CN111860537A - 基于深度学习的绿色柑橘识别方法、设备及装置 - Google Patents
基于深度学习的绿色柑橘识别方法、设备及装置 Download PDFInfo
- Publication number
- CN111860537A CN111860537A CN202010696636.XA CN202010696636A CN111860537A CN 111860537 A CN111860537 A CN 111860537A CN 202010696636 A CN202010696636 A CN 202010696636A CN 111860537 A CN111860537 A CN 111860537A
- Authority
- CN
- China
- Prior art keywords
- preset
- sampling
- image
- deep learning
- green citrus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 241000207199 Citrus Species 0.000 title claims abstract description 108
- 235000020971 citrus fruits Nutrition 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000013135 deep learning Methods 0.000 title claims abstract description 59
- 238000005070 sampling Methods 0.000 claims abstract description 107
- 238000010586 diagram Methods 0.000 claims abstract description 56
- 238000007781 pre-processing Methods 0.000 claims abstract description 21
- 238000012545 processing Methods 0.000 claims abstract description 10
- 230000006870 function Effects 0.000 claims description 50
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 238000010606 normalization Methods 0.000 claims description 12
- 230000009466 transformation Effects 0.000 claims description 8
- 238000003860 storage Methods 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 4
- 241000675108 Citrus tangerina Species 0.000 claims 2
- 238000000605 extraction Methods 0.000 abstract description 7
- 230000008034 disappearance Effects 0.000 abstract description 6
- 230000008569 process Effects 0.000 description 20
- 235000013399 edible fruits Nutrition 0.000 description 19
- 210000004027 cell Anatomy 0.000 description 16
- 238000001514 detection method Methods 0.000 description 16
- 238000012549 training Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 11
- 238000013528 artificial neural network Methods 0.000 description 8
- 238000005286 illumination Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 235000002566 Capsicum Nutrition 0.000 description 4
- 239000006002 Pepper Substances 0.000 description 4
- 241000722363 Piper Species 0.000 description 4
- 235000016761 Piper aduncum Nutrition 0.000 description 4
- 235000017804 Piper guineense Nutrition 0.000 description 4
- 235000008184 Piper nigrum Nutrition 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 208000000044 Amnesia Diseases 0.000 description 2
- 210000004460 N cell Anatomy 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 231100000863 loss of memory Toxicity 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000002420 orchard Substances 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/56—Extraction of image or video features relating to colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/68—Food, e.g. fruit or vegetables
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computational Linguistics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Evolutionary Biology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
Description
本实施例模型 | YOLOV3模型 | Faster-RCNN模型 | |
1到5个之间 | 84.98% | 82.34% | 84.07% |
5到10个之间 | 81.04% | 77.89% | 78.39% |
10个以上 | 79.21% | 73.68% | 76.42% |
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010696636.XA CN111860537B (zh) | 2020-07-17 | 2020-07-17 | 基于深度学习的绿色柑橘识别方法、设备及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010696636.XA CN111860537B (zh) | 2020-07-17 | 2020-07-17 | 基于深度学习的绿色柑橘识别方法、设备及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111860537A true CN111860537A (zh) | 2020-10-30 |
CN111860537B CN111860537B (zh) | 2021-07-02 |
Family
ID=73002005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010696636.XA Active CN111860537B (zh) | 2020-07-17 | 2020-07-17 | 基于深度学习的绿色柑橘识别方法、设备及装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111860537B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113343750A (zh) * | 2021-04-15 | 2021-09-03 | 山东师范大学 | 一种同色系目标果实检测方法及系统 |
CN113449776A (zh) * | 2021-06-04 | 2021-09-28 | 中南民族大学 | 基于深度学习的中草药识别方法、装置及存储介质 |
CN113743333A (zh) * | 2021-09-08 | 2021-12-03 | 苏州大学应用技术学院 | 一种草莓熟度识别方法及装置 |
CN113808055A (zh) * | 2021-08-17 | 2021-12-17 | 中南民族大学 | 基于混合膨胀卷积的植物识别方法、装置及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170337471A1 (en) * | 2016-05-18 | 2017-11-23 | Nec Laboratories America, Inc. | Passive pruning of filters in a convolutional neural network |
CN109919948A (zh) * | 2019-02-26 | 2019-06-21 | 华南理工大学 | 基于深度学习的鼻咽癌病灶分割模型训练方法及分割方法 |
CN110675462A (zh) * | 2019-09-17 | 2020-01-10 | 天津大学 | 一种基于卷积神经网络的灰度图像彩色化方法 |
CN111027487A (zh) * | 2019-12-11 | 2020-04-17 | 山东大学 | 基于多卷积核残差网络的行为识别系统、方法、介质及设备 |
-
2020
- 2020-07-17 CN CN202010696636.XA patent/CN111860537B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170337471A1 (en) * | 2016-05-18 | 2017-11-23 | Nec Laboratories America, Inc. | Passive pruning of filters in a convolutional neural network |
CN109919948A (zh) * | 2019-02-26 | 2019-06-21 | 华南理工大学 | 基于深度学习的鼻咽癌病灶分割模型训练方法及分割方法 |
CN110675462A (zh) * | 2019-09-17 | 2020-01-10 | 天津大学 | 一种基于卷积神经网络的灰度图像彩色化方法 |
CN111027487A (zh) * | 2019-12-11 | 2020-04-17 | 山东大学 | 基于多卷积核残差网络的行为识别系统、方法、介质及设备 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113343750A (zh) * | 2021-04-15 | 2021-09-03 | 山东师范大学 | 一种同色系目标果实检测方法及系统 |
CN113449776A (zh) * | 2021-06-04 | 2021-09-28 | 中南民族大学 | 基于深度学习的中草药识别方法、装置及存储介质 |
CN113808055A (zh) * | 2021-08-17 | 2021-12-17 | 中南民族大学 | 基于混合膨胀卷积的植物识别方法、装置及存储介质 |
CN113808055B (zh) * | 2021-08-17 | 2023-11-24 | 中南民族大学 | 基于混合膨胀卷积的植物识别方法、装置及存储介质 |
CN113743333A (zh) * | 2021-09-08 | 2021-12-03 | 苏州大学应用技术学院 | 一种草莓熟度识别方法及装置 |
CN113743333B (zh) * | 2021-09-08 | 2024-03-01 | 苏州大学应用技术学院 | 一种草莓熟度识别方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111860537B (zh) | 2021-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111860537B (zh) | 基于深度学习的绿色柑橘识别方法、设备及装置 | |
CN109584248B (zh) | 基于特征融合和稠密连接网络的红外面目标实例分割方法 | |
CN111062885B (zh) | 基于多阶段迁移学习的标志检测模型训练及标志检测方法 | |
Pérez-Borrero et al. | A fast and accurate deep learning method for strawberry instance segmentation | |
CN110148120B (zh) | 一种基于cnn与迁移学习的病害智能识别方法及系统 | |
US10984289B2 (en) | License plate recognition method, device thereof, and user equipment | |
CN108229490B (zh) | 关键点检测方法、神经网络训练方法、装置和电子设备 | |
CN111723860A (zh) | 一种目标检测方法及装置 | |
JP2023504624A (ja) | 作物の被害を特定するためのシステム及び方法 | |
CN112651438A (zh) | 多类别图像的分类方法、装置、终端设备和存储介质 | |
CN111738344A (zh) | 一种基于多尺度融合的快速目标检测方法 | |
CN112949704A (zh) | 一种基于图像分析的烟叶成熟度状态识别方法及装置 | |
CN114943697A (zh) | 一种基于轻量化改进yolo的番茄成熟度检测方法 | |
CN112164030A (zh) | 水稻穗粒快速检测方法、装置、计算机设备及存储介质 | |
CN113435254A (zh) | 一种基于哨兵二号影像的耕地深度学习提取方法 | |
CN114140665A (zh) | 一种基于改进YOLOv5的密集小目标检测方法 | |
Shen et al. | Fusing attention mechanism with Mask R-CNN for instance segmentation of grape cluster in the field | |
CN114758132B (zh) | 一种基于卷积神经网络的果树病虫害识别方法及系统 | |
Tabb et al. | Automatic segmentation of trees in dynamic outdoor environments | |
CN117036948A (zh) | 一种基于注意力机制的致敏植物识别方法 | |
CN118230166A (zh) | 基于改进Mask2YOLO网络的玉米冠层器官识别方法及冠层表型检测方法 | |
Shen et al. | Identifying veraison process of colored wine grapes in field conditions combining deep learning and image analysis | |
CN114596274A (zh) | 基于改进Cascade RCNN网络的自然背景柑橘黄龙病检测方法 | |
Chen et al. | MLP-based multimodal tomato detection in complex scenarios: Insights from task-specific analysis of feature fusion architectures | |
CN112465821A (zh) | 一种基于边界关键点感知的多尺度害虫图像检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20201030 Assignee: Yunnan Ziying economic and Trade Co.,Ltd. Assignor: SOUTH CENTRAL University FOR NATIONALITIES Contract record no.: X2023420000234 Denomination of invention: Green citrus recognition method, equipment, and device based on deep learning Granted publication date: 20210702 License type: Common License Record date: 20230710 |
|
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20201030 Assignee: YUNNAN HANGYUE AGRICULTURE TECHNOLOGY CO.,LTD. Assignor: SOUTH CENTRAL University FOR NATIONALITIES Contract record no.: X2023420000267 Denomination of invention: Green citrus recognition method, equipment, and device based on deep learning Granted publication date: 20210702 License type: Common License Record date: 20230802 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20201030 Assignee: Yunnan Shalang Rural Tourism Resources Development Co.,Ltd. Assignor: SOUTH CENTRAL University FOR NATIONALITIES Contract record no.: X2023420000273 Denomination of invention: Green citrus recognition method, equipment, and device based on deep learning Granted publication date: 20210702 License type: Common License Record date: 20230804 Application publication date: 20201030 Assignee: Yunnan Shuaixiao Sauce Agricultural Technology Co.,Ltd. Assignor: SOUTH CENTRAL University FOR NATIONALITIES Contract record no.: X2023420000272 Denomination of invention: Green citrus recognition method, equipment, and device based on deep learning Granted publication date: 20210702 License type: Common License Record date: 20230804 Application publication date: 20201030 Assignee: Yunnan Shuai Toudou Agricultural Technology Co.,Ltd. Assignor: SOUTH CENTRAL University FOR NATIONALITIES Contract record no.: X2023420000274 Denomination of invention: Green citrus recognition method, equipment, and device based on deep learning Granted publication date: 20210702 License type: Common License Record date: 20230804 Application publication date: 20201030 Assignee: Yunnan Shengmai Agricultural Technology Co.,Ltd. Assignor: SOUTH CENTRAL University FOR NATIONALITIES Contract record no.: X2023420000275 Denomination of invention: Green citrus recognition method, equipment, and device based on deep learning Granted publication date: 20210702 License type: Common License Record date: 20230804 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
OL01 | Intention to license declared | ||
OL01 | Intention to license declared |