CN111863320A - Flexible high-precision K-type thermocouple sensor cable - Google Patents

Flexible high-precision K-type thermocouple sensor cable Download PDF

Info

Publication number
CN111863320A
CN111863320A CN202010729267.XA CN202010729267A CN111863320A CN 111863320 A CN111863320 A CN 111863320A CN 202010729267 A CN202010729267 A CN 202010729267A CN 111863320 A CN111863320 A CN 111863320A
Authority
CN
China
Prior art keywords
wire core
precision
alloy
protective layer
sensor cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010729267.XA
Other languages
Chinese (zh)
Other versions
CN111863320B (en
Inventor
赖恒俊
朱云川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Anshengda Aerospace Technology Co.,Ltd.
Original Assignee
Kunshan Advanced Microwave Technologies Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunshan Advanced Microwave Technologies Co ltd filed Critical Kunshan Advanced Microwave Technologies Co ltd
Priority to CN202010729267.XA priority Critical patent/CN111863320B/en
Publication of CN111863320A publication Critical patent/CN111863320A/en
Application granted granted Critical
Publication of CN111863320B publication Critical patent/CN111863320B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

The invention relates to the technical field of temperature sensors, in particular to a flexible high-precision K-type thermocouple sensor cable which comprises a positive wire core and a negative wire core which are wrapped in the same protective layer, wherein insulating layers are respectively arranged outside the positive wire core and the negative wire core; the positive wire core is made of nickel-chromium-silicon alloy and comprises 8.96-10.36 wt% of Cr, 0.46-0.59 wt% of Si, 0.36-0.48 wt% of Fe, 0.02-0.09 wt% of Mn and the balance of Ni; the material of the negative wire core is nickel-aluminum-manganese alloy, and the negative wire core comprises 1.61-1.80 wt% of Al, 1.56-1.69 wt% of Mn, 0.11-0.16 wt% of Fe, 0.58-0.69 wt% of Co, 1.35-1.59 wt% of Si, 0.01-0.06 wt% of C and the balance of Ni. The flexible high-precision K-type thermocouple sensor cable can be manufactured at any length under the condition of meeting continuous production, is soft in structure, can ensure a relatively accurate linear relation between a potential value and the temperature in the use range of 0-1000 ℃, and can be used at the high temperature of 1300 ℃.

Description

Flexible high-precision K-type thermocouple sensor cable
Technical Field
The invention relates to the technical field of temperature sensors, in particular to a flexible high-precision K-type thermocouple sensor cable.
Background
With the development of science and technology, the demand for high-performance materials and parts is increasing, and thus higher requirements are put forward on the processing technology of the materials and the parts. By controlling key process parameters such as temperature, time and the like, the material can be endowed with expected properties in the hot working process, and the precise temperature control plays a crucial role in influencing the material properties in the hot working process. The hot working process can endow the material with expected performance, and the high temperature measurement is the basis and the core for ensuring the control of the hot working process and is the specification for carrying out system control on the whole hot working process from the raw material to the part manufacturing. The high temperature measurement is used for temperature test and calibration of hot working equipment to ensure effective control of the temperature of parts and raw materials in the hot working process, and is a very important link in the hot working process.
In the traditional technical field, a plurality of sensor products for measuring temperature can be provided, but on the premise of meeting the high precision of the products, the measuring temperature range can also meet the sensor of 0-1300 ℃, and only a thermocouple can be used.
The requirements of national and foreign cheap metal thermocouple tolerance (precision) standards are shown in table 1.
Table 1:
Figure BDA0002602438110000011
Figure BDA0002602438110000021
the domestic and foreign noble metal thermocouple temperature ranges and maximum tolerance standard requirements are shown in table 2.
Table 2:
Figure BDA0002602438110000022
although the noble metal R-type, S-type and B-type thermocouples meet various technical indexes, the comprehensive cost is too high, from the perspective of users, the production, manufacturing and maintenance costs are relatively high for production enterprises, and the armored thermocouple sensor made of the traditional armored thermocouple cable in the cheap metal thermocouple has the following problems:
1. the traditional thermocouple products have fewer high-precision products at all temperature points from a low-temperature section to a high-temperature section, the universal precision only meets the national standard level 1 precision (the product tolerance is less than or equal to +/-1.5 ℃ at 0-375 ℃, and less than or equal to 0.4% · | t | at 375-1000 ℃), and the application range of the products is limited in the hot processing process;
2. the product has large volume, heavy weight, poor repeated bending performance and easy breakage, and influences on-site laying, testing and operation;
3. the product is limited in use length to a certain extent, and cannot be laid for a long distance, so that field use is affected;
therefore, there is a need to provide a new structure of flexible, high temperature resistant, high precision K-type thermocouple sensor to solve the above problems.
Disclosure of Invention
The invention mainly aims to provide a flexible high-precision K-type thermocouple sensor cable which can be used for manufacturing a high-precision K-type thermocouple sensor with good bending resistance and convenient length extension.
The invention realizes the purpose through the following technical scheme: a flexible high-precision K-type thermocouple sensor cable comprises a positive wire core and a negative wire core which are wrapped in the same protective layer, wherein insulating layers are respectively arranged outside the positive wire core and the negative wire core; the positive wire core is made of nickel-chromium-silicon alloy and comprises 8.96-10.36 wt% of Cr, 0.46-0.59 wt% of Si, 0.36-0.48 wt% of Fe, 0.02-0.09 wt% of Mn and the balance of Ni; the material of the negative wire core is nickel-aluminum-manganese alloy, and the negative wire core comprises 1.61-1.80 wt% of Al, 1.56-1.69 wt% of Mn, 0.11-0.16 wt% of Fe, 0.58-0.69 wt% of Co, 1.35-1.59 wt% of Si, 0.01-0.06 wt% of C and the balance of Ni.
Specifically, the insulating layer and the protective layer are woven by high-temperature resistant fibers, and the high-temperature resistant fibers are one of alumina long-thread fibers, polycrystalline mullite long fibers, high-alumina long fibers, aluminum silicate long fibers, quartz glass long fibers or high-silica long fibers.
Specifically, the insulating layer adopts a long fiber wire with the diameter of 0.05 mm-1.0 mm after being stranded, and the insulating thickness is 0.10 mm-3.0 mm.
Specifically, a metal armor protective layer woven by high-temperature-resistant alloy wires is further arranged outside the protective layer, and the metal armor protective layer is made of a material selected from a chromium-nickel alloy, a chromium-aluminum-rhenium alloy, a chromium-aluminum-niobium alloy or a chromium-aluminum-molybdenum alloy.
Furthermore, the diameter of the high-temperature resistant alloy wire of the metal armor woven protective layer is 0.05 mm-0.25 mm, and the weaving density is 65% -95%.
By adopting the technical scheme, the technical scheme of the invention has the beneficial effects that:
the flexible high-precision K-type thermocouple sensor cable can be manufactured at any length under the condition of meeting the requirement of continuous production, and the manufactured sensor potential value and the temperature can ensure a relatively accurate linear relation in the use range of 0-1000 ℃, and can be used at the high temperature of 1300 ℃.
Drawings
FIG. 1 is a cross-sectional view of an embodiment flexible high-precision K-type thermocouple sensor cable;
fig. 2 is a screenshot of calibration and detection data of the manufactured thermocouple sensor in a third-party calibration institution in China according to the technical scheme of the embodiment 1.
The figures in the drawings represent:
1 a-positive wire core, 1 b-negative wire core;
2 a-positive insulating layer, 2 b-negative insulating layer;
3-a protective layer;
4-a metallic armor protective layer.
Detailed Description
As shown in fig. 1, the flexible high-precision K-type thermocouple sensor cable of the present invention includes an anode wire core 1a and a cathode wire core 1b wrapped in the same protective layer 3, wherein an anode insulating layer 2a is disposed outside the anode wire core 1a, and a cathode insulating layer 2b is disposed outside the cathode wire core 1 b; the positive wire core 1a is made of nickel-chromium-silicon alloy and comprises 8.96-10.36 wt% of Cr, 0.46-0.59 wt% of Si, 0.36-0.48 wt% of Fe, 0.02-0.09 wt% of Mn and the balance of Ni; the material of the negative wire core 1b is nickel-aluminum-manganese alloy, and the negative wire core comprises 1.61-1.80 wt% of Al, 1.56-1.69 wt% of Mn, 0.11-0.16 wt% of Fe, 0.58-0.69 wt% of Co, 1.35-1.59 wt% of Si, 0.01-0.06 wt% of C and the balance of Ni. The flexible high-precision K-type thermocouple sensor cable can be manufactured at any length under the condition of continuous production.
The present invention will be described in further detail with reference to specific examples.
Examples 1 to 3:
positive and negative fiber cores were prepared according to the formulation shown in table 3, each calculated at 100 wt%. The positive electrode material and the negative electrode material are made of alloy materials with the diameter of 0.51mm, a thermocouple cable with the length of 900 meters is produced, then the head (the head of a reel) and the tail (the tail of the reel) of the thermocouple cable are sampled, a sampling product is welded to manufacture a thermocouple sensor, and then the product is measured and calibrated.
Table 3: unit: wt.%
Figure BDA0002602438110000051
Figure BDA0002602438110000061
Table 4 shows data of the K-type thermocouples manufactured in examples 1 to 3, which were calibrated at a time of a hundred degrees from 100 ℃ to 1000 ℃.
Table 4:
Figure BDA0002602438110000062
from the calibration data in table 4 and fig. 2, it can be known that, in the calibration range of 0-1000 ℃, the temperature calibration error of the K-type thermocouple sensor cable is less than or equal to ± 1.0 ℃, even a part of temperature intervals can reach within ± 0.5 ℃, the two sensors calibrate temperature points in the same way, the deviation between calibration values is less than or equal to 0.3 ℃, and it is shown that the more accurate linear relationship between the potential value and the temperature can be ensured in the temperature range of 0-1000 ℃. The temperature measurement precision of the product is higher than the industrial standard of national, internal and external cheap metal thermocouples, and part of application fields can even directly replace noble metal thermocouples.
As shown in fig. 1, a metal armor protective layer 4 woven by high temperature resistant alloy wires is arranged outside the protective layer 3, and the material of the metal armor protective layer 4 is selected from a chromium-nickel alloy, a chromium-aluminum-rhenium alloy, a chromium-aluminum-niobium alloy or a chromium-aluminum-molybdenum alloy. These alloy materials are able to withstand high temperatures of 1300 ℃, and are able to protect internal structures under physical impact and thermal shock.
According to experience, the cable is made of the following materials with good effect, the outer diameters of the positive and negative wire cores 1a and 1b are 0.1-3.25 mm, the insulating layers 2a and 2b are long fiber wires which are stranded and have the diameters of 0.05-1.0 mm, the insulating thickness is 0.10-3.0 mm, the diameter of the high-temperature resistant alloy wire of the metal armor weaving protective layer 4 is 0.05-0.25 mm, and the weaving density is 65-95%.
What has been described above are merely some embodiments of the present invention. It will be apparent to those skilled in the art that various changes and modifications can be made without departing from the inventive concept thereof, and these changes and modifications can be made without departing from the spirit and scope of the invention.

Claims (5)

1. A flexible high-precision K-type thermocouple sensor cable comprises a positive wire core and a negative wire core which are wrapped in the same protective layer, wherein insulating layers are respectively arranged outside the positive wire core and the negative wire core; the positive wire core is made of nickel-chromium-silicon alloy and comprises 8.96-10.36 wt% of Cr, 0.46-0.59 wt% of Si, 0.36-0.48 wt% of Fe, 0.02-0.09 wt% of Mn and the balance of Ni; the material of the negative wire core is nickel-aluminum-manganese alloy, and the negative wire core comprises 1.61-1.80 wt% of Al, 1.56-1.69 wt% of Mn, 0.11-0.16 wt% of Fe, 0.58-0.69 wt% of Co, 1.35-1.59 wt% of Si, 0.01-0.06 wt% of C and the balance of Ni.
2. The flexible high-precision K-type thermocouple sensor cable according to claim 1, characterized in that: the insulating layer and the protective layer are woven by high-temperature resistant fibers, and the high-temperature resistant fibers are one of long alumina fiber, polycrystalline mullite long fiber, high-alumina long fiber, aluminum silicate long fiber, quartz glass long fiber or high-silica long fiber.
3. The flexible high-precision K-type thermocouple sensor cable according to claim 1, characterized in that: the insulating layer adopts a long fiber wire with the diameter of 0.05 mm-1.0 mm after being stranded, and the insulating thickness is 0.10 mm-3.0 mm.
4. The flexible high-precision K-type thermocouple sensor cable according to claim 1, characterized in that: and a metal armor protective layer woven by high-temperature-resistant alloy wires is further arranged outside the protective layer, and the metal armor protective layer is made of a material selected from a chromium-nickel alloy, a chromium-aluminum-rhenium alloy, a chromium-aluminum-niobium alloy or a chromium-aluminum-molybdenum alloy.
5. The flexible high-precision K-type thermocouple sensor cable according to claim 4, wherein: the diameter of the high-temperature resistant alloy wire of the metal armor woven protective layer is 0.05 mm-0.25 mm, and the weaving density is 65% -95%.
CN202010729267.XA 2020-07-27 2020-07-27 Flexible high-precision K-type thermocouple sensor cable Active CN111863320B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010729267.XA CN111863320B (en) 2020-07-27 2020-07-27 Flexible high-precision K-type thermocouple sensor cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010729267.XA CN111863320B (en) 2020-07-27 2020-07-27 Flexible high-precision K-type thermocouple sensor cable

Publications (2)

Publication Number Publication Date
CN111863320A true CN111863320A (en) 2020-10-30
CN111863320B CN111863320B (en) 2022-04-29

Family

ID=72947068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010729267.XA Active CN111863320B (en) 2020-07-27 2020-07-27 Flexible high-precision K-type thermocouple sensor cable

Country Status (1)

Country Link
CN (1) CN111863320B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984234A (en) * 2021-10-28 2022-01-28 中国电信股份有限公司 Alarm device and twisted thermocouple wire sensor
CN117723161A (en) * 2024-02-08 2024-03-19 江苏安胜达航天科技股份有限公司 High-precision armored thermocouple and manufacturing method thereof
CN117723161B (en) * 2024-02-08 2024-06-11 江苏安胜达航天科技股份有限公司 High-precision armored thermocouple and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT194631B (en) * 1954-07-06 1958-01-10 British Driver Harris Co Ltd Thermocouple
US3972740A (en) * 1975-07-31 1976-08-03 Wilbur B. Driver Company Thermocouple with improved EMF stability
DE3516260A1 (en) * 1984-05-07 1986-01-02 Bell-Irh Proprietary Ltd., Kingsgrove, New South Wales STABLE HIGH-TEMPERATURE CABLES AND DEVICES MADE THEREOF
CN1053292A (en) * 1991-01-21 1991-07-24 天津市电工合金厂 The N type thermopair alloy silk of compensating wire
CN201025622Y (en) * 2007-01-25 2008-02-20 袁勤华 A nickel base armoured thermocouple
CN105806504A (en) * 2016-03-30 2016-07-27 宁波艾克威特智能科技有限公司 High-temperature-resistant cheap metal armored thermocouple and manufacturing method thereof
CN111057908A (en) * 2019-12-26 2020-04-24 江阴市诚信合金材料有限公司 High-adaptability low-cost nickel-chromium-nickel-silicon thermocouple wire and production process thereof
CN210956203U (en) * 2019-12-10 2020-07-07 昆山安胜达微波科技有限公司 Flexible super-long fireproof high-temperature-resistant cable

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT194631B (en) * 1954-07-06 1958-01-10 British Driver Harris Co Ltd Thermocouple
US3972740A (en) * 1975-07-31 1976-08-03 Wilbur B. Driver Company Thermocouple with improved EMF stability
DE3516260A1 (en) * 1984-05-07 1986-01-02 Bell-Irh Proprietary Ltd., Kingsgrove, New South Wales STABLE HIGH-TEMPERATURE CABLES AND DEVICES MADE THEREOF
CN1053292A (en) * 1991-01-21 1991-07-24 天津市电工合金厂 The N type thermopair alloy silk of compensating wire
CN201025622Y (en) * 2007-01-25 2008-02-20 袁勤华 A nickel base armoured thermocouple
CN105806504A (en) * 2016-03-30 2016-07-27 宁波艾克威特智能科技有限公司 High-temperature-resistant cheap metal armored thermocouple and manufacturing method thereof
CN210956203U (en) * 2019-12-10 2020-07-07 昆山安胜达微波科技有限公司 Flexible super-long fireproof high-temperature-resistant cable
CN111057908A (en) * 2019-12-26 2020-04-24 江阴市诚信合金材料有限公司 High-adaptability low-cost nickel-chromium-nickel-silicon thermocouple wire and production process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984234A (en) * 2021-10-28 2022-01-28 中国电信股份有限公司 Alarm device and twisted thermocouple wire sensor
CN117723161A (en) * 2024-02-08 2024-03-19 江苏安胜达航天科技股份有限公司 High-precision armored thermocouple and manufacturing method thereof
CN117723161B (en) * 2024-02-08 2024-06-11 江苏安胜达航天科技股份有限公司 High-precision armored thermocouple and manufacturing method thereof

Also Published As

Publication number Publication date
CN111863320B (en) 2022-04-29

Similar Documents

Publication Publication Date Title
CN111863320B (en) Flexible high-precision K-type thermocouple sensor cable
CN102305965B (en) Sensing optical cable for synchronously monitoring temperature and pressure in oil well tubing in distribution mode
CN103471497B (en) The long gauge length strain transducer of a kind of intelligence and manufacture method thereof
CN111799013B (en) Flexible high-precision N-type thermocouple sensor cable
CN102681114A (en) Armored sensing optical cable
CN102435551A (en) Building wall humidity fiber grating monitoring system
CN204423976U (en) A kind of based on geology detecting calibration cable
CN210956203U (en) Flexible super-long fireproof high-temperature-resistant cable
CN109737999B (en) Method for acquiring temperature and strain of composite bar in structure in thermal coupling environment
CN208672179U (en) A kind of fibre optic temperature sensor based on surface plasma body resonant vibration and strain compensation
CN205192648U (en) A temperature sensor for electric oven
CN211699759U (en) Superfine soft anti-fixation mark precision thermocouple wire
CN104409151A (en) Calibration cable for geological exploration as well as production technology and calibration detection method of calibration cable
CN204010743U (en) High temperature resistant extended pattern environmental protection compensation flat cable
CN204807227U (en) Armor thermal resistance sensor
CN117723161B (en) High-precision armored thermocouple and manufacturing method thereof
US10444089B2 (en) Strain sensing in composite materials
CN209102228U (en) A kind of multi-measuring point temperature sensor
CN202351169U (en) Fiber-grating monitoring system for humidity of construction wall
CN211504433U (en) Flexible corrosion-resistant thermocouple sensor
CN207319732U (en) A kind of insulated wire cable
CN205898316U (en) Electricity temperature sensing probe for core
CN117723161A (en) High-precision armored thermocouple and manufacturing method thereof
CN109115363A (en) A kind of fibre optic temperature sensor based on surface plasma body resonant vibration and strain compensation
CN213183698U (en) Aerospace transmission cable

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: No. 177, Xinle Road, Dianshanhu Town, Kunshan City, Suzhou City, Jiangsu Province, 215000

Patentee after: Jiangsu Anshengda Aerospace Technology Co.,Ltd.

Address before: 215000 28 Xinxing Road, Dianshanhu Town, Kunshan City, Suzhou City, Jiangsu Province

Patentee before: KUNSHAN ADVANCED MICROWAVE TECHNOLOGIES CO.,LTD.