单独对所述基站相控阵天线进行能量耦合传输,并且控制一一对应于所述多个终端单元天线设置在预设的近场辐射距离内的所述每个终端耦合探头同时或单独对所述终端相控阵天线进行能量耦合传输;
获取所述基站单元天线的阵中方向图信息和所述终端单元天线的阵中方向图信息;以及
根据所述基站单元天线的阵中方向图信息、所述终端单元天线的阵中方向图信息与信道模型模拟实时的相控阵天线工作状态,以得到通信协议性能和射频性能。
CN201910354535.1A 2019-04-29 2019-04-29 相控阵天线协议测试装置及方法 Active CN111866922B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910354535.1A CN111866922B (zh) 2019-04-29 2019-04-29 相控阵天线协议测试装置及方法
PCT/CN2020/081374 WO2020220877A1 (zh) 2019-04-29 2020-03-26 相控阵天线协议测试装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910354535.1A CN111866922B (zh) 2019-04-29 2019-04-29 相控阵天线协议测试装置及方法

Publications (2)

Publication Number Publication Date
CN111866922A true CN111866922A (zh) 2020-10-30
CN111866922B CN111866922B (zh) 2023-09-12

Family

ID=72966253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910354535.1A Active CN111866922B (zh) 2019-04-29 2019-04-29 相控阵天线协议测试装置及方法

Country Status (1)

Country Link
CN (1) CN111866922B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856272A (zh) * 2012-12-03 2014-06-11 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN104283623A (zh) * 2014-10-01 2015-01-14 工业和信息化部电信研究院 一种支持多小区干扰的mimo-ota测试方法
TW201507376A (zh) * 2013-08-15 2015-02-16 Urtn Inc 用於一待測積體電路裝置的毫米波測試治具
CN104935386A (zh) * 2014-03-21 2015-09-23 中兴通讯股份有限公司 终端天线耦合测试系统
CN108234036A (zh) * 2016-12-14 2018-06-29 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN209676497U (zh) * 2019-04-29 2019-11-22 深圳市通用测试系统有限公司 相控阵天线协议测试装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856272A (zh) * 2012-12-03 2014-06-11 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
TW201507376A (zh) * 2013-08-15 2015-02-16 Urtn Inc 用於一待測積體電路裝置的毫米波測試治具
CN104935386A (zh) * 2014-03-21 2015-09-23 中兴通讯股份有限公司 终端天线耦合测试系统
CN104283623A (zh) * 2014-10-01 2015-01-14 工业和信息化部电信研究院 一种支持多小区干扰的mimo-ota测试方法
CN108234036A (zh) * 2016-12-14 2018-06-29 深圳市通用测试系统有限公司 Mimo无线终端的无线性能测试方法
CN209676497U (zh) * 2019-04-29 2019-11-22 深圳市通用测试系统有限公司 相控阵天线协议测试装置

Also Published As

Publication number Publication date
CN111866922B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
US11362741B2 (en) Distributed system for radio frequency environment simulation
EP1085684B1 (en) Radio base station with array antenna and transmission calibration
KR100602055B1 (ko) 스마트 안테나 어레이의 교정 장치 및 방법
EP2139068B1 (en) Adaptive array antenna transceiver apparatus
CN102594426B (zh) 一种有源天线多收发通道同步校准的装置和方法
US20180034560A1 (en) Distributed system for radio frequency environment simulation
KR20060129241A (ko) 배열 안테나 전송 링크의 조정 설비 및 방법
CN109905189B (zh) 毫米波rf信道仿真器
CN209676497U (zh) 相控阵天线协议测试装置
EP2173010A1 (en) Improved probe calibration for an active antenna
EP2173005B1 (en) Improved probe calibration for an active antenna
EP3276362B1 (en) Distributed system for radio frequency environment simulation
US20180034562A1 (en) Distributed system for radio frequency environment simulation
CN111865371B (zh) 多天线无线设备mimo测试装置
Hu et al. Millimeter-wave microstrip antenna array design and an adaptive algorithm for future 5G wireless communication systems
CN111865448B (zh) 相控阵天线测试方法及计算机可读存储介质
CN111953430A (zh) 相控阵天线系统级测试系统及测试方法
CN111525967B (zh) 一种毫米波终端测试系统和方法
CN210090568U (zh) 多天线无线设备空口测试装置
CN111866922B (zh) 相控阵天线协议测试装置及方法
CN111953429A (zh) 相控阵天线测试系统及测试方法
CN111865447A (zh) 相控阵天线测试系统及测试方法
WO2020220877A1 (zh) 相控阵天线协议测试装置及方法
CN110873824A (zh) 一种Massive MIMO天线测试系统及方法
US20180034561A1 (en) Distributed system for radio frequency environment simulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant