CN111862264B - Multiphase mixed flow type cooperative regulation and control method - Google Patents

Multiphase mixed flow type cooperative regulation and control method Download PDF

Info

Publication number
CN111862264B
CN111862264B CN202010517618.0A CN202010517618A CN111862264B CN 111862264 B CN111862264 B CN 111862264B CN 202010517618 A CN202010517618 A CN 202010517618A CN 111862264 B CN111862264 B CN 111862264B
Authority
CN
China
Prior art keywords
gas
multiphase
liquid
mixed fluid
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010517618.0A
Other languages
Chinese (zh)
Other versions
CN111862264A (en
Inventor
王�华
杨凯
徐建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yimen Copper Co
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202010517618.0A priority Critical patent/CN111862264B/en
Publication of CN111862264A publication Critical patent/CN111862264A/en
Application granted granted Critical
Publication of CN111862264B publication Critical patent/CN111862264B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/203Drawing of straight lines or curves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Algebra (AREA)
  • Evolutionary Biology (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)

Abstract

The invention discloses a multiphase mixed flow type cooperative regulation and control method, which comprises the following steps: obtaining a real-time pattern, calculating a time sequence, obtaining a fitting curve, marking a distance of the fitting curve and selecting a fitting curve segment; the method comprises the steps of firstly collecting a real-time pattern of a multiphase mixed fluid sample, calculating the 0 th-dimensional Betty number of each gas-liquid-solid phase in the mixed pattern by adopting a digital image processing and statistical method, respectively obtaining the time sequence of the 0 th-dimensional Betty number of each gas-liquid-solid phase, then obtaining a fitting curve of the time sequence of the 0 th-dimensional Betty number of each phase by using logistic fitting, and finally selecting D from the D s,q,l A minimum fitted curve and the control of the multiphase mixed fluid sample according to this fitted curve, D s,q,l The smaller the value is, the better the multiphase mixing is, the more stable the flow pattern is, compared with the existing flow pattern regulation and control method, the method is more intuitive, has stronger applicability and higher practicability, can be applied to various fields relating to multiphase mixing, such as chemical industry, metallurgy and the like, and is convenient to popularize.

Description

Multiphase mixed flow type cooperative regulation and control method
Technical Field
The invention relates to the technical field of chemical and metallurgical engineering, in particular to a multiphase mixed flow type cooperative regulation and control method.
Background
The two-phase or three-phase mixing in the gas-liquid-solid three-phase system relates to petroleum, chemical industry, energy, metallurgy and other fields, the difference of the mixed flow pattern of different phases directly influences the quality of the mixing effect, in gas-solid conveying, the deposition of solid particles can cause the scouring aggravation of pipelines, in gas-liquid mixing, the existence of uneven bubbles can lead to heat transfer deterioration or mixing effect variation, therefore, the flow pattern regulation and control of gas-liquid-solid three-phase in the stirring and mixing process has important significance to many process technologies, the gas-liquid-solid three-phase synergistic effect is mastered to carry out flow pattern regulation and control, accurate control can be carried out on the distribution of gas-liquid-solid three-phase in the stirring process, and a large amount of manpower, material resources and financial resources are saved.
At present, the flow pattern regulation and control method for gas-liquid-solid multiphase mixing at home and abroad mainly comprises three methods: the method comprises the steps of optimizing the structure of a fluid channel, changing the input parameters of fluid, and performing simulation on the flow type, wherein the flow type regulation and control by the three methods have good effects, but the method for optimizing the moral structure of the fluid channel has low applicability, the method for changing the parameters of the fluid is not intuitive, the simulation is lack of experimental guidance, and the three methods have disadvantages and low practicability.
Disclosure of Invention
In view of the above problems, an object of the present invention is to provide a multiphase mixed fluid type cooperative control method, which obtains time series of 0 th dimensional Betty numbers of gas, liquid and solid phases in a multiphase mixed fluid sample by calculating 0 th dimensional Betty numbers of each phase of gas, liquid and solid in the multiphase mixed fluid sample, and obtains fitting curves of the time series of the 0 th dimensional Betty numbers of each phase of the mixed three-dimensional sample by using logistic fitting, and then selects a fitting curve segment with the best mixing effect to perform flow type control on the multiphase mixed fluid.
In order to achieve the purpose of the invention, the invention is realized by the following technical scheme: a multiphase mixed flow type cooperative regulation and control method comprises the following steps:
the method comprises the following steps: obtaining real-time patterns
Firstly, placing a gas, liquid and solid multiphase sample to be mixed into a prepared mixing container for mixing to obtain a multiphase mixed fluid sample, and then acquiring a real-time pattern of the multiphase mixed fluid sample through a particle velocimeter, a high-speed camera and an electrical tomography (EPT) method and storing image data;
step two: computing time series
According to the first step, firstly, calculating the 0 th dimensional Betty number of each phase of gas, liquid and solid in the multiphase mixed fluid sample according to the mixed pattern of the multiphase mixed fluid by using a digital image processing and statistical method, and simultaneously acquiring the 0 th dimensional Betty number time sequence of each phase of gas, liquid and solid in the multiphase mixed fluid sample;
step three: obtaining a fitting curve
According to the second step, firstly, a logistic fitting method is used for fitting a fitting curve of the corresponding 0-dimensional Betty time sequence of each phase of gas, liquid and solid according to the 0-dimensional Betty time sequence of each phase of gas, liquid and solid in the multiphase mixed fluid sample;
step four: marking fitted curve distances
According to the third step, the distance between every two fitted curves is correspondingly marked according to the fitted curves of the time series of the 0 th dimension Betty number of each phase of gas, liquid and solid in the multiphase mixed fluid sample to obtain D s,q 、D s,l 、D l,q Three items of data;
step five: selecting fitting curve segment
According to step four, D s,q 、D s,l 、D l,q Three data are superposed to obtain the sum D of the distances between every two phase fitting curves in the fitting curves of the 0 th dimension Betty number of each phase of gas, liquid and solid in the multiphase mixed fluid sample s,q,l Selecting D therein s,q,l Regulating and controlling the multiphase mixed fluid sample according to a section of fitting curve with the minimum value and the fitting curve of the time sequence of the 0 th-dimensional Betty number of each phase of gas, liquid and solid so as to obtain the optimal mixing effect and the most stable flow pattern of the multiphase mixed fluid sample;
the further improvement is that: in the first step, a mixing real-time pattern of transparent and semitransparent fluids in the gas-solid-liquid multiphase mixing process is obtained through a particle velocimeter and a high-speed camera, and a mixing real-time pattern of opaque fluids in the gas-solid-liquid multiphase mixing process is obtained through an electrical tomography (EPT).
The further improvement is that: in the second step, the 0 th-dimension Betty number in the algebraic topology calculation means the number of the connected components in the region, and means the number of the blocks in the region, and the 0 th-dimension Betty number of each phase of gas, liquid and solid in the multiphase mixed fluid sample is calculated and obtained through CHomp international free software to represent the uniformity degree of the mixing effect of the multiphase mixed fluid sample.
The further improvement is that: the 0-dimensional Betty number time series logistic curve of each phase of gas, liquid and solid in the multiphase mixed fluid sample in the calculation process is calculated and obtained by public codes.
The further improvement lies in that: in the obtained fitting curve of the 0 th-dimensional Betty number time sequence of each phase of gas, liquid and solid in the multiphase mixed fluid sample, the distance of the stationary sections of the three fitting curves is the sum of the distances of every two fitting curves, namely D s,q,l =D s,q +D s,l +D l,q
The further improvement lies in that: in the fifth step, the closer the three fitting curves of the time series of the 0 th-dimensional Betty numbers of the phases of the gas, the liquid and the solid in the multiphase mixed fluid sample are to each other, the distance D between the stationary sections of the three fitting curves of the time series of the 0 th-dimensional Betty numbers of the phases of the gas, the liquid and the solid in the multiphase mixed fluid sample is s,q,l The smaller the flow pattern, the better the mixing effect of the multiphase mixed fluid, and the more stable the flow pattern.
The beneficial effects of the invention are as follows: the method comprises the steps of firstly collecting a real-time pattern of a multiphase mixed fluid sample through a particle velocimeter, a high-speed camera and an electrical tomography (EPT), then calculating the 0 th-dimension Betty number of each gas-liquid-solid phase in the mixed pattern by adopting a digital image processing and statistical method, respectively obtaining the time sequence of the 0 th-dimension Betty number of each gas-liquid-solid phase in the multiphase mixed fluid sample, then obtaining a fitting curve of the time sequence of the 0 th-dimension Betty number of each phase by utilizing logistic fitting, and finally selecting D in the fitting curve s,q,l A minimum fitted curve and the control of the multiphase mixed fluid sample according to this fitted curve, D s,q,l The smaller the value of the amount of the substance,the better the multiphase mixing, the more stable the flow pattern, the more visual the method compared with the existing flow pattern regulation and control method, the stronger the applicability, the higher the practicability, can be applied to a plurality of fields relating to multiphase mixing, such as chemical industry, metallurgy and the like, and is convenient to popularize.
Drawings
FIG. 1 is a flow chart of the method of the present invention.
Detailed Description
For the purpose of enhancing understanding of the present invention, the present invention will be further described in detail with reference to the following examples, which are provided for illustration only and are not intended to limit the scope of the present invention.
As shown in fig. 1, this embodiment provides a multiphase mixed flow type cooperative control method, including the following steps:
the method comprises the following steps: obtaining real-time patterns
Firstly, gas, liquid and solid multiphase samples to be mixed are placed in a prepared mixing container to be mixed, multiphase mixed fluid samples are obtained, then a particle velocimeter, a high-speed camera and an electric tomography (EPT) method are used for collecting real-time patterns of the multiphase mixed fluid samples and storing image data, wherein the particle velocimeter and the high-speed camera are used for obtaining mixed real-time patterns of transparent and semitransparent fluids in a gas-solid-liquid multiphase mixing process, and the EPT method is used for obtaining mixed real-time patterns of opaque fluids in the gas-solid-liquid multiphase mixing process;
step two: calculating a time series
According to the first step, the 0 th-dimensional Betty number of each phase of gas, liquid and solid in the multiphase mixed fluid sample is calculated according to the mixed pattern of the multiphase mixed fluid by using digital image processing and statistics through Chomp international free software, wherein the meaning of the 0 th-dimensional Betty number in the calculation of algebraic topology is the number of connected components in a region, which is the number of blocks in the region, and is used for representing the uniformity degree of the mixed effect of the multiphase mixed fluid sample, and the 0 th-dimensional Betty number time sequence of each phase of gas, liquid and solid in the multiphase mixed fluid sample is obtained through public codes;
step three: obtaining a fitting curve
According to the second step, firstly, a logistic fitting method is used for fitting a corresponding fitting curve of the time sequence of the 0-dimensional Betty number of each gas-liquid-solid phase according to the 0-dimensional Betty number time sequence of each gas-liquid-solid phase in the multiphase mixed fluid sample;
step four: marking fitted curve distance
According to the third step, correspondingly marking the distance between every two phase of fitted curves according to the fitted curves of the 0 th-dimensional Betty numbers of all phases of gas, liquid and solid in the multiphase mixed fluid sample to obtain D s,q 、D s,l 、D l,q Three items of data;
step five: selecting fitting curve segment
According to the fourth step, in the obtained fitting curve of the 0 th-dimensional Betty number of each phase of gas, liquid and solid in the multiphase mixed fluid sample, the distance of the stationary sections of the three fitting curves is the sum of the distances of every two fitting curves, namely D s,q,l =D s,q +D s,l +D l,q D is s,q 、D s,l 、D l,q Three data are superposed to obtain the sum D of the distances between every two fitted curves in the fitted curves of the 0 th dimension Betty number of each phase of gas, liquid and solid in the multiphase mixed fluid sample s,q,l The closer the three fitting curves of the time series of the 0 th-dimensional Betty numbers of the respective phases of the gas, liquid and solid in the multiphase mixed fluid sample are to each other, the distance D between the plateaus of the three fitting curves of the time series of the 0 th-dimensional Betty numbers of the respective phases of the gas, liquid and solid in the multiphase mixed fluid sample is s,q,l The smaller the flow rate, the better the mixing effect of the multiphase mixed fluid, the more stable the flow pattern, and D is selected s,q,l And regulating and controlling the multiphase mixed fluid sample according to a section of fitting curve with the minimum value and the fitting curve of the time sequence of 0-dimensional Betty number of each phase of gas, liquid and solid.
The multiphase mixed fluid type coordinated regulation and control method comprises the steps of collecting a real-time pattern of a multiphase mixed fluid sample through a particle velocimeter, a high-speed camera and an electrical tomography (EPT), and then adopting digital image processing and statisticsThe method calculates the 0-dimensional Betty number of each gas-liquid-solid phase in the mixed pattern, respectively obtains the time sequence of the 0-dimensional Betty number of each gas-liquid-solid phase in the multiphase mixed fluid sample, then obtains the fitting curve of the time sequence of the 0-dimensional Betty number of each phase by using logistic fitting, and finally selects D in the fitting curve s,q,l A minimum fitted curve and the control of the multiphase mixed fluid sample according to this fitted curve, D s,q,l The smaller the value, the better the multiphase mixing, and the more stable the flow pattern, compared with the existing flow pattern regulation and control method, the method is more intuitive, has stronger applicability and higher practicability, can be applied to various fields relating to multiphase mixing, such as chemical industry, metallurgy and the like, and is convenient to popularize.
The foregoing illustrates and describes the principles, general features, and advantages of the present invention. It will be understood by those skilled in the art that the present invention is not limited to the embodiments described above, which are described in the specification and illustrated only to illustrate the principle of the present invention, but that various changes and modifications may be made therein without departing from the spirit and scope of the present invention, which fall within the scope of the invention as claimed. The scope of the invention is defined by the appended claims and equivalents thereof.

Claims (5)

1. A multiphase mixed flow type cooperative regulation and control method is characterized in that: the method comprises the following steps:
the method comprises the following steps: obtaining real-time patterns
Firstly, placing a gas, liquid and solid multiphase sample to be mixed into a prepared mixing container for mixing to obtain a multiphase mixed fluid sample, and then acquiring a real-time pattern of the multiphase mixed fluid sample and storing image data through a particle velocimeter, a high-speed camera and an electrical tomography (EPT);
step two: computing time series
According to the first step, firstly, calculating the 0 th-dimensional Betty number of each phase of gas, liquid and solid in the multiphase mixed fluid sample according to the mixed pattern of the multiphase mixed fluid by using a digital image processing and statistical method, and simultaneously acquiring the 0 th-dimensional Betty number time sequence of each phase of gas, liquid and solid in the multiphase mixed fluid sample;
step three: obtaining a fitted curve
According to the second step, firstly, a logistic fitting method is used for fitting a corresponding fitting curve of the time sequence of the 0-dimensional Betty number of each gas-liquid-solid phase according to the 0-dimensional Betty number time sequence of each gas-liquid-solid phase in the multiphase mixed fluid sample;
step four: marking fitted curve distances
According to the third step, correspondingly marking the distance between every two phase of fitted curves according to the fitted curves of the 0 th-dimensional Betty numbers of all phases of gas, liquid and solid in the multiphase mixed fluid sample to obtain D s,q 、D s,l 、D l,q Three items of data;
step five: selecting fitting curve segment
According to step four, D s,q 、D s,l 、D l,q Three data are superposed to obtain the sum D of the distances between every two phase fitting curves in the fitting curves of the 0 th dimension Betty number of each phase of gas, liquid and solid in the multiphase mixed fluid sample s,q,l Selecting D therein s,q,l Regulating and controlling the multiphase mixed fluid sample according to a section of fitting curve with the minimum value and the fitting curve of the time sequence of the 0 th-dimensional Betty number of each phase of gas, liquid and solid so as to obtain the optimal mixing effect and the most stable flow pattern of the multiphase mixed fluid sample;
in the obtained fitting curve of the 0 th-dimensional Betty number time sequence of each phase of gas, liquid and solid in the multiphase mixed fluid sample, the distance of the stationary sections of the three fitting curves is the sum of the distances of every two fitting curves, namely D s,q,l =D s,q +D s,l +D l,q
2. The method of claim 1, wherein the method further comprises: in the first step, a particle velocimeter and a high-speed camera are used for obtaining a mixing real-time pattern of transparent and semitransparent fluids in the gas-solid-liquid multiphase mixing process, and an electric tomography (EPT) method is used for obtaining a mixing real-time pattern of opaque fluids in the gas-solid-liquid multiphase mixing process.
3. The method of claim 1, wherein the method comprises: in the second step, the 0 th-dimension Betty number in the algebraic topology calculation means the number of the connected components in the region, and means the number of the blocks in the region, and the 0 th-dimension Betty number of each phase of gas, liquid and solid in the multiphase mixed fluid sample is calculated and obtained through CHomp international free software to represent the uniformity degree of the mixing effect of the multiphase mixed fluid sample.
4. The method of claim 1, wherein the method further comprises: the 0 th-dimensional Betty number time series logistic curve of each phase of gas, liquid and solid in the multiphase mixed fluid sample in the calculation process is obtained by calculation through public codes.
5. The method of claim 1, wherein the method further comprises: in the fifth step, the closer the three fitting curves of the time series of the 0 th-dimensional Betty numbers of the phases of the gas, the liquid and the solid in the multiphase mixed fluid sample are to each other, the distance D between the stationary sections of the three fitting curves of the time series of the 0 th-dimensional Betty numbers of the phases of the gas, the liquid and the solid in the multiphase mixed fluid sample is s,q,l The smaller the flow pattern, the better the mixing effect of the multiphase mixed fluid, and the more stable the flow pattern.
CN202010517618.0A 2020-06-09 2020-06-09 Multiphase mixed flow type cooperative regulation and control method Active CN111862264B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010517618.0A CN111862264B (en) 2020-06-09 2020-06-09 Multiphase mixed flow type cooperative regulation and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010517618.0A CN111862264B (en) 2020-06-09 2020-06-09 Multiphase mixed flow type cooperative regulation and control method

Publications (2)

Publication Number Publication Date
CN111862264A CN111862264A (en) 2020-10-30
CN111862264B true CN111862264B (en) 2023-03-31

Family

ID=72987347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010517618.0A Active CN111862264B (en) 2020-06-09 2020-06-09 Multiphase mixed flow type cooperative regulation and control method

Country Status (1)

Country Link
CN (1) CN111862264B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3996098A1 (en) * 2020-11-06 2022-05-11 Dassault Systemes Deutschland GmbH Renormalization by complete asymmetric fluctuation equations (cafe)
CN113138141B (en) * 2021-04-23 2023-01-20 昆明理工大学 Method for measuring solid diffusion rate and dissolution rate in solid-liquid mixing process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813641A (en) * 2010-05-11 2010-08-25 昆明理工大学 Method for verifying homogeneous state and degree of multiphase stirring and mixing
CN101929994A (en) * 2010-08-24 2010-12-29 昆明理工大学 Time sequence model and method for predicting multi-phase mixing uniformity
CN108844959A (en) * 2018-04-12 2018-11-20 西安交通大学 The measurement of gas-liquid two-phase ring-type flow section phase content and modification method in a kind of round tube
CN109903243A (en) * 2019-02-20 2019-06-18 云南农业大学 A method of multiphase stirring and mixing effect is characterized based on Logistics model
CN110175195A (en) * 2019-04-23 2019-08-27 哈尔滨工业大学 Mixed gas detection model construction method based on extreme random tree

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813641A (en) * 2010-05-11 2010-08-25 昆明理工大学 Method for verifying homogeneous state and degree of multiphase stirring and mixing
CN101929994A (en) * 2010-08-24 2010-12-29 昆明理工大学 Time sequence model and method for predicting multi-phase mixing uniformity
CN108844959A (en) * 2018-04-12 2018-11-20 西安交通大学 The measurement of gas-liquid two-phase ring-type flow section phase content and modification method in a kind of round tube
CN109903243A (en) * 2019-02-20 2019-06-18 云南农业大学 A method of multiphase stirring and mixing effect is characterized based on Logistics model
CN110175195A (en) * 2019-04-23 2019-08-27 哈尔滨工业大学 Mixed gas detection model construction method based on extreme random tree

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Flow pattern visualization and nonlinear analysis of gas-liquid mixing process with top-blowing gas stirring;Kai Yang ET AL;《Journal of Central South University》;20190925;第26卷(第8期);2029-2040 *
Novel 3-D homogeneity metrics of multiple components in gas-stirred liquid systems;Qingtai Xiao ET AL;《Powder Technology》;20180831;第336卷;210-219 *
Synergistic effect of flow pattern evolution of dispersed and continuous phases in direct-contact heat transfer process;Jianxin Xu ET AL;《International Journal of Refrigeration》;20200430;第112卷;201-214 *
基于数字图像分析的气—液两相混合特性研究;高勤;《中国优秀硕士学位论文全文数据库 信息科技辑》;20190115;I138-4126 *
多相体系搅拌混合效果评价方法及其应用研究;徐建新;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20121115;B015-1 *

Also Published As

Publication number Publication date
CN111862264A (en) 2020-10-30

Similar Documents

Publication Publication Date Title
CN111862264B (en) Multiphase mixed flow type cooperative regulation and control method
Bezzo et al. A general methodology for hybrid multizonal/CFD models: Part II. Automatic zoning
Rahimifard et al. Minimising Embodied Product Energy to support energy efficient manufacturing
Kara et al. Balancing and sequencing mixed-model just-in-time U-lines with multiple objectives
CN105825081B (en) A kind of Classification of Gene Expression Data method and categorizing system
Jia et al. Performance analysis of assembly systems with Bernoulli machines and finite buffers during transients
Borisenko et al. Hierarchy of processing equipment configuration design problems for multiproduct chemical plants
CN106980730B (en) VLSI standard unit layout method based on direct solving technology
CN102129715A (en) Generation method of quadrilateral grid of geometric model with any internal feature constraints
Gao et al. A review on energy consumption, energy efficiency and energy saving of metal forming processes from different hierarchies
Klein et al. Constructal Design of tube arrangements for heat transfer to non-Newtonian fluids
US20210109490A1 (en) System and Method for User Intuitive Visual Management of Automation of Bioprocess
Petersen et al. Finite element remeshing: a metal forming approach for quadrilateral mesh generation and refinement
Karpinska et al. Modeling of the hydrodynamics and energy expenditure of oxidation ditch aerated with hydrojets using CFD codes
CN106371837B (en) Alternating current-direct current monitoring system of electric substation configuration interface automation construction method and device
Chen et al. A survey of interface tracking methods in multi-phase fluid visualization
CN100541604C (en) Image treatment method and panntographic system
Chen et al. Optimal parameter estimation for Muskingum model based on Gray-encoded accelerating genetic algorithm
CN107153755A (en) A kind of method for solving of shale gas well numerical simulation
CN113541923A (en) Calculation task adjusting method and device for multi-party secure calculation and electronic equipment
Zhitnikov et al. Simulation of non-stationary processes of electrochemical machining
CN101976558B (en) Method and device for scaling video images
Finn et al. Chaotic advection in a braided pipe mixer
CN115859869A (en) CFD-based stirrer flocculation analysis method and system
CN109559028A (en) Distribution network planning year reliability estimation method based on gray theory and Distance evaluation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231212

Address after: 651100 Dachunshu Industrial Park, Yimen County, Yuxi City, Yunnan Province

Patentee after: YIMEN COPPER CO.

Address before: 650093 No. 253, Xuefu Road, Wuhua District, Yunnan, Kunming

Patentee before: Kunming University of Science and Technology