CN111859793A - 一种基于协同引力搜索算法的造纸过程模型辨识方法 - Google Patents

一种基于协同引力搜索算法的造纸过程模型辨识方法 Download PDF

Info

Publication number
CN111859793A
CN111859793A CN202010668383.5A CN202010668383A CN111859793A CN 111859793 A CN111859793 A CN 111859793A CN 202010668383 A CN202010668383 A CN 202010668383A CN 111859793 A CN111859793 A CN 111859793A
Authority
CN
China
Prior art keywords
model
cooperative
papermaking
search algorithm
identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010668383.5A
Other languages
English (en)
Other versions
CN111859793B (zh
Inventor
李俊红
李政
顾菊平
华亮
徐珊玲
刘慧霞
袁银龙
刘梦茹
宗天成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202010668383.5A priority Critical patent/CN111859793B/zh
Publication of CN111859793A publication Critical patent/CN111859793A/zh
Priority to PCT/CN2021/089497 priority patent/WO2022012109A1/zh
Application granted granted Critical
Publication of CN111859793B publication Critical patent/CN111859793B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供了一种基于协同引力搜索算法的造纸过程模型辨识方法,具体包括以下步骤:步骤1)构建造纸生产设备的多输入多输出模型,根据所构建的系统模型获取造纸生产过程的辨识模型;步骤2)构建协同引力搜索算法的辨识流程。本发明的有益效果为:使用本发明的协同引力搜索算法的造纸过程模型辨识方法进行的参数辨识结果可以看出,本方法的辨识精度较高,输出的估计误差较小;同时,也说明本辨识方法对于本造纸设备模型有较好的适用性。

Description

一种基于协同引力搜索算法的造纸过程模型辨识方法
技术领域
本发明涉及造纸设备系统辨识技术领域,尤其涉及一种基于协同引力搜索算法的造纸过程多输入多输出模型辨识方法。
背景技术
纸是人们日常生活中不可或缺的产品。为了更好的对造纸设备进行分析、预测以及控制,必须为造纸设备的造纸过程建立系统模型,同时辨识所建立模型的参数。为此,已经有不少学者提出的不同的辨识方法:如最小二乘法、梯度迭代法、神经网络法以及各种群智能算法等。
由于最小二乘法的辨识精度不够理想,在实际的生产中的辨识效果往往不尽如人意;梯度迭代法容易使辨识结果陷入局部最优,同时梯度迭代法还需要选择一个较为合适的迭代步长,迭代步长选择过大会导致辨识结果发散,迭代步长选择过小会导致辨识速度过慢;神经网络法所需要的数据量过大,不适合数据量较小的情况。
如何解决上述技术问题为本发明面临的课题。
发明内容
本发明的目的在于提供一种基于协同引力搜索算法的造纸过程模型辨识方法;本发明提出的协同引力搜索算法是一种群智能算法,它有着较高的辨识精度,同时它还能较快的跳出局部最优的情况,而且该算法具有所需数据量较小的优点,能够较好地适用于对造纸过程的建模与参数辨识。
本发明是通过如下措施实现的:一种基于协同引力搜索算法的造纸过程模型辨识方法,其中,具体包括以下步骤:
步骤1)构建造纸生产设备的多输入多输出模型,根据所构建的系统模型获取造纸生产过程的辨识模型;
步骤2)构建协同引力搜索算法的辨识流程。
作为本发明提供的一种基于协同引力搜索算法的造纸过程模型辨识方法进一步优化方案,所述步骤1)的具体建模步骤如下:
步骤1-1)构建造纸过程的多输入多输出模型:如式(1),给出多输入多输出系统的一般形式,u(t)为系统的输入,y(t)为系统的输出,w(t)为有色噪声,其中,
Figure BDA0002581305700000011
Figure BDA0002581305700000021
Figure BDA0002581305700000022
Figure BDA0002581305700000023
Figure BDA0002581305700000024
A(z)y(t)=B(z)u(t)+ω(t) (1)
步骤1-2)根据式(2)、(3)可以得到输出y(t)与输入u(t),误差ν(t)之间的关系,其中,
Figure BDA0002581305700000025
Figure BDA0002581305700000026
γ(t):=[-yT(t-1),…,-yT(t-na),-uT(t-1),…,-uT(t-nb)]T∈Rn
Figure BDA0002581305700000029
Figure BDA0002581305700000027
Figure BDA0002581305700000028
作为本发明提供的一种基于协同引力搜索算法的造纸过程模型辨识方法进一步优化方案,所述步骤1)的模型为一般多输入多输出系统的模型。
作为本发明提供的一种基于协同引力搜索算法的造纸过程模型辨识方法进一步优化方案,所述步骤2)构建协同引力搜索算法的辨识流程的具体步骤如下:
步骤2-1)初始化种群,生成一个有N个D维粒子的种群,其中任意粒子Xi=[x(i,1),x(i,2),…,x(i,D)],D为所需辨识参数个数;
步骤2-2)将步骤2-1)中的种群按如下方法分割为D个一维种群:
Figure BDA0002581305700000031
步骤2-3)获取造纸设备的造纸材料总量以及蒸汽压力作为输入数据,造纸设备产生的水分以及基本重量为输出数据,记录数据;
步骤2-4)生成一个用于将D个种群的单个参数整合在一起的向量,所述向量定义为整合向量g=[g1,g2,…,gj,…,gD],其中gj为第j个种群中的某一个粒子;
步骤2-5)依次使用x(i,j)替换gj,从而生成一个新的整合向量g',并将g'代入适应性函数fitness(θ)计算其适应度值fitness(g'),若fitness(g')<fitness(g),则令g=g';
步骤2-6)将最大的适应度值记为fworst,将最小的适应度值记为fbest
步骤2-7)根据式(4)、(5)计算中间质量mi(t)、粒子质量Mi(t);
Figure BDA0002581305700000032
Figure BDA0002581305700000033
步骤2-8)根据式(6)、(7)计算两粒子之间的引力
Figure BDA0002581305700000034
粒子受到的外力总和
Figure BDA0002581305700000035
Figure BDA0002581305700000036
Figure BDA0002581305700000037
其中,Rij(t)为粒子i与粒子j之间的欧氏距离,ε为一个很小的常量,万有引力常量G(t)的计算方法如下:
Figure BDA0002581305700000038
其中,G0是引力常量初始值,α是个常数,β是当前迭代次数;
步骤2-9)根据式(9)计算粒子的加速度ad(t);
Figure BDA0002581305700000041
步骤2-10)根据式(10)、(11)更新粒子的速度
Figure BDA0002581305700000042
与位置
Figure BDA0002581305700000043
Figure BDA0002581305700000044
Figure BDA0002581305700000045
步骤2-11)判断是否达到最大迭代次数,若没有达到,程序跳转到步骤2-5),若达到,进入步骤2-12);
步骤2-12)输出结果,完成辨识。
与现有技术相比,本发明的有益效果为:使用本发明的协同引力搜索算法的造纸过程模型辨识方法进行的参数辨识结果可以看出,本方法的辨识精度较高,输出的估计误差值较小;同时,也说明本辨识方法对于本造纸设备模型有较好的适用性。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
图1为本发明的协同引力搜索算法流程图。
图2为本发明的造纸设备示意图。
图3为本发明的其中一个输出真实值与估计值之间的比较图。
图4为本发明的其中一个输出真实值与估计值之间的比较图。
图5为本发明辨识参数与真实值的误差示意图。
图6为本发明多输入多输出系统的一般模型示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。当然,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
参见图1至图6,本发明提供其技术方案为,一种基于协同引力搜索算法的造纸过程模型辨识方法,其中,具体包括以下步骤:
步骤1)构建造纸生产设备的多输入多输出模型,根据所构建的系统模型获取造纸生产过程的辨识模型;
步骤2)构建协同引力搜索算法的辨识流程。
具体地,所述步骤1)的具体建模步骤如下:
步骤1-1)构建造纸过程的多输入多输出模型:如式(1),给出多输入多输出系统的一般形式,u(t)为系统的输入,y(t)为系统的输出,w(t)为有色噪声,其中,
Figure BDA0002581305700000051
Figure BDA0002581305700000052
Figure BDA0002581305700000053
Figure BDA0002581305700000054
Figure BDA0002581305700000055
A(z)y(t)=B(z)u(t)+ω(t) (1)
步骤1-2)根据式(2)、(3)可以得到输出y(t)与输入u(t),误差ν(t)之间的关系,其中,
Figure BDA0002581305700000056
Figure BDA0002581305700000057
γ(t):=[-yT(t-1),…,-yT(t-na),-uT(t-1),…,-uT(t-nb)]T∈Rn
Figure BDA0002581305700000058
Figure BDA0002581305700000059
Figure BDA00025813057000000510
具体地,所述步骤1)的模型为一般多输入多输出系统的模型。
具体地,所述步骤2)构建协同引力搜索算法的辨识流程的具体步骤如下:
步骤2-1)初始化种群,生成一个有N个D维粒子的种群,其中任意粒子Xi=[x(i,1),x(i,2),…,x(i,D)],D为所需辨识参数个数;
步骤2-2)将步骤2-1)中的种群按如下方法分割为D个一维种群:
Figure BDA0002581305700000061
步骤2-3)获取造纸设备的造纸材料总量以及蒸汽压力作为输入数据,造纸设备产生的水分以及基本重量为输出数据,记录数据;
步骤2-4)生成一个用于将D个种群的单个参数整合在一起的向量,所述向量定义为整合向量g=[g1,g2,…,gj,…,gD],其中gj为第j个种群中的某一个粒子;
步骤2-5)依次使用x(i,j)替换gj,从而生成一个新的整合向量g',并将g'代入适应性函数fitness(θ)计算其适应度值fitness(g'),若fitness(g')<fitness(g),则令g=g';
步骤2-6)将最大的适应度值记为fworst,将最小的适应度值记为fbest
步骤2-7)根据式(4)、(5)计算中间质量mi(t)、粒子质量Mi(t);
Figure BDA0002581305700000062
Figure BDA0002581305700000063
步骤2-8)根据式(6)、(7)计算两粒子之间的引力
Figure BDA0002581305700000064
粒子受到的外力总和
Figure BDA0002581305700000065
Figure BDA0002581305700000066
Figure BDA0002581305700000067
其中,Rij(t)为粒子i与粒子j之间的欧氏距离,ε为一个很小的常量,万有引力常量G(t)的计算方法如下:
Figure BDA0002581305700000068
其中,G0是引力常量初始值,α是个常数,β是当前迭代次数;
步骤2-9)根据式(9)计算粒子的加速度ad(t);
Figure BDA0002581305700000071
步骤2-10)根据式(7)、(8)更新粒子的速度
Figure BDA0002581305700000072
与位置
Figure BDA0002581305700000073
Figure BDA0002581305700000074
Figure BDA0002581305700000075
步骤2-11)判断是否达到最大迭代次数,若没有达到,程序跳转到步骤2-5),若达到,进入步骤2-12);
步骤2-12)输出结果,完成辨识。
本实施例采用的造纸设备简图如图2所示。其中,u1(t)和u2(t)分别为原材料质量、蒸汽压力,y1(t)和y2(t)分别为水分、剩余材料及成品的基本重量。
通过上述提到的一般多输入多输出模型,可以将本实施例建立以下模型:
Figure BDA0002581305700000076
Figure BDA0002581305700000077
对比上述模型和步骤1),可得
Figure BDA0002581305700000078
c1=-0.12,c2=0.11,d1=0.15,d2=-0.12.
对于以上模型确定一个适应度函数fitness以便在协同引力搜索算法中使用,该适应度函数定义如下:
Figure BDA0002581305700000079
式中,
Figure BDA00025813057000000710
为输出向量的估计值,y(t)为输出向量的真实值。
为了方便将所需辨识的参数代入协同引力搜索算法,将所需辨识的参数组成一个向量θ,假设所需辨识的参数如下:
Figure BDA0002581305700000081
则令所需辨识的参数向量
θ=[a1(A1),a2(A1),a3(A1),a4(A1),a1(A2),a2(A2),a3(A2),a4(A2),b1(B1),b2(B1),b3(B1),b4(B1),b1(B2),b2(B2),b3(B2),b4(B2),c1,c2,d1,d2]
根据步骤2-1)和步骤2-2)初始化种群,得到20个有N个个体的1维种群θ12,…,θ20
根据步骤2-3)获得的输入输出数据以及步骤2-4)和步骤2-5)依次计算各个参数的适应度值fitness(g');
根据步骤2-6)将最大的适应度值记为fworst,将最小的适应度值记为fbest
根据步骤2-7)计算中间质量mi(t)、粒子质量Mi(t);
根据步骤2-8)计算两粒子之间的引力
Figure BDA0002581305700000082
粒子受到的外力总和
Figure BDA0002581305700000083
根据步骤2-9)计算粒子的加速度ad(t);
根据步骤2-10)更新粒子的速度
Figure BDA0002581305700000084
与位置
Figure BDA0002581305700000085
即更新参数向量θ的估计值;
根据步骤2-11)和步骤2-12)完成循环。
其中,种群中的个体数N、引力常量的初始值G0的设定需要考虑如下几个问题,种群中个体数过多会加大计算量,个体数过小会导致种群协作寻优效果不理想从而导致辨识结果精度过小,引力常量的初始值过大会导致每次迭代以后种群个体位置的变化量过大,最终导致辨识结果发散,引力常数过小则会导致每次迭代以后种群个体位置变化量过小,最终造成辨识速度过慢。
使用本发明的协同引力搜索算法的造纸过程模型辨识方法进行的参数辨识结果如图3、图4以及图5所示。可以看出,本方法的辨识精度较高,输出的估计值与真实值非常接近。同时,也说明本辨识方法对于本造纸设备模型有较好的适用性。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种基于协同引力搜索算法的造纸过程模型辨识方法,其特征在于,具体包括以下步骤:
步骤1)构建造纸生产设备的多输入多输出模型,根据所构建的系统模型获取造纸生产过程的辨识模型;
步骤2)构建协同引力搜索算法的辨识流程。
2.根据权利要求1所述的基于协同引力搜索算法的造纸过程模型辨识方法,其特征在于,所述步骤1)的具体建模步骤如下:
步骤1-1)构建造纸过程的多输入多输出模型:如式(1),给出多输入多输出系统的一般形式,u(t)为系统的输入,y(t)为系统的输出,w(t)为有色噪声,其中,
Figure FDA0002581305690000011
Figure FDA0002581305690000012
Figure FDA0002581305690000013
Figure FDA0002581305690000014
Figure FDA0002581305690000015
A(z)y(t)=B(z)u(t)+ω(t) (1)
步骤1-2)根据式(2)、(3)可以得到输出y(t)与输入u(t),误差ν(t)之间的关系,其中,
Figure FDA0002581305690000016
Figure FDA0002581305690000017
γ(t):=[-yT(t-1),…,-yT(t-na),-uT(t-1),…,-uT(t-nb)]T∈Rn
Figure FDA0002581305690000018
Figure FDA0002581305690000019
Figure FDA00025813056900000110
3.根据权利要求1所述的基于协同引力搜索算法的造纸过程模型辨识方法,其特征在于,所述步骤1)的模型为一般多输入多输出系统的模型。
4.根据权利要求1所述的基于协同引力搜索算法的造纸过程模型辨识方法,其特征在于,所述步骤2)构建协同引力搜索算法的辨识流程的具体步骤如下:
步骤2-1)初始化种群,生成一个有N个D维粒子的种群,其中任意粒子Xi=[x(i,1),x(i,2),…,x(i,D)],D为所需辨识参数个数;
步骤2-2)将步骤2-1)中的种群按如下方法分割为D个一维种群:
Figure FDA0002581305690000021
步骤2-3)获取造纸设备的造纸材料总量以及蒸汽压力作为输入数据,造纸设备产生的水分以及基本重量为输出数据,记录数据;
步骤2-4)生成一个用于将D个种群的单个参数整合在一起的向量,所述向量定义为整合向量g=[g1,g2,…,gj,…,gD],其中gj为第j个种群中的某一个粒子;
步骤2-5)依次使用x(i,j)替换gj,从而生成一个新的整合向量g',并将g'代入适应性函数fitness(θ)计算其适应度值fitness(g'),若fitness(g')<fitness(g),则令g=g';
步骤2-6)将最大的适应度值记为fworst,将最小的适应度值记为fbest
步骤2-7)根据式(4)、(5)计算中间质量mi(t)、粒子质量Mi(t);
Figure FDA0002581305690000022
Figure FDA0002581305690000023
步骤2-8)根据式(6)、(7)计算两粒子之间的引力
Figure FDA0002581305690000024
粒子受到的外力总和Fi d(t);
Figure FDA0002581305690000025
Figure FDA0002581305690000031
其中,Rij(t)为粒子i与粒子j之间的欧氏距离,ε为一个很小的常量,万有引力常量G(t)的计算方法如下:
Figure FDA0002581305690000032
其中,G0是引力常量初始值,α是个常数,β是当前迭代次数;
步骤2-9)根据式(9)计算粒子的加速度ad(t);
Figure FDA0002581305690000033
步骤2-10)根据式(10)、(11)更新粒子的速度
Figure FDA0002581305690000034
与位置
Figure FDA0002581305690000035
Figure FDA0002581305690000036
Figure FDA0002581305690000037
步骤2-11)判断是否达到最大迭代次数,若没有达到,程序跳转到步骤2-5),若达到,进入步骤2-12);
步骤2-12)输出结果,完成辨识。
CN202010668383.5A 2020-07-13 2020-07-13 一种基于协同引力搜索算法的造纸过程模型辨识方法 Active CN111859793B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010668383.5A CN111859793B (zh) 2020-07-13 2020-07-13 一种基于协同引力搜索算法的造纸过程模型辨识方法
PCT/CN2021/089497 WO2022012109A1 (zh) 2020-07-13 2021-04-25 一种基于协同引力搜索算法的造纸过程模型辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010668383.5A CN111859793B (zh) 2020-07-13 2020-07-13 一种基于协同引力搜索算法的造纸过程模型辨识方法

Publications (2)

Publication Number Publication Date
CN111859793A true CN111859793A (zh) 2020-10-30
CN111859793B CN111859793B (zh) 2022-07-15

Family

ID=72984086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010668383.5A Active CN111859793B (zh) 2020-07-13 2020-07-13 一种基于协同引力搜索算法的造纸过程模型辨识方法

Country Status (2)

Country Link
CN (1) CN111859793B (zh)
WO (1) WO2022012109A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022012109A1 (zh) * 2020-07-13 2022-01-20 南通大学 一种基于协同引力搜索算法的造纸过程模型辨识方法
CN114566227A (zh) * 2021-07-30 2022-05-31 南通大学 一种基于牛顿迭代算法的ph中和过程模型辨识方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190079975A1 (en) * 2017-09-11 2019-03-14 Hefei University Of Technology Scheduling method and system based on hybrid variable neighborhood search and gravitational search algorithm
CN111025910A (zh) * 2019-12-25 2020-04-17 南通大学 基于混沌引力搜索迭代的pH中和过程维纳模型辨识方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8346711B2 (en) * 2009-11-24 2013-01-01 King Fahd University Of Petroleum And Minerals Method for identifying multi-input multi-output Hammerstein models
CN111859793B (zh) * 2020-07-13 2022-07-15 南通大学 一种基于协同引力搜索算法的造纸过程模型辨识方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190079975A1 (en) * 2017-09-11 2019-03-14 Hefei University Of Technology Scheduling method and system based on hybrid variable neighborhood search and gravitational search algorithm
CN111025910A (zh) * 2019-12-25 2020-04-17 南通大学 基于混沌引力搜索迭代的pH中和过程维纳模型辨识方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
佘金龙: "基于云平台的造纸机远程健康管理系统设计", 《中国优秀硕士学位论文全文数据库》 *
李欣欣等: "基于引力搜索算法的非线性系统辨识", 《青岛科技大学学报(自然科学版)》 *
黄光斌等: "多种智能优化算法在水轮机调节系统参数辨识中的对比研究", 《中国农村水利水电》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022012109A1 (zh) * 2020-07-13 2022-01-20 南通大学 一种基于协同引力搜索算法的造纸过程模型辨识方法
CN114566227A (zh) * 2021-07-30 2022-05-31 南通大学 一种基于牛顿迭代算法的ph中和过程模型辨识方法

Also Published As

Publication number Publication date
CN111859793B (zh) 2022-07-15
WO2022012109A1 (zh) 2022-01-20

Similar Documents

Publication Publication Date Title
Batool et al. Sensors technologies for human activity analysis based on SVM optimized by PSO algorithm
CN111859793B (zh) 一种基于协同引力搜索算法的造纸过程模型辨识方法
CN106779087B (zh) 一种通用机器学习数据分析平台
Ou et al. Comparison between PSO and GA for parameters optimization of PID controller
CN1808414B (zh) 识别时序数据的观测值的识别设备及方法
US20160203419A1 (en) Metaheuristic-guided trust-tech methods for global unconstrained optimization
CN102819744B (zh) 一种双通道信息融合的情感识别方法
Merayo et al. Prediction of physical and mechanical properties for metallic materials selection using big data and artificial neural networks
CN110224862B (zh) 基于多层感知器的多智能体系统网络容侵能力评估方法
CN113902131B (zh) 抵抗联邦学习中歧视传播的节点模型的更新方法
CN112685504A (zh) 一种面向生产过程的分布式迁移图学习方法
Noorul Haq et al. Particle swarm optimization (PSO) algorithm for optimal machining allocation of clutch assembly
CN110363214A (zh) 一种基于gwa-svm的机器人装配的接触状态识别方法
CN109344969A (zh) 神经网络系统及其训练方法以及计算机可读介质
CN110070068B (zh) 一种人体动作识别方法
CN108985323A (zh) 一种光伏功率的短期预测方法
CN109115446A (zh) 基于跨声速风洞风速精度控制方法及系统
CN110103218B (zh) 蛇形机器人管道攀爬的快速自适应控制方法
Yan et al. Garment design models combining Bayesian classifier and decision tree algorithm
CN108734116B (zh) 一种基于变速学习深度自编码网络的人脸识别方法
CN108614417B (zh) 一种非泊松工件流csps系统优化控制及仿真测试方法
Ulmer et al. Model-assisted steady-state evolution strategies
CN110288002A (zh) 一种基于稀疏正交神经网络的图像分类方法
O'Neill et al. Self-organizing swarm (SOSwarm): a particle swarm algorithm for unsupervised learning
Collins et al. Accelerating training of deep neural networks with a standardization loss

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant