CN111860569A - 一种基于人工智能的电力设备异常检测系统及方法 - Google Patents
一种基于人工智能的电力设备异常检测系统及方法 Download PDFInfo
- Publication number
- CN111860569A CN111860569A CN202010485088.6A CN202010485088A CN111860569A CN 111860569 A CN111860569 A CN 111860569A CN 202010485088 A CN202010485088 A CN 202010485088A CN 111860569 A CN111860569 A CN 111860569A
- Authority
- CN
- China
- Prior art keywords
- data
- power equipment
- lstm model
- temperature
- artificial intelligence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 35
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 13
- 230000008878 coupling Effects 0.000 claims abstract description 13
- 238000010168 coupling process Methods 0.000 claims abstract description 13
- 238000005859 coupling reaction Methods 0.000 claims abstract description 13
- 230000006698 induction Effects 0.000 claims abstract description 12
- 238000012549 training Methods 0.000 claims abstract description 9
- 230000002159 abnormal effect Effects 0.000 claims description 35
- 230000005856 abnormality Effects 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 5
- 238000007621 cluster analysis Methods 0.000 claims description 4
- 210000004205 output neuron Anatomy 0.000 claims description 4
- 230000001939 inductive effect Effects 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 2
- 238000011897 real-time detection Methods 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 9
- 239000000284 extract Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000010897 surface acoustic wave method Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/22—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
- G01K11/26—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies
- G01K11/265—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies using surface acoustic wave [SAW]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K17/00—Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
- G06K17/0022—Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisions for transferring data to distant stations, e.g. from a sensing device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Acoustics & Sound (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010485088.6A CN111860569A (zh) | 2020-06-01 | 2020-06-01 | 一种基于人工智能的电力设备异常检测系统及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010485088.6A CN111860569A (zh) | 2020-06-01 | 2020-06-01 | 一种基于人工智能的电力设备异常检测系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111860569A true CN111860569A (zh) | 2020-10-30 |
Family
ID=72985322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010485088.6A Pending CN111860569A (zh) | 2020-06-01 | 2020-06-01 | 一种基于人工智能的电力设备异常检测系统及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111860569A (zh) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108063698A (zh) * | 2017-12-15 | 2018-05-22 | 东软集团股份有限公司 | 设备异常检测方法和装置、程序产品及存储介质 |
CN109408552A (zh) * | 2018-08-08 | 2019-03-01 | 南京航空航天大学 | 基于lstm-ae深度学习框架的民机系统故障监测与识别方法 |
CN109814527A (zh) * | 2019-01-11 | 2019-05-28 | 清华大学 | 基于lstm循环神经网络工业设备故障预测方法及装置 |
US20190286506A1 (en) * | 2018-03-13 | 2019-09-19 | Nec Laboratories America, Inc. | Topology-inspired neural network autoencoding for electronic system fault detection |
US20190324068A1 (en) * | 2018-04-20 | 2019-10-24 | Nec Laboratories America, Inc. | Detecting anomalies in a plurality of showcases |
CN110378392A (zh) * | 2019-06-26 | 2019-10-25 | 华东师范大学 | 一种基于lstm-ae的室内老人状态监测方法 |
US20190384239A1 (en) * | 2018-06-15 | 2019-12-19 | Johnson Controls Technology Company | Adaptive selection of machine learning/deep learning model with optimal hyper-parameters for anomaly detection of connected chillers |
US20190391574A1 (en) * | 2018-06-25 | 2019-12-26 | Nec Laboratories America, Inc. | Early anomaly prediction on multi-variate time series data |
CN110689075A (zh) * | 2019-09-26 | 2020-01-14 | 北京工业大学 | 基于多算法融合的制冷设备的自适应阈值的故障预测方法 |
CN210180558U (zh) * | 2019-06-28 | 2020-03-24 | 浙江荷清柔性电子技术有限公司 | 基于saw谐振的电缆中间接头测温装置及电缆中间接头 |
CN111060221A (zh) * | 2019-12-31 | 2020-04-24 | 云领电气智能科技(苏州)有限公司 | 基于循环神经网络的变压器过热故障预警方法 |
-
2020
- 2020-06-01 CN CN202010485088.6A patent/CN111860569A/zh active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108063698A (zh) * | 2017-12-15 | 2018-05-22 | 东软集团股份有限公司 | 设备异常检测方法和装置、程序产品及存储介质 |
US20190286506A1 (en) * | 2018-03-13 | 2019-09-19 | Nec Laboratories America, Inc. | Topology-inspired neural network autoencoding for electronic system fault detection |
US20190324068A1 (en) * | 2018-04-20 | 2019-10-24 | Nec Laboratories America, Inc. | Detecting anomalies in a plurality of showcases |
US20190384239A1 (en) * | 2018-06-15 | 2019-12-19 | Johnson Controls Technology Company | Adaptive selection of machine learning/deep learning model with optimal hyper-parameters for anomaly detection of connected chillers |
US20190391574A1 (en) * | 2018-06-25 | 2019-12-26 | Nec Laboratories America, Inc. | Early anomaly prediction on multi-variate time series data |
CN109408552A (zh) * | 2018-08-08 | 2019-03-01 | 南京航空航天大学 | 基于lstm-ae深度学习框架的民机系统故障监测与识别方法 |
CN109814527A (zh) * | 2019-01-11 | 2019-05-28 | 清华大学 | 基于lstm循环神经网络工业设备故障预测方法及装置 |
CN110378392A (zh) * | 2019-06-26 | 2019-10-25 | 华东师范大学 | 一种基于lstm-ae的室内老人状态监测方法 |
CN210180558U (zh) * | 2019-06-28 | 2020-03-24 | 浙江荷清柔性电子技术有限公司 | 基于saw谐振的电缆中间接头测温装置及电缆中间接头 |
CN110689075A (zh) * | 2019-09-26 | 2020-01-14 | 北京工业大学 | 基于多算法融合的制冷设备的自适应阈值的故障预测方法 |
CN111060221A (zh) * | 2019-12-31 | 2020-04-24 | 云领电气智能科技(苏州)有限公司 | 基于循环神经网络的变压器过热故障预警方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108593260B (zh) | 光缆线路故障定位和检测方法及终端设备 | |
CN115170000B (zh) | 一种基于电能表通信模块的远程监测方法及系统 | |
CN110261746B (zh) | 基于振荡波电压周期衰减特性的电缆缺陷检测方法 | |
CN103868580B (zh) | 基于光纤的输电导线微风振动监测数字传感器及监测方法 | |
CN113297797A (zh) | 一种基于XGBoost的电子式互感器量测误差状态评估方法及装置 | |
CN112880750A (zh) | 一种变压器多维度综合在线监测智能诊断系统 | |
Khan et al. | End-to-end partial discharge detection in power cables via time-domain convolutional neural networks | |
CN113138005A (zh) | 基于特征提取和神经网络的车辆随机载荷模式识别系统 | |
CN114993669A (zh) | 多传感器信息融合的传动系统故障诊断方法及系统 | |
CN110487917A (zh) | 一种基于神经网络的应力波检测与分析系统 | |
CN113607325A (zh) | 一种钢结构螺栓群松动定位智能监测方法及系统 | |
CN116028791A (zh) | 一种基于超声导波和卷积神经网络的钢绞线应力识别方法 | |
CN115575811A (zh) | 一种断路器电寿命预测评估方法、系统、存储介质及设备 | |
CN117764980A (zh) | 基于红外多特征融合的复合材料缺陷自动识别与度量方法 | |
CN111860569A (zh) | 一种基于人工智能的电力设备异常检测系统及方法 | |
CN113092044B (zh) | 一种基于加权水平可见图的旋转机械故障诊断方法 | |
CN110441707A (zh) | 一种锂离子电池健康状态声发射检测系统及方法 | |
CN117056865B (zh) | 一种基于特征融合的机泵设备运行故障诊断方法及装置 | |
Tao et al. | A structural monitoring data processing model based on signal musicalization | |
CN112881879A (zh) | 一种高压电缆终端局部放电模式识别方法、装置及设备 | |
CN114492146B (zh) | 基于迁移学习的螺栓群松动定位和定量分析方法及系统 | |
CN117194958A (zh) | 一种基于深度学习的环网柜电缆局部放电的故障检测方法 | |
CN114595733B (zh) | 基于长短期记忆网络的桥梁拉索断丝信号识别方法及系统 | |
Sekatane et al. | Time reversal vs. integration of time reversal with convolution neural network in diagnosing partial discharge in power transformer | |
CN116090328A (zh) | 一种电压互感器运行性能趋势预测方法与系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20201224 Address after: 310052 building B, 701 Jianghui Road, Binjiang District, Hangzhou City, Zhejiang Province Applicant after: Innovation and entrepreneurship center of State Grid Zhejiang Electric Power Co.,Ltd. Applicant after: STATE GRID ZHEJIANG ELECTRIC POWER CO., LTD. NINGBO POWER SUPPLY Co. Applicant after: State Grid Zhejiang Electric Power Co., Ltd. Ningbo Zhenhai Power Supply Co. Address before: 315000 No. 1408 Liyuan North Road, Haishu District, Ningbo City, Zhejiang Province Applicant before: STATE GRID ZHEJIANG ELECTRIC POWER CO., LTD. NINGBO POWER SUPPLY Co. Applicant before: State Grid Zhejiang Electric Power Co., Ltd. Ningbo Zhenhai Power Supply Co. |
|
TA01 | Transfer of patent application right |