CN111855219A - A method for predicting security parameters of diesel engine lubricating oil entering the engine based on grey theory - Google Patents
A method for predicting security parameters of diesel engine lubricating oil entering the engine based on grey theory Download PDFInfo
- Publication number
- CN111855219A CN111855219A CN202010698450.8A CN202010698450A CN111855219A CN 111855219 A CN111855219 A CN 111855219A CN 202010698450 A CN202010698450 A CN 202010698450A CN 111855219 A CN111855219 A CN 111855219A
- Authority
- CN
- China
- Prior art keywords
- diesel engine
- lubricating oil
- data
- prediction
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010687 lubricating oil Substances 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000012360 testing method Methods 0.000 claims abstract description 23
- 238000007689 inspection Methods 0.000 claims description 16
- 238000009825 accumulation Methods 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 10
- 238000007781 pre-processing Methods 0.000 claims description 10
- 230000007613 environmental effect Effects 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 8
- 230000002087 whitening effect Effects 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000005457 optimization Methods 0.000 claims description 4
- 239000003921 oil Substances 0.000 claims description 3
- 238000010998 test method Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 2
- 238000012795 verification Methods 0.000 abstract 1
- 238000011161 development Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000013332 literature search Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
- G01M15/09—Testing internal-combustion engines by monitoring pressure in fluid ducts, e.g. in lubrication or cooling parts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
- G01M15/05—Testing internal-combustion engines by combined monitoring of two or more different engine parameters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
- G06F17/13—Differential equations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- General Engineering & Computer Science (AREA)
- Operations Research (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
本发明是一种基于灰色理论的柴油机润滑油进机安保参数预测方法。本发明属于柴油机安全预测技术领域,首先采集柴油机润滑油进机压力和温度的运行数据,并对该运行数据进行卡尔曼滤波处理;然后按照灰色预测模型的建模步骤,实现柴油机运行数据的预测功能,并得到预测结果;运用相对误差检验法对灰色预测模型进行检验,若未满足四级检验指标,则利用残差法优化灰色模型,直至满足四级及以上级别指标,输出准确的预测数据;在预测数据相对误差验证合格基础上,将预测结果与柴油机报警阈值进行逻辑判别,将预测状态结果输出至上位机。本发明可以有效的预测柴油机润滑油进机参数的变化趋势,并对柴油机润滑油系统的未来的工作状态进行合理预测。
The invention is a method for predicting the security parameters of diesel engine lubricating oil entering the engine based on grey theory. The invention belongs to the technical field of diesel engine safety prediction. First, the operation data of the lubricating oil inlet pressure and temperature of the diesel engine are collected, and Kalman filter processing is performed on the operation data; and then the prediction of the diesel engine operation data is realized according to the modeling steps of the gray prediction model. function, and obtain the prediction results; use the relative error test method to test the gray prediction model. If the four-level test index is not met, use the residual error method to optimize the gray model until it meets the four-level and above-level indicators, and output accurate prediction data. ; On the basis of the relative error verification of the predicted data, the predicted result and the diesel engine alarm threshold are logically discriminated, and the predicted state result is output to the upper computer. The invention can effectively predict the changing trend of the diesel engine lubricating oil inlet parameters and reasonably predict the future working state of the diesel engine lubricating oil system.
Description
技术领域technical field
本发明涉及柴油机安全预测技术领域,是一种基于灰色理论的柴油机润滑油进机安保参数预测方法。The invention relates to the technical field of diesel engine safety prediction, and relates to a method for predicting safety parameters of diesel engine lubricating oil entering the engine based on grey theory.
背景技术Background technique
随着当今社会工业化水平的迅猛发展,柴油机作为最常用的动力机械设备,广泛应用于石油矿场、固定发电、铁路牵引、工程机械及特种船舶等领域,并且柴油机日益朝着大型化、高速化、精密化方向发展,工作性能不断改善,自动化程度越来越高。一方面利用先进柴油机将大大提高劳动生产率,提高产品质量,降低生产成本和能耗;但另一方面,柴油机的安全运行问题日益严峻,随着高负荷、高转速的发展,柴油机安全事故危险程度进一步提高,一旦其中某一部分或某一环节发生持续的超限运行并且不采取处理,往往会造成设备损坏,引发重大安全事故,甚至危及人身安全。开展柴油机安全保护技术研究,不仅能够帮助我们防止安全事故发生,确保工作人员人身安全,同时能够避免潜在的巨大经济损失和社会损失。With the rapid development of the level of industrialization in today's society, diesel engines, as the most commonly used power machinery equipment, are widely used in oil mines, stationary power generation, railway traction, construction machinery and special ships, etc., and diesel engines are increasingly large and high-speed. , The direction of precision development, the work performance is continuously improved, and the degree of automation is getting higher and higher. On the one hand, the use of advanced diesel engines will greatly improve labor productivity, improve product quality, and reduce production costs and energy consumption; but on the other hand, the problem of safe operation of diesel engines is becoming more and more serious. With the development of high load and high speed, the danger of diesel engine safety accidents is Further improvement, once a part or a link of the continuous overrun operation and no treatment is taken, it will often cause equipment damage, cause major safety accidents, and even endanger personal safety. Carrying out research on diesel engine safety protection technology can not only help us prevent safety accidents and ensure the personal safety of staff, but also avoid potential huge economic and social losses.
传统柴油机安全保护系统的任务是监测柴油机的重要状态参数,如柴油机润滑油进机压力、温度,判断其是否超越设定阈值,进而判断柴油机运行是否安全,并在危险发生前采取紧急停机措施,保证人员及设备安全。这种方式虽然可以在一定程度上避免事故的发生,但其弊端也是十分明显,当处于额定负荷下正常运行的柴油机突然发生停机操作(特别是从满负荷突然卸载),会对运动件造成应力冲击;并且在润滑油压力逐渐偏离正常范围的过程中,对机体、活塞以及曲轴等运动部件的润滑效果大幅度下降,对设备造成巨大的不可逆损伤,严重影响设备的工作寿命。The task of the traditional diesel engine safety protection system is to monitor the important state parameters of the diesel engine, such as the diesel engine lubricating oil inlet pressure and temperature, to determine whether it exceeds the set threshold, and then to determine whether the diesel engine is safe to operate, and to take emergency shutdown measures before danger occurs. Ensure the safety of personnel and equipment. Although this method can avoid accidents to a certain extent, its drawbacks are also very obvious. When a diesel engine running normally under rated load suddenly stops operation (especially sudden unloading from full load), it will cause stress to moving parts In the process of the lubricating oil pressure gradually deviating from the normal range, the lubricating effect of the moving parts such as the body, piston and crankshaft is greatly reduced, causing huge irreversible damage to the equipment and seriously affecting the working life of the equipment.
经对现有技术的文献检索发现,公开文件“船用柴油机的测速与安保系统”提出了一种基于柴油机转速的安保系统,该公开文件自述为:“本发明提供一种船用柴油机的测速与安保系统。使用者通过工业触摸屏根据实际的使用情况设置报警阈值,报警阈值是针对每一路检测信号而预先设定的,并且每一路检测信号的报警阈值可以选择设定为是模拟量或开关量。使用者通过工业触摸屏对每一路检测信号的报警阈值为开关量或模拟量进行设置。所述主控模块通过所述报警阈值对所述检测信号进行判断所述检测信号超过所述报警阈值,则所述主控模块向所述柴油机发出停车信号,并通过所述远程控制箱报警所述检测信号未超过所述报警阈值,则不采取任何操作”其不足之处是该安保系统采用的策略是对实时数据进行单一阈值的设置,只有在设备超限运行后才能监测出来并进行停机处理,仍然会对柴油机造成巨大的损伤。Through the literature search of the prior art, it is found that the published document "Speed Measurement and Security System for Marine Diesel Engines" proposes a security system based on the rotational speed of the diesel engine. System. The user sets the alarm threshold according to the actual usage through the industrial touch screen. The alarm threshold is preset for each detection signal, and the alarm threshold of each detection signal can be set as analog quantity or switch value. The user sets the alarm threshold of each detection signal through the industrial touch screen as a switch value or an analog value. The main control module judges the detection signal through the alarm threshold and the detection signal exceeds the alarm threshold, then The main control module sends a stop signal to the diesel engine, and alarms through the remote control box that the detection signal does not exceed the alarm threshold, then no action is taken. The disadvantage is that the strategy adopted by the security system is: Setting a single threshold for real-time data can only be monitored and shut down after the equipment runs out of limit, which will still cause huge damage to the diesel engine.
发明内容SUMMARY OF THE INVENTION
本发明为实现柴油机安全保护的润滑油进机参数预测的方法,通过实时采集柴油机润滑油进机参数运行数据,实现对柴油机运行状态的监测,进而对数据进行处理并预测变化趋势。并在危险情况发生前向上位机发送报警信号,可以提前采取反馈措施,避免设备超限工作的情况,提高设备的可靠性、安全性,本发明提供了一种基于灰色理论的柴油机润滑油进机安保参数预测方法,本发明提供了以下技术方案:In order to realize the method for predicting the lubricating oil inlet parameters of the diesel engine safety protection, the invention realizes the monitoring of the diesel engine running state by collecting the running data of the lubricating oil inlet parameters of the diesel engine in real time, and then processes the data and predicts the change trend. And before the dangerous situation occurs, an alarm signal is sent to the upper computer, and feedback measures can be taken in advance to avoid the situation of equipment overrunning and improve the reliability and safety of the equipment. The invention provides a diesel engine lubricating oil intake based on gray theory. A method for predicting aircraft security parameters, the present invention provides the following technical solutions:
一种基于灰色理论的柴油机润滑油进机安保参数预测方法,包括以下步骤:A method for predicting security parameters of diesel engine lubricating oil entering the engine based on grey theory, comprising the following steps:
步骤1:通过压力传感器采集柴油机压力数据,所述压力数据为柴油机的润滑油进机压力运行数据,通过数据采集卡从柴油机润滑油进机入口管道的压力传感器处获取,并将数据存储至Excel中;Step 1: Collect the pressure data of the diesel engine through the pressure sensor, the pressure data is the running data of the lubricating oil inlet pressure of the diesel engine, obtained from the pressure sensor of the diesel engine lubricating oil inlet pipeline through the data acquisition card, and store the data in Excel middle;
步骤2:对采集到的柴油机的润滑油进机压力运行数据进行数据预处理,滤除环境噪声影响;Step 2: Data preprocessing is performed on the collected operating data of the lubricating oil inlet pressure of the diesel engine to filter out the influence of environmental noise;
步骤3:根据滤除噪声后的数据,柴油机润滑油进机压力灰色预测数据处理,得到预测结果;Step 3: According to the data after noise filtering, the gray prediction data of diesel engine lubricating oil inlet pressure is processed to obtain the prediction result;
步骤4:根据预测结果和柴油机安全保护系统报警阈值进行对比,判断柴油机运行状态,根据柴油机运行状态发出报警。Step 4: Compare the predicted result with the alarm threshold of the diesel engine safety protection system, judge the running state of the diesel engine, and issue an alarm according to the running state of the diesel engine.
优选地,所述步骤2具体为:Preferably, the step 2 is specifically:
步骤2.1:初始化柴油机,确定输入信号wk、输出信号的观测噪声vk、Qk和产品规定误差Rk,采用卡尔曼滤波法对采集到的柴油机的润滑油进机压力运行数据进行数据预处理,滤除环境噪声影响,建立状态方程和输出方程,通过下式表示状态方程xk+1和输出方程yk:Step 2.1: Initialize the diesel engine, determine the input signal w k , the observation noise v k , Q k of the output signal, and the product specified error R k , and use the Kalman filter method to perform data prediction on the collected operating data of the lubricating oil inlet pressure of the diesel engine. Process, filter out the influence of environmental noise, establish the state equation and output equation, and express the state equation x k+1 and the output equation y k by the following formula:
xk+1=Akxk+wk x k+1 =A k x k +w k
yk=Ckxk+vk y k =C k x k +v k
其中,k为时间,wk为输入信号,vk为输出信号的观测噪声,A为状态变量之间的增益矩阵,xk为k时刻的状态变量,C为状态变量与输出信号之间的增益矩阵;where k is the time, w k is the input signal, v k is the observation noise of the output signal, A is the gain matrix between the state variables, x k is the state variable at time k, and C is the difference between the state variable and the output signal gain matrix;
确定输入信号wk、输出信号的观测噪声vk、Qk和产品规定误差Rk;Determine the input signal w k , the observed noise v k , Q k of the output signal and the product specification error R k ;
步骤2.2:设定初始真是温度为x(0)=T0和初始时刻的协方差P(0);Step 2.2: Set the initial true temperature as x (0) =T 0 and the covariance P (0) at the initial moment;
步骤2.3:读取第k-1时刻的最优估计值Tk-1,k时刻的测量值tk,计算增益因子,通过下式表示增益因子:Step 2.3: Read the optimal estimated value T k-1 at time k-1, the measured value t k at time k , calculate the gain factor, and express the gain factor by the following formula:
Hk=P(k-1)/(P(k-1)+Rk)H k =P (k-1) /(P (k-1) +R k )
Tk=Tk-1+Hk(tk-Tk-1)T k =T k-1 +H k (t k -T k-1 )
k时刻的最优至噪声协方差通过下式表示:The optimal-to-noise covariance at time k is expressed as:
P(k)=(1-Hk)P(k-1) P (k) = (1-H k )P (k-1)
步骤2.4:读取第k时刻的最优估计值Tk,k+1时刻的测量值tk+1,计算增益因子Hk+1和Tk+1,k+1时刻的最优值噪声协方差P(k+1)。Step 2.4: Read the optimal estimated value T k at the kth time, the measured
步骤2.5:重复步骤2.3至2.4,估计出最优值,得到滤除环境噪声后的有效数据。Step 2.5: Repeat steps 2.3 to 2.4 to estimate the optimal value to obtain valid data after filtering out environmental noise.
优选地,当柴油机真实温度处于恒定时,Qk=0;当柴油机温度随着运行状态发生变化时,Qk=0.01。Preferably, when the actual temperature of the diesel engine is constant, Q k =0; when the temperature of the diesel engine varies with the operating state, Q k =0.01.
优选地,所述步骤3具体为:Preferably, the step 3 is specifically:
步骤3.1:建立灰色预测模型GM(2,1),通过下式表示灰色预测模型GM(2,1)的微分方程:Step 3.1: Establish a gray prediction model GM(2,1), and express the differential equation of the gray prediction model GM(2,1) by the following formula:
其中,p(1)为经过一次累加运算生成的累加数列;t为时间;a1,a2,u为待估参数,分别为发展灰系数和内生控制灰系数; Among them, p (1) is the accumulated sequence generated by one accumulation operation; t is the time; a 1 , a 2 , u are the parameters to be estimated, which are the development gray coefficient and the endogenous control gray coefficient respectively;
步骤3.2:根据根据滤除噪声后的数据,建立原始压力数据数列,通过下式表示所述数列P(0):Step 3.2: According to the data after filtering out the noise, establish the original pressure data series, and express the series P (0) by the following formula:
P(0)=(p(0)(1),p(0)(2),p(0)(3)…p(0)(n))P (0) = (p (0) (1), p (0) (2), p (0) (3)…p (0) (n))
其中,p(0)(i)为润滑油进机压力参数的时间序列数据,i=1,2,…n;Among them, p (0) (i) is the time-series data of lubricating oil inlet pressure parameters, i=1, 2, ... n;
步骤3.3:根据P(0),确定P(0)的级比σ(0)(i)的大小,进行级比检验,通过下式表示级比σ(0)(i):Step 3.3: According to P (0) , determine the size of the grade ratio σ (0) (i) of P (0) , carry out the grade ratio test, and express the grade ratio σ (0) (i) by the following formula:
步骤3.4:当级比σ(0)(i)满足检验标准时,对P(0)作1-AGO累加运算和1-IAGO累减,得到生成P(1)与α(1)P(0)数列,通过下式表示P(1)与α(1)P(0)数列:Step 3.4: When the level ratio σ (0) (i) meets the inspection criteria, perform 1-AGO accumulation and 1-IAGO accumulation on P (0) to obtain P (1) and α (1) P (0) The sequence of numbers, represented by the following equations P (1) and α (1) P (0) sequences:
P(1)=(p(1)(1),p(1)(2),…p(1)(n))P (1) = (p (1) (1), p (1) (2), …p (1) (n))
α(1)P(0)=(α(1)p(0)(2),α(1)p(0)(3)…α(1)p(0)(n))α (1) P (0) =(α (1) p (0) (2),α (1) p (0) (3)…α (1) p (0) (n))
α(1)p(0)(i)=p(0)(i)-p(0)(i-1),i=2,3,…,nα (1) p (0) (i)=p (0) (i)-p (0) (i-1), i=2,3,...,n
步骤3.5:检验P(1)是否具有准指数规律,通过下式计算准指数δ(1)(i):Step 3.5: Check whether P (1) has a quasi-exponential law, and calculate the quasi-exponent δ (1) (i) by the following formula:
步骤3,6:当准指数满足检验标准时,对P(1)作紧邻均值生成运算,通过下式表示紧邻均值:Steps 3, 6: When the quasi-exponent meets the test standard, perform an adjacent mean generation operation on P (1) , and express the adjacent mean by the following formula:
z(1)(i)=0.5p(1)(i)+0.5p(1)(i-1)(i=2,3…n)z (1) (i)=0.5p (1) (i)+0.5p (1) (i-1)(i=2, 3...n)
Z(1)=(z(1)(2),z(1)(3),z(1)(4),z(1)(5))Z (1) = (z (1) (2), z (1) (3), z (1) (4), z (1) (5))
步骤3.7:对参数列进行最小二乘估计,得到a1,a2,u:Step 3.7: Parameter column Perform least squares estimation to get a 1 , a 2 , u:
步骤3.8:对GM(2,1)进行白化方程求解,得到关于GM(2,1)的时间响应式,通过下式表示时间响应式:Step 3.8: Solve the whitening equation for GM(2,1) to obtain the time response formula for GM(2,1), which is expressed by the following formula:
求解P(1)的模拟值,通过下式表示P(1)的模拟值:Solving for the simulated value of P (1) , the simulated value of P (1) is expressed by:
根据模拟值还原确定P(0)的模拟值,通过下式表示P(0)的模拟值:The analog value of P (0) is determined according to the restoration of the analog value, and the analog value of P (0) is expressed by the following formula:
将P(0)的模拟值作为预测结果 Use the simulated value of P (0) as the prediction result
步骤3.9:对模型进行误差检验,通过下式表示误差检测值ε:Step 3.9: Perform error test on the model, and express the error detection value ε by the following formula:
检验指标为:一级:指标临界值为0.01;二级:指标临界值为0.05;三级:指标临界值为0.10;四级:指标临界值为0.20;若误差检测值不满足四级指标临界值,则采用残差优化灰色预测模型GM(2,1)。The inspection indicators are: Level 1: the critical value of the indicator is 0.01; Level 2: the critical value of the indicator is 0.05; Level 3: the critical value of the indicator is 0.10; Level 4: the critical value of the indicator is 0.20; value, the residual optimization grey prediction model GM(2,1) is used.
优选地,判断级比σ(0)(i)满足检验标准具体:Preferably, the judgment level ratio σ (0) (i) satisfies the inspection standard specifically:
当级比在上式检验标准范围内,则满足。When the grade ratio is within the range of the above-mentioned test criteria, it is satisfied.
优选地,检验准指数是否具有准指数规律具体为:Preferably, checking whether the quasi-exponential has a quasi-exponential law is specifically:
δ(1)(i)∈(1,1.5)δ (1) (i)∈(1, 1.5)
当准指数在上式检验标准范围内时,则满足。When the quasi-index is within the range of the above-mentioned test criteria, it is satisfied.
优选地,预测结果与柴油机安全保护系统报警阈值进行比较后,根据预测出来的滑油进机压力将在80min后低于安保系统得压力阈值,那么将判定柴油机未来运行状态为润滑油进机压力过低,此时,安保系统会通过程序向上位机发送报警信号,并将预测数据以图表化的形式同时发送给上位机进行下一步分析。Preferably, after the prediction result is compared with the alarm threshold of the diesel engine safety protection system, according to the predicted lubricating oil inlet pressure will be lower than the pressure threshold of the security system after 80 minutes, then it will be determined that the future operating state of the diesel engine is the lubricating oil inlet pressure If it is too low, at this time, the security system will send an alarm signal to the upper computer through the program, and send the predicted data to the upper computer in the form of graphs for further analysis.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明首先采集柴油机润滑油进机的压力、温度数据;将所采集数据经过卡尔曼滤波技术处理后构成润滑油进机压力与温度的原始参数序列;按照灰色理论预测模型的建模步骤,对原始压力序列进行累加运算,生成累加数列,然后针对累加数列进行数据准光滑度检验,在满足准光滑度的条件下,建立灰色预测GM(2,1)模型进行预测计算,运用相对误差检验法进行模型检验,达到四级标准及以上视为合格,若合格则输出预测结果,不合格可用残差序列建立模型,对原模型进行修正,直至符合检验标准,在模型符合检验标准基础上,输出预测结果,实现柴油机润滑油进机压力、温度的趋势预测;而后将预测结果与柴油机安全报警阈值进行比较,实现润滑油进机压力、温度是否正常的状态判断;当预测结果为异常状态,即润滑油进机压力的预测结果低于规定阈值或者润滑油进机温度高于规定阈值,对上位机输出报警提醒信号,以便提前采取反馈措施。The method first collects the pressure and temperature data of the lubricating oil entering the diesel engine; the collected data is processed by the Kalman filter technology to form the original parameter sequence of the lubricating oil entering pressure and temperature; according to the modeling steps of the gray theory prediction model, the The original pressure sequence is accumulated to generate the accumulated sequence, and then the data quasi-smoothness test is carried out for the accumulated sequence. Under the condition of satisfying the quasi-smoothness, a gray prediction GM(2,1) model is established for prediction calculation, and the relative error test method is used. Carry out model inspection, and it is considered qualified if it reaches the fourth-level standard and above. If it is qualified, the prediction result will be output. If it is not qualified, the residual sequence can be used to build a model, and the original model can be revised until it meets the inspection standard. On the basis of the model meeting the inspection standard, output The prediction result can realize the trend prediction of the pressure and temperature of the diesel engine lubricating oil; and then compare the prediction result with the safety alarm threshold of the diesel engine to realize the status judgment of whether the lubricating oil inlet pressure and temperature are normal; when the prediction result is abnormal, that is If the predicted result of the lubricating oil inlet pressure is lower than the specified threshold or the lubricating oil inlet temperature is higher than the specified threshold, an alarm signal will be output to the upper computer, so that feedback measures can be taken in advance.
本发明方法直接从柴油机获取润滑油进机参数的运行数据,同时采用灰色理论预测方法对润滑油进机参数进行趋势预测,通过预测结果判断柴油机未来的运行状态。若判断柴油机即将处于异常运行状态,可以提醒上位机,提早采取反馈措施,避免超限运行和突然停机的状况,进而达到柴油机安全保护的目的。The method of the invention directly obtains the operation data of the lubricating oil inlet parameters from the diesel engine, and simultaneously uses the grey theory prediction method to predict the trend of the lubricating oil inlet parameters, and judges the future operation state of the diesel engine through the prediction results. If it is judged that the diesel engine is about to be in an abnormal operation state, it can remind the upper computer and take feedback measures in advance to avoid overrun and sudden shutdown, so as to achieve the purpose of diesel engine safety protection.
根据本发明的预测方法,可以有效的预测未来润滑油进机压力的变化,及早对柴油机采取安全保护措施,提高设备的可靠性,也可以实现在保证柴油机运行安全的情况下,尽量减少骤然停机所带来危害的可能。According to the prediction method of the present invention, the change of the lubricating oil inlet pressure in the future can be effectively predicted, safety protection measures can be taken for the diesel engine as soon as possible, the reliability of the equipment can be improved, and the sudden shutdown of the diesel engine can be minimized under the condition of ensuring the safe operation of the diesel engine. the potential for harm.
附图说明Description of drawings
图1为基于灰色理论的柴油机润滑油进机安保参数预测方法流程图;Fig. 1 is a flowchart of a method for predicting the security parameters of diesel engine lubricating oil entering the engine based on grey theory;
图2为柴油机运行期间的润滑油进机压力的预测结果图。Fig. 2 is a graph showing the prediction result of the lubricating oil inlet pressure during the operation of the diesel engine.
具体实施方式Detailed ways
以下结合具体实施例,对本发明进行了详细说明。The present invention is described in detail below with reference to specific embodiments.
具体实施例一:Specific embodiment one:
根据图1所示,本发明提供一种基于灰色理论的柴油机润滑油进机安保参数预测方法,具体为:As shown in FIG. 1, the present invention provides a method for predicting the security parameters of diesel engine lubricating oil entering the engine based on the grey theory, specifically:
一种基于灰色理论的柴油机润滑油进机安保参数预测方法,包括以下步骤:A method for predicting security parameters of diesel engine lubricating oil entering the engine based on grey theory, comprising the following steps:
步骤1:通过压力传感器采集柴油机压力数据,所述压力数据为柴油机的润滑油进机压力运行数据,通过数据采集卡从柴油机润滑油进机入口管道的压力传感器处获取,并将数据存储至Excel中;Step 1: Collect the pressure data of the diesel engine through the pressure sensor, the pressure data is the running data of the lubricating oil inlet pressure of the diesel engine, obtained from the pressure sensor of the diesel engine lubricating oil inlet pipeline through the data acquisition card, and store the data in Excel middle;
步骤2:对采集到的柴油机的润滑油进机压力运行数据进行数据预处理,滤除环境噪声影响;Step 2: Data preprocessing is performed on the collected operating data of the lubricating oil inlet pressure of the diesel engine to filter out the influence of environmental noise;
所述步骤2具体为:The step 2 is specifically:
步骤2.1:初始化柴油机,确定输入信号wk、输出信号的观测噪声vk、Qk和产品规定误差Rk,采用卡尔曼滤波法对采集到的柴油机的润滑油进机压力运行数据进行数据预处理,滤除环境噪声影响,建立状态方程和输出方程,通过下式表示状态方程xk+1和输出方程yk:Step 2.1: Initialize the diesel engine, determine the input signal w k , the observation noise v k , Q k of the output signal, and the product specified error R k , and use the Kalman filter method to perform data prediction on the collected operating data of the lubricating oil inlet pressure of the diesel engine. Process, filter out the influence of environmental noise, establish the state equation and output equation, and express the state equation x k+1 and the output equation y k by the following formula:
xk+1=Akxk+wk x k+1 =A k x k +w k
yk=Ckxk+vk y k =C k x k +v k
其中,k为时间,wk为输入信号,vk为输出信号的观测噪声,A为状态变量之间的增益矩阵,xk为k时刻的状态变量,C为状态变量与输出信号之间的增益矩阵;where k is the time, w k is the input signal, v k is the observation noise of the output signal, A is the gain matrix between the state variables, x k is the state variable at time k, and C is the difference between the state variable and the output signal gain matrix;
确定输入信号wk、输出信号的观测噪声vk、Qk和产品规定误差Rk;Determine the input signal w k , the observed noise v k , Q k of the output signal and the product specification error R k ;
步骤2.2:设定初始真是温度为x(0)=T0和初始时刻的协方差P(0);Step 2.2: Set the initial true temperature as x (0) =T 0 and the covariance P (0) at the initial moment;
步骤2.3:读取第k-1时刻的最优估计值Tk-1,k时刻的测量值tk,计算增益因子,通过下式表示增益因子:Step 2.3: Read the optimal estimated value T k-1 at time k-1, the measured value t k at time k , calculate the gain factor, and express the gain factor by the following formula:
Hk=P(k-1)/(P(k-1)+Rk)H k =P (k-1) /(P (k-1) +R k )
Tk=Tk-1+Hk(tk-Tk-1)T k =T k-1 +H k (t k -T k-1 )
k时刻的最优至噪声协方差通过下式表示:The optimal-to-noise covariance at time k is expressed as:
P(k)=(1-Hk)P(k-1) P (k) = (1-H k )P (k-1)
步骤2.4:读取第k时刻的最优估计值Tk,k+1时刻的测量值tk+1,计算增益因子Hk+1和Tk+1,k+1时刻的最优值噪声协方差P(k+1)。Step 2.4: Read the optimal estimated value T k at the kth time, the measured
步骤2.5:重复步骤2.3至2.4,估计出最优值,得到滤除环境噪声后的有效数据。Step 2.5: Repeat steps 2.3 to 2.4 to estimate the optimal value to obtain valid data after filtering out environmental noise.
优选地,当柴油机真实温度处于恒定时,Qk=0;当柴油机温度随着运行状态发生变化时,Qk=0.01。Preferably, when the actual temperature of the diesel engine is constant, Q k =0; when the temperature of the diesel engine varies with the operating state, Q k =0.01.
步骤3:根据滤除噪声后的数据,柴油机润滑油进机压力灰色预测数据处理,得到预测结果;Step 3: According to the data after noise filtering, the gray prediction data of diesel engine lubricating oil inlet pressure is processed to obtain the prediction result;
所述步骤3具体为:The step 3 is specifically:
步骤3.1:建立灰色预测模型GM(2,1),通过下式表示灰色预测模型GM(2,1)的微分方程:Step 3.1: Establish a gray prediction model GM(2,1), and express the differential equation of the gray prediction model GM(2,1) by the following formula:
其中,p(1)为经过一次累加运算生成的累加数列;t为时间;a1,a2,u为待估参数,分别为发展灰系数和内生控制灰系数; Among them, p (1) is the accumulated sequence generated by one accumulation operation; t is the time; a 1 , a 2 , u are the parameters to be estimated, which are the development gray coefficient and the endogenous control gray coefficient respectively;
步骤3.2:根据滤除噪声后的数据,建立原始压力数据数列,通过下式表示所述数列P(0):Step 3.2: According to the data after filtering out the noise, establish the original pressure data series, and express the series P (0) by the following formula:
P(0)=(p(0)(1),p(0)(2),p(0)(3)…p(0)(n))P (0) = (p (0) (1), p (0) (2), p (0) (3)…p (0) (n))
其中,p(0)(i)为润滑油进机压力参数的时间序列数据,i=1,2,…n;Among them, p (0) (i) is the time-series data of lubricating oil inlet pressure parameters, i=1, 2, ... n;
步骤3.3:根据P(0),确定P(0)的级比σ(0)(i)的大小,进行级比检验,通过下式表示级比σ(0)(i):Step 3.3: According to P (0) , determine the size of the grade ratio σ (0) (i) of P (0) , carry out the grade ratio test, and express the grade ratio σ (0) (i) by the following formula:
步骤3.4:当级比σ(0)(i)满足检验标准时,对P(0)作1-AGO累加运算和1-IAGO累减,得到生成P(1)与α(1)P(0)数列,通过下式表示P(1)与α(1)P(0)数列:Step 3.4: When the level ratio σ (0) (i) meets the inspection criteria, perform 1-AGO accumulation and 1-IAGO accumulation on P (0) to obtain P (1) and α (1) P (0) The sequence of numbers, represented by the following equations P (1) and α (1) P (0) sequences:
P(1)=(p(1)(1),p(1)(2),…p(1)(n))P (1) = (p (1) (1), p (1) (2), …p (1) (n))
α(1)P(0)=(α(1)p(0)(2),α(1)p(0)(3)…α(1)p(0)(n))α (1) P (0) =(α (1) p (0) (2),α (1) p (0) (3)…α (1) p (0) (n))
α(1)p(0)(i)=p(0)(i)-p(0)(i-1),i=2,3,…,nα (1) p (0) (i)=p (0) (i)-p (0) (i-1), i=2,3,...,n
判断级比σ(0)(i)满足检验标准具体:Judgment grade ratio σ (0) (i) meets the inspection standard. Specifically:
当级比在上式检验标准范围内,则满足。When the grade ratio is within the range of the above-mentioned test criteria, it is satisfied.
步骤3.5:检验P(1)是否具有准指数规律,通过下式计算准指数δ(1)(i):Step 3.5: Check whether P (1) has a quasi-exponential law, and calculate the quasi-exponent δ (1) (i) by the following formula:
检验准指数是否具有准指数规律具体为:To test whether the quasi-exponential has a quasi-exponential law is as follows:
δ(1)(i)∈(1,1.5)δ (1) (i)∈(1, 1.5)
当准指数在上式检验标准范围内时,则满足。When the quasi-index is within the range of the above-mentioned test criteria, it is satisfied.
步骤3.6:当准指数满足检验标准时,对P(1)作紧邻均值生成运算,通过下式表示紧邻均值:Step 3.6: When the quasi-index satisfies the test standard, perform an adjacent mean generation operation on P (1) , and express the adjacent mean by the following formula:
z(1)(i)=0.5p(1)(i)+0.5p(1)(i-1)(i=2,3…n)z (1) (i)=0.5p (1) (i)+0.5p (1) (i-1)(i=2, 3...n)
Z(1)=(z(1)(2),z(1)(3),z(1)(4),z(1)(5))Z (1) = (z (1) (2), z (1) (3), z (1) (4), z (1) (5))
步骤3.7:对参数列进行最小二乘估计,得到a1,a2,u:Step 3.7: Parameter column Perform least squares estimation to get a 1 , a 2 , u:
步骤3.8:对GM(2,1)进行白化方程求解,得到关于GM(2,1)的时间响应式,通过下式表示时间响应式:Step 3.8: Solve the whitening equation for GM(2,1) to obtain the time response formula for GM(2,1), which is expressed by the following formula:
求解P(1)的模拟值,通过下式表示P(1)的模拟值:Solving for the simulated value of P (1) , the simulated value of P (1) is expressed by:
根据模拟值还原确定P(0)的模拟值,通过下式表示P(0)的模拟值:The analog value of P (0) is determined according to the restoration of the analog value, and the analog value of P (0) is expressed by the following formula:
将P(0)的模拟值作为预测结果 Use the simulated value of P (0) as the prediction result
步骤3.9:对模型进行误差检验,通过下式表示误差检测值ε:Step 3.9: Perform error test on the model, and express the error detection value ε by the following formula:
检验指标为:一级:指标临界值为0.01;二级:指标临界值为0.05;三级:指标临界值为0.10;四级:指标临界值为0.20;若误差检测值不满足四级指标临界值,则采用残差优化灰色预测模型GM(2,1)。The inspection indicators are: Level 1: the critical value of the indicator is 0.01; Level 2: the critical value of the indicator is 0.05; Level 3: the critical value of the indicator is 0.10; Level 4: the critical value of the indicator is 0.20; value, the residual optimization grey prediction model GM(2,1) is used.
步骤4:根据预测结果和柴油机安全保护系统报警阈值进行对比,判断柴油机运行状态,根据柴油机运行状态发出报警。Step 4: Compare the predicted result with the alarm threshold of the diesel engine safety protection system, judge the running state of the diesel engine, and issue an alarm according to the running state of the diesel engine.
预测结果与柴油机安全保护系统报警阈值进行比较后,根据预测出来的滑油进机压力将在80min后低于安保系统的压力阈值,那么将判定柴油机未来运行状态为润滑油进机压力过低,此时,安保系统会通过程序向上位机发送报警信号,并将预测数据以图表化的形式同时发送给上位机进行下一步分析。After comparing the prediction result with the alarm threshold of the diesel engine safety protection system, according to the predicted lubricating oil inlet pressure will be lower than the pressure threshold of the security system after 80 minutes, then it will be determined that the diesel engine's future operating state is that the lubricating oil inlet pressure is too low. At this time, the security system will send an alarm signal to the upper computer through the program, and send the predicted data to the upper computer in the form of graphs for further analysis.
本方法首先采集柴油机润滑油进机压力和温度的运行数据,并对该运行数据进行卡尔曼滤波处理;然后按照灰色预测模型的建模步骤,实现柴油机运行数据的预测功能,并得到预测结果;运用相对误差检验法对灰色预测模型进行检验,若未满足四级检验指标,则利用残差法优化灰色模型,直至满足四级及以上级别指标,输出准确的预测数据;在预测数据相对误差验证合格基础上,将预测结果与柴油机报警阈值进行逻辑判别,而后将预测状态结果输出至上位机。通过以上步骤,可以有效的预测柴油机润滑油进机参数的变化趋势,并对柴油机润滑油系统的未来的工作状态进行合理预测。本发明基于灰色理论,预测柴油机润滑油进机安保参数变化,可以协助控制系统,在设备超限运行前采取有效的反馈措施,从总体上提高设备的安全性,可靠性。The method firstly collects the operation data of diesel engine lubricating oil inlet pressure and temperature, and performs Kalman filter processing on the operation data; then, according to the modeling steps of the gray prediction model, the prediction function of the diesel engine operation data is realized, and the prediction result is obtained; Use the relative error test method to test the gray prediction model. If it does not meet the four-level test indicators, use the residual method to optimize the gray model until it meets the four-level and above indicators, and output accurate prediction data; On the basis of being qualified, the prediction result and the diesel engine alarm threshold are logically discriminated, and then the prediction state result is output to the upper computer. Through the above steps, the changing trend of the diesel engine lubricating oil inlet parameters can be effectively predicted, and the future working state of the diesel engine lubricating oil system can be reasonably predicted. Based on the grey theory, the invention predicts the change of the security parameters of the diesel engine lubricating oil entering the engine, and can assist the control system to take effective feedback measures before the equipment runs out of limit, thereby improving the safety and reliability of the equipment as a whole.
具体实施例二:Specific embodiment two:
本发明包括以下步骤:柴油机润滑油进机压力的数据采集、柴油机润滑油进机压力的数据预处理、柴油机润滑油进机压力灰色预测数据的计算、柴油机未来工作状态判断。具体如下:The invention includes the following steps: data collection of diesel engine lubricating oil inlet pressure, data preprocessing of diesel engine lubricating oil inlet pressure, calculation of gray prediction data of diesel engine lubricating oil inlet pressure, and judgment of diesel engine future working state. details as follows:
步骤1:柴油机润滑油进机压力的数据采集:所述柴油机的润滑油进机压力运行数据是由数据采集卡从柴油机润滑油进机入口管道的压力传感器处获取,并将运行数据存储至Excel中,以便后续数据预处理步骤和灰色预测模型构建步骤读取使用。Step 1: Data collection of diesel engine lubricating oil inlet pressure: The operating data of the diesel engine lubricating oil inlet pressure is obtained by the data acquisition card from the pressure sensor of the diesel engine lubricating oil inlet pipeline, and the operating data is stored in Excel , so that it can be read and used by subsequent data preprocessing steps and gray prediction model building steps.
步骤2:柴油机润滑油进机压力的数据预处理:对上述采集的柴油机运行数据进行预处理,可以有效地过滤掉由于传感器本身或者周围环境造成的噪声影响,从而生成低干扰信号的有效数据。此处选用的方法为卡尔曼滤波法,它可以依靠设置初始状态和方差来设计,并进行下一时刻的参数估计;估计修正过程则根据柴油机外部干扰和传感器噪声的统计规律来计算增益;最终在预测状态基础上,利用增益对预测的参数值进行修正。得到最优的参数估计值。具体实施步骤如下:Step 2: Data preprocessing of diesel engine lubricating oil inlet pressure: Preprocessing the above collected diesel engine operation data can effectively filter out the noise caused by the sensor itself or the surrounding environment, thereby generating effective data with low interference signals. The method selected here is the Kalman filter method, which can be designed by setting the initial state and variance, and the parameter estimation at the next moment; the estimation correction process calculates the gain according to the statistical law of the external disturbance of the diesel engine and the noise of the sensor; finally On the basis of the predicted state, the predicted parameter value is modified by the gain. Get the best parameter estimates. The specific implementation steps are as follows:
首先给出卡尔曼滤波器的有关定义:First, the relevant definition of Kalman filter is given:
假设系统的k时刻的状态变量为xk,状态方程和输出方程则如下表示:Assuming that the state variable of the system at time k is x k , the state equation and output equation are expressed as follows:
Xk+1=Akxk+wk#(1)X k+1 =A k x k +w k #(1)
yk=Ckxk+vk#(2)y k =C k x k +v k #(2)
其中,k表示时间,即第k步迭代;输入信号wk是白噪声,输出信号的观测噪声vk也是白噪声;A表示状态变量之间的增益矩阵,随时间k变化;C表示状态变量与输出信号之间的增益矩阵,随时间k变化;假设wk和vk都是均值为零的正态白噪声,方差分别为Q和R。Among them, k represents time, that is, the k-th iteration; the input signal w k is white noise, and the observation noise v k of the output signal is also white noise; A represents the gain matrix between state variables, which changes with time k; C represents the state variable The gain matrix between the output signal and the output signal varies with time k; assuming that both w k and v k are normal white noise with zero mean and variances Q and R, respectively.
第一步:通过系统初始条件,确定wk、vk、Qk和Rk。当被测系统真实温度处于恒定时,Qk=0,此处由于柴油机温度会随着运行状态发生变化,取Qk=0.01。vk为测温设备的测量噪声,出厂说明书会标记传感器误差,Rk则取产品规定误差即可。Step 1: Determine w k , v k , Q k and R k from the initial conditions of the system. When the real temperature of the system under test is constant, Q k =0. Here, since the temperature of the diesel engine will change with the operating state, take Q k =0.01. v k is the measurement noise of the temperature measuring equipment, the factory manual will mark the sensor error, and R k can be the specified error of the product.
第二步:建立卡尔曼滤波模型。Step 2: Establish a Kalman filter model.
xk+1=Akxk+wk x k+1 =A k x k +w k
yk=Ckxk+vk y k =C k x k +v k
式中,xk是一维温度变量;Ak=1;Ck=1;wk和vk的方差为Qk和Rk。In the formula, x k is a one-dimensional temperature variable; A k =1; C k =1; the variances of w k and v k are Q k and R k .
第三步:设定初始真实温度值x(0)=T0和初始时刻的协方差P(0) Step 3: Set the initial real temperature value x (0) = T 0 and the covariance P (0) at the initial moment
第四步:读取第k-1时刻的最优估计值Tk-1,k时刻的测量值tk,计算增益因子Step 4: Read the optimal estimated value T k-1 at time k-1, the measured value t k at time k , and calculate the gain factor
Hk=P(k-1)/(P(k-1)+Rk)#(3)H k =P (k-1) /(P (k-1) +R k )#(3)
则but
Tk=Tk-1+Hk(tk-Tk-1)#(4)T k =T k-1 +H k (t k -T k-1 )#(4)
k时刻的最优值噪声协方差Optimal value noise covariance at time k
P(k)=(1-Hk)P(k-1)#(5)P (k) = (1-H k )P (k-1) #(5)
第五步:读取第k时刻的最优估计值Tk,k+1时刻的测量值tk+1,计算增益因子Hk+1和Tk+1,k+1时刻的最优值噪声协方差P(k+1)。Step 5: Read the optimal estimated value T k at the kth time, the measured
第六步:重复第四、第五步的步骤,估计出最优的温度值。Step 6: Repeat steps 4 and 5 to estimate the optimal temperature value.
步骤3:柴油机润滑油进机压力灰色预测数据计算:所述的柴油机灰色建模趋势预测步骤是本发明的核心,通过预处理步骤后得到的有效数据,按照灰色预测模型的构建步骤进行预测计算并获得预测结果。本步骤开发环境采用的是Matlab软件。Step 3: Calculation of gray prediction data of diesel engine lubricating oil inlet pressure: The gray modeling trend prediction step of the diesel engine is the core of the present invention, and the effective data obtained after the preprocessing step is predicted and calculated according to the construction step of the gray prediction model and get the prediction result. The development environment in this step uses Matlab software.
首先给出灰色预测模型GM(2,1)的有关定义:First, the relevant definitions of the grey prediction model GM(2,1) are given:
灰色预测模型GM(2,1)反映了一个变量对时间的二阶微分函数,其对应的微分方程可以表示为The gray prediction model GM(2,1) reflects the second-order differential function of a variable against time, and its corresponding differential equation can be expressed as
其中p(1)为经过一次累加运算生成的累加数列;t为时间;a1,a2,u为待估参数,分别为发展灰系数和内生控制灰系数。Among them, p (1) is the cumulative sequence generated by one cumulative operation; t is the time; a 1 , a 2 , and u are the parameters to be estimated, which are the development gray coefficient and the endogenous control gray coefficient, respectively.
灰色GM(2,1)模型的建立及计算步骤The establishment and calculation steps of grey GM(2,1) model
第一步:根据预处理后得有效数据,建立原始压力数据数列。Step 1: According to the valid data obtained after preprocessing, establish the original pressure data series.
设P(0)=(p(0)(1),p(0)(2),p(0)(3)…p(0)(n))Let P (0) = (p (0) (1), p (0) (2), p (0) (3)…p (0) (n))
其中p(0)(i)(i=1,2,…n)为润滑油进机压力参数的时间序列数据where p (0) (i) (i=1, 2, ... n) is the time series data of lubricating oil inlet pressure parameters
第二步:对于给定的序列P(0),计算P(0)的级比σ(0)(i)的大小,进行级比检验。级比的计算公式为Step 2: For a given sequence P (0) , calculate the magnitude of the rank ratio σ (0) (i) of P (0) , and perform a rank ratio test. The formula for calculating the grade ratio is
检验标准为The inspection standard is
若满足检验标准,即可进行后续GM(2,1)的建模步骤。If the inspection criteria are met, the subsequent modeling steps of GM(2,1) can be performed.
第三步:对P(0)作1-AGO累加运算和1-IAGO累减,得到生成P(1)与α(1)P(0)数列The third step: perform 1-AGO accumulation operation and 1-IAGO accumulation and subtraction on P (0) to obtain P (1) and α (1) P (0) sequence
P(1)=(p(1)(1),p(1)(2),…p(1)(n))P (1) = (p (1) (1), p (1) (2), …p (1) (n))
α(1)P(0)=(α(1)p(0)(2),α(1)p(0)(3)…α(1)p(0)(n))α (1) P (0) =(α (1) p (0) (2),α (1) p (0) (3)…α (1) p (0) (n))
其中 in
α(1)p(0)(i)=p(0)(i)-p(0)(i-1),i=2,3,…,n#(10)α (1) p (0) (i)=p (0) (i)-p (0) (i-1), i=2,3,...,n#(10)
第四步:检验P(1)是否具有准指数规律。准指数计算公式为Step 4: Check whether P (1) has a quasi-exponential law. The formula for calculating the quasi-index is
检验标准为The inspection standard is
δ(1)(i)∈(1,1.5)δ (1) (i)∈(1, 1.5)
若满足检验标准,即可进行后续GM(2,1)的建模步骤。If the inspection criteria are met, the subsequent modeling steps of GM(2,1) can be performed.
第五步:对P(1)作紧邻均值生成运算。令Step 5: Perform an adjacent mean generation operation on P (1) . make
z(1)(i)=0.5p(1)(i)+0.5p(1)(i-1)(i=2,3…n)#(12)z (1) (i)=0.5p (1) (i)+0.5p (1) (i-1)(i=2,3...n)#(12)
得Z(1)=(z(1)(2),z(1)(3),z(1)(4),z(1)(5))get Z (1) = (z (1) (2), z (1) (3), z (1) (4), z (1) (5))
第六步:对参数列进行最小二乘估计。得a1,a2,u值。Step 6: Parameter column Perform a least squares estimation. Get a 1 , a 2 , u values.
其中in
第七步:确定模型及方程的解Step 7: Determine the solution to the model and equations
关于GM(2,1)白化方程的解,若P(1)*是Regarding the solution of the GM(2,1) whitening equation, if P (1)* is
的特解,是对应齐次方程special solution, is the corresponding homogeneous equation
的通解,则为GM(2,1)白化方程的通解。general solution, then is the general solution of the GM(2,1) whitening equation.
白化方程的通解:当特征方程r2+a1r+a2=0有不等实根r1,r2时,The general solution of the whitening equation: when the characteristic equation r 2 +a 1 r+a 2 =0 has unequal real roots r 1 , r 2 ,
当特征方程r2+a1r+a2=0有相同实根r时,When the characteristic equation r 2 +a 1 r+a 2 =0 has the same real root r,
当特征方程r2+a1r+a2=0有共轭复数根r1=α+iβ,r2=α-iβ时,When the characteristic equation r 2 +a 1 r+a 2 =0 has complex conjugate roots r 1 =α+iβ, r 2 =α-iβ,
白化方程的特解:当零不是特征方程的根时,P(1)*=C;The special solution of the whitening equation: when zero is not the root of the characteristic equation, P (1)* =C;
当零时特征方程的单根时,P(1)*=Cp;When the single root of the characteristic equation at zero time, P (1)* =Cp;
当零时特征方程的重根时,P(1)*=Cp2;When the multiple roots of the characteristic equation at zero time, P (1)* =Cp 2 ;
例如:当a1=-3,a2=2,u=10时,r2-3r+2=0有两个不同实根,则对应齐次方程的通解是又因为零不是特征方程的跟,则P(1)*=C。For example: when a 1 =-3, a 2 =2, u = 10, r 2 -3r+2=0 has two different real roots, then the general solution of the corresponding homogeneous equation is And since zero is not the heel of the characteristic equation, then P (1)* =C.
所以白化模型So the whitening model
的解为p(1)(t)=c1et+c2e2t+C. The solution is p (1) (t)=c 1 e t +c 2 e 2t +C.
再利用边界条件P(1)=(p(1)(1),p(1)(2),…p(1)(n))解出c1,c2,C。即可得到关于GM(2,1)的时间响应式 Then use the boundary conditions P (1) = (p (1) (1), p (1) (2), ... p (1) (n)) to solve c 1 , c 2 , C. The time response formula for GM(2,1) can be obtained
第八步:求P(1)的模拟值Step 8: Find the analog value of P (1)
第九步:还原求出P(0)的模拟值。由The ninth step: restore the analog value of P (0) . Depend on
得 have to
第十步:检验误差。Step 10: Check for errors.
模型检验的方法有三种:相对误差、关联度、均方差检验。一般情况下,最常用的是相对误差检验:There are three methods for model testing: relative error, correlation, and mean square error. In general, the most common is the relative error test:
具体检验指标为:一级:指标临界值为0.01;二级:指标临界值为0.05;三级:指标临界值为0.10;四级:指标临界值为0.20。若输出结果不满足四级指标临界值,则采用残差优化灰色预测模型。The specific test indicators are: Level 1: the critical value of the indicator is 0.01; Level 2: the critical value of the indicator is 0.05; Level 3: the critical value of the indicator is 0.10; Level 4: the critical value of the indicator is 0.20. If the output result does not meet the critical value of the four-level index, the residual optimization gray prediction model is used.
步骤4:柴油机未来工作状态判断:将预测结果与柴油机安全保护系统报警阈值比较后,对柴油机运行状态做出逻辑判断,并将判断结果反馈至上位机。图2为本发明实施某型柴油机运行期间润滑油进机压力的预测结果。如图2所示,柴油机润滑油进机压力出现了下降趋势,根据这些运行数据预测出来的滑油进机压力将在80min后低于安保系统得压力阈值,那么将判定柴油机未来运行状态为润滑油进机压力过低。此时,安保系统会通过程序向上位机发送报警信号,并将预测数据以图表化的形式同时发送给上位机进行下一步分析。Step 4: Judgment of the future working state of the diesel engine: after comparing the prediction result with the alarm threshold of the diesel engine safety protection system, make a logical judgment on the running state of the diesel engine, and feed the judgment result back to the upper computer. Fig. 2 is the prediction result of the lubricating oil inlet pressure during the operation of a certain type of diesel engine according to the present invention. As shown in Figure 2, the diesel engine lubricating oil inlet pressure has a downward trend. The predicted lubricating oil inlet pressure based on these operating data will be lower than the pressure threshold of the security system after 80 minutes, then the diesel engine will be judged to be lubricated in the future. Oil inlet pressure is too low. At this time, the security system will send an alarm signal to the upper computer through the program, and send the predicted data to the upper computer in the form of graphs for further analysis.
以上所述仅是一种基于灰色理论的柴油机润滑油进机安保参数预测方法的优选实施方式,一种基于灰色理论的柴油机润滑油进机安保参数预测方法的保护范围并不仅局限于上述实施例,凡属于该思路下的技术方案均属于本发明的保护范围。应当指出,对于本领域的技术人员来说,在不脱离本发明原理前提下的若干改进和变化,这些改进和变化也应视为本发明的保护范围。The above is only a preferred embodiment of a method for predicting the security parameters of diesel engine lubricating oil based on grey theory. , all the technical solutions under this idea belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and changes without departing from the principle of the present invention should also be regarded as the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010698450.8A CN111855219A (en) | 2020-07-20 | 2020-07-20 | A method for predicting security parameters of diesel engine lubricating oil entering the engine based on grey theory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010698450.8A CN111855219A (en) | 2020-07-20 | 2020-07-20 | A method for predicting security parameters of diesel engine lubricating oil entering the engine based on grey theory |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111855219A true CN111855219A (en) | 2020-10-30 |
Family
ID=73002079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010698450.8A Pending CN111855219A (en) | 2020-07-20 | 2020-07-20 | A method for predicting security parameters of diesel engine lubricating oil entering the engine based on grey theory |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111855219A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113916843A (en) * | 2021-10-26 | 2022-01-11 | 中国人民解放军91315部队 | Grey model-based mechanical equipment lubricating oil performance prediction method |
CN114295095A (en) * | 2021-11-26 | 2022-04-08 | 广西科技大学 | Method for determining optimal measuring point number of free-form surface detection |
CN114338458A (en) * | 2021-12-24 | 2022-04-12 | 山石网科通信技术股份有限公司 | Data security detection method and device |
CN114577480A (en) * | 2022-03-02 | 2022-06-03 | 中国船舶重工集团柴油机有限公司 | Diesel engine state monitoring method and system based on sequence transformation |
CN114638435A (en) * | 2022-03-29 | 2022-06-17 | 中国船舶重工集团公司第七一一研究所 | Data-driven prediction method of diesel engine security parameters |
CN119647298A (en) * | 2025-02-19 | 2025-03-18 | 阳江核电有限公司 | A method, device, controller and medium for evaluating the state performance of an emergency diesel engine |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1580003A1 (en) * | 2003-02-05 | 2005-09-28 | International United Technology Co., Ltd. | Ink jet printhead identification circuit and method |
CN102705078A (en) * | 2012-04-19 | 2012-10-03 | 哈尔滨工程大学 | Diesel engine fault prediction method based on gray model |
CN105043593A (en) * | 2015-06-30 | 2015-11-11 | 株洲南车时代电气股份有限公司 | Locomotive temperature sensor fault diagnosis and fault tolerance estimation method |
CN105466693A (en) * | 2015-11-13 | 2016-04-06 | 哈尔滨工程大学 | Diesel engine fuel oil fuel oil system fault pre-diagnosing method based on gray model |
CN108008718A (en) * | 2017-12-07 | 2018-05-08 | 上海海事大学 | Study on intelligent based on model |
CN109296457A (en) * | 2018-10-30 | 2019-02-01 | 中船动力研究院有限公司 | A diesel generator set centralized console |
CN110109162A (en) * | 2019-03-26 | 2019-08-09 | 西安开阳微电子有限公司 | A kind of Kalman filtering positioning calculation method that GNSS receiver is adaptive |
CN110618313A (en) * | 2019-09-09 | 2019-12-27 | 中车唐山机车车辆有限公司 | Online energy consumption detection and prediction device and method for train power system |
CN110738331A (en) * | 2019-09-19 | 2020-01-31 | 智慧航海(青岛)科技有限公司 | intelligent marine engine room system |
-
2020
- 2020-07-20 CN CN202010698450.8A patent/CN111855219A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1580003A1 (en) * | 2003-02-05 | 2005-09-28 | International United Technology Co., Ltd. | Ink jet printhead identification circuit and method |
CN102705078A (en) * | 2012-04-19 | 2012-10-03 | 哈尔滨工程大学 | Diesel engine fault prediction method based on gray model |
CN105043593A (en) * | 2015-06-30 | 2015-11-11 | 株洲南车时代电气股份有限公司 | Locomotive temperature sensor fault diagnosis and fault tolerance estimation method |
CN105466693A (en) * | 2015-11-13 | 2016-04-06 | 哈尔滨工程大学 | Diesel engine fuel oil fuel oil system fault pre-diagnosing method based on gray model |
CN108008718A (en) * | 2017-12-07 | 2018-05-08 | 上海海事大学 | Study on intelligent based on model |
CN109296457A (en) * | 2018-10-30 | 2019-02-01 | 中船动力研究院有限公司 | A diesel generator set centralized console |
CN110109162A (en) * | 2019-03-26 | 2019-08-09 | 西安开阳微电子有限公司 | A kind of Kalman filtering positioning calculation method that GNSS receiver is adaptive |
CN110618313A (en) * | 2019-09-09 | 2019-12-27 | 中车唐山机车车辆有限公司 | Online energy consumption detection and prediction device and method for train power system |
CN110738331A (en) * | 2019-09-19 | 2020-01-31 | 智慧航海(青岛)科技有限公司 | intelligent marine engine room system |
Non-Patent Citations (2)
Title |
---|
唐启义: "《实用统计分析及其计算机处理平台[M]》", 31 December 1997 * |
杨丹: "卡尔曼滤波器设计及其应用研究", 《万方》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113916843A (en) * | 2021-10-26 | 2022-01-11 | 中国人民解放军91315部队 | Grey model-based mechanical equipment lubricating oil performance prediction method |
CN114295095A (en) * | 2021-11-26 | 2022-04-08 | 广西科技大学 | Method for determining optimal measuring point number of free-form surface detection |
CN114295095B (en) * | 2021-11-26 | 2023-07-14 | 广西科技大学 | A Method for Determining the Optimal Number of Measuring Points for Freeform Surface Inspection |
CN114338458A (en) * | 2021-12-24 | 2022-04-12 | 山石网科通信技术股份有限公司 | Data security detection method and device |
CN114577480A (en) * | 2022-03-02 | 2022-06-03 | 中国船舶重工集团柴油机有限公司 | Diesel engine state monitoring method and system based on sequence transformation |
CN114577480B (en) * | 2022-03-02 | 2023-11-10 | 中船发动机有限公司 | Diesel engine state monitoring method and system based on sequence transformation |
CN114638435A (en) * | 2022-03-29 | 2022-06-17 | 中国船舶重工集团公司第七一一研究所 | Data-driven prediction method of diesel engine security parameters |
CN119647298A (en) * | 2025-02-19 | 2025-03-18 | 阳江核电有限公司 | A method, device, controller and medium for evaluating the state performance of an emergency diesel engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111855219A (en) | A method for predicting security parameters of diesel engine lubricating oil entering the engine based on grey theory | |
CN102705078B (en) | Diesel engine fault prediction method based on gray model | |
CN111353482A (en) | LSTM-based fatigue factor recessive anomaly detection and fault diagnosis method | |
CN112785091A (en) | Method for performing fault prediction and health management on oil field electric submersible pump | |
CN114934898B (en) | Hydraulic pump fault diagnosis analysis system based on multi-mode parameters | |
Hansen et al. | A new approach to the challenge of machinery prognostics | |
CN112418306A (en) | Gas turbine compressor fault early warning method based on LSTM-SVM | |
CN112733446A (en) | Data-driven self-adaptive anomaly detection method | |
CN114662327B (en) | An auxiliary method for leak monitoring in AUV cabin | |
CN114626162B (en) | Quantitative recognition method for loss degree of contact ball bearing | |
CN114936494B (en) | High temperature component reliability assessment method and system driven by data-physics fusion | |
KR102692731B1 (en) | Method for diagnosing engine abnormalities, computer-readable storage medium recording engine abnormality diagnosis program, and engine abnormality diagnosis system | |
CN118607289B (en) | Vehicle hydraulic system degradation prediction method and system based on oil pressure change | |
CN119494754A (en) | A method and system for monitoring and warning abnormal environment in a smart power plant | |
Kobbacy et al. | Condition monitoring of diesel engines | |
CN117662491A (en) | Main pump fault diagnosis method and system based on principal component and deep learning algorithm | |
Sun et al. | Anomaly detection of marine diesel engine valve system based on mahalanobis distance | |
CN115655731A (en) | Diesel engine condition monitoring method, device and storage medium | |
CN118090078B (en) | Leakage online monitoring method for closed circulation water cooling system | |
CN106643907B (en) | Weighted principal component analyzing method for the identification of structure monitoring data exception | |
Wang | Aero Engine Fault Diagnosis Based on Support Vector Machine | |
Muhammadiev et al. | Assessment of Technical Condition and Readiness of Pump Units by Diagnostic Methods | |
CN116146289B (en) | A method and device for evaluating the condition of a ship gas turbine blade | |
Zhao et al. | Intelligent Early Warning of Municipal Wastewater Lifting Pump Based on Fuzzy Neural Network | |
Aye et al. | A review of slow speed bearing diagnostics and prognostics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201030 |